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A class of normal numbers

By

Yoshinobu Nakai and Iekata Shiokawa

To the memory of Isamu Kobayashi

§1. Introduction. Let r be an integer greater than one and

let

6 = O.ala2 e m alr + a,r + e

be the r-adic expansion of a real number 6, 0<6<l, where each ai is one
of 0, 1, «++, r-1, Then 8 4is said to be normal to the base r, if, for

any £ non-negative integers bl’ bz, e, bz less than T,

L

1 _ 1
- Nr(e,b1 --bz,n) = - + o(l)

as n+°, where Nr(e;bl~-~b£;n) is the number of indices i § n-2+1 in

the expansion of © sugh that ai=bl’ ai+l=b2’ e, ai+z-1=bg' Let

nl, nz,"' be an infinite sequence of positive integers and let
k. ~1 k.-2

i
T + a,,r + e + a,
. i2 ik,’
i i

airfo, be the r~adic expansion of . Define a number Br by the series

-1
O.ajy ajpr-- a

which will be written simply by Sr = O.nln2'°'

Davenport and Erdos [1] proved that the number Br=0.f(l)f(2)~"
is normal to the base r, where f£(x) is a polynomial in x, all of whose
values for x=1,2,°+« are positive integers. In this paper we prove the

normality of the number 6r=0.[g(l)][g(2)]~", where [t] is the integral
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1 1 1

n Nr(er’bl ’ bl’n) = rl + 0( log n )
Corollary 2. Let g(x) be as above. Then

-1
I s ([gm]) = —5— x log_ g(x) + 0(x)
T 2 T

nsx

Example. Suppose B>0 1is not an integer. Then

Br = 0.1[28][381"' is normal to the base r. More precisely,

SR S
log n

1 1
—— N_(0_3b ==+by5n) =~ + O(

,L )
r

and hence

1 s ([n°]) = 5518 x log_ x + 0(x)

The proof of the theorem can be reduced to estimating the

exponential sum of the form

P1Q v 2mix
I e( — g(n)), e(x) =e ,
n=p+1 rm

(see §3). Crucial steps in this estimation are carried out by using
Vinogradov's method as well as van der Corput lemmas. Our proof may not be
applicable for the case of polynomials except for some special ones. Using
Weyl's inequality, Davenport and Erdos [1] obtained the result for
polynomials; however, they did not derive an explicit remainder term. We
conjecture that the same inequality as in our theorem holds also for any

polynomial f(x) with real coefficients.

§2. Lemma. In this section we prepare some notations and
Lemmas.
Lemma 1. ({3] Lemmas 4.2 and 4.8.) Let f(x) be a real

differentiable function such that £'(x) is monotonic, and let
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O<e<f'(x)<l-¢ throughout the interval (a,b), or the same for ~f'(x). Then

[ e(e@) = 0(—)

a<nsb
Lemma 2. ([3] Lemmas 4.4 and 4.7.) Let f(x) be a real
function, twice differentiable, and let £"(x)2y>0 throughout the interval

(a,b), or the same for =-f'"(x). Then-

T e(f(n)) = 0 £ @' M| ) 4 g(10g(2+| ' (a)-£" (B)]))
a<nsb N

Let k and q be positive integers with k2. Put

k
S(q) = § e(tm+ c2n$+ see ttm)
m=1

where tl,tz,---tk are real, and set, with an integer L,

1 1
J(q,L) =f f is(q)IZLdtl"-dtk .
0 0

Lemma 3. ([3] Lemma 6.9.) If R is any non-negatlve integer,

and let L 2 —%—k(k+l)+kR, then

- ° 21— ——;—k(kﬂ) + k(1) (1- i
J(q,L) £ K (log q) q

1
—k (k-1)
where K = 482L(L!)2Lk k 2 .
Lemma 4. ([3] Lemma 6.11) Let M and N be integers, N>1,

and let ¢(n) be a real function of n, defined for MgnsM+N-1, such that

§ s ¢(n+l) = ¢(n) s cb (M S n § MN-2) ,

where 6>0, czl, cés—%—. Let wzl. Let ”x” denote the difference
between x and the nearest integer. Then the number of values of n for
which “¢(n)” < wé§ 1s less than

(Ne§ + 1) (2w + 1)
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Lemma 5. Let k, P, and Q be integers k22, Q22, let f(x)
be real and have continuous derivatives up to the (k+l)th order in
[P+1, P+Q]; let 0 < X < 1/(2co(k+1)) and

f(k+l)(x)

M E g

o coA (P+1 5 x £ PHQ) ,

or the same for —f(k+1)(x), and let

Q—k—l+6 < s Q—l
with 0<égk. Then
1 § R
P+Q 1= e —— 5
+1 2L
I oesm)| =o@ Lt Flaeg gy,
n=pP+1]
where
1 2
log(—d— k(k+1)%)
R=1+] ],

-log(l - ~%—)

L=1+] —%— k(k+l) + kR ] ,

and the constant implied depends possibly on k and 3§.

Lemma 6. In addition to the conditions of Lemma 5, let N be

an integer with 1SN=<Q. Then

P+N 1-p
) e(f(m) | =0(Q ™"
n=P+1
where =L 6
P = T6L ¥+1
Proof. The method of proof is similar to that of Lemma 6.12 in
[3]. Put
P+Q
s = ] e(f(n) ,
n=P+1
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T(n) = g e(f(n+tm)-£(n)) (P+1 $ n $ P+Q-q),
m=1
where
.
q=1+1[2 k+1 1,
so that
L -
Flsqsi+a k+1
Then
1 1
1- == P+Q-q 2L
2
sl s —a *F¢ P v m

n=P+1
where L 1is any positive integer. (See (6.12.4) in [3].)

Define, for 1l Sy s q,

2 k
ACy) = f(nty) - £f(n) - (tly + £,y +oeee bty )

Then
q
T(n) = S(q)e(a(y)) - 21rif S(y)a'(y)e(a(y))dy (2)
= (o]
where
k £ () h-1 (k+1) K
A'(y) = ] (= - )y o(ETT (ntey)y ) 3
h=1 )

with 0<6<l. Hence, if

1

M

o . (h=1,2,++,k) (4)

fTn

2q

we have
' = 1 k = -———1
[a" )| = 06 + 00 = 06

so that
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q
IT@ | = ocls | + —;ll—fo |5 lay)

Thus, as in the proof of Lemma 6.12 in [3], we get

1
P+Q-q ——k(k+1) P+Q-q
% ‘T(n)IZL = 0(q 2 sup +§ x(n,t)

n=P+1 te R* n=P+l

1 1 q
xf f (s | +-—1—-f s(y) lan)?" ae --ear) (5
[o] e] ! o

where, for each n, x(n,t) is a function of t = (tl.tz,'-~,tk) € Rk

defined by

~1_
h

(h)
1 if II_E_E_LEL_ - th” < ;
q

I (h=1,2,+++,k) ,

x(n,t) =

0 otherwise.

It follows from Lemma 3 that

1 1 q
1 2L
j; \[o (Istq) | + q ‘/; [s(y) |dy) de - eedt,

-1 1 1 q
s 2214 lf -..f (lS(q)IZL +_3‘1_~/‘ IS(}’)’ZLdy) dtIO--dtk
° o

o]

1 1 1 .R
2L~ —k(k+1) + —=—k(k+l)(l- =)
-o(q ? 2 k7 (1eg N, 6

where R and L are as in Lemma 3. Further put in Lemma 4 M=P+l, N=Q-q,

¢(n) = _%T f(k)(n) - for MsSnsMiN-1, c=c_, §=A(k+l), and w=q/(2k+2).

x
Then, by the conditions of Lemma 5, w2l (provided QZ(2k+1)k+1), cGS—E—,

1

and &s¢(n+l)-¢(n)scé (setting ¢(n)= - T f(k)(n) + t.  if necessary).

k

P+Q-q
Hence by Lemma 4 sup % x(n,t) = 0((Qr+1)(q+1)) = 0(q) .
te R n=P+l1

This together with (5) and (6) yields
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1 1 (R
P+Q—q 1421+ ——k(k+1) (1- =)
7T ] = o(q 2 K7 (log 8
n=P+1
and so by (1)
1 1 1 R 1
1- == 1+ ——k(k+1) (1- =) =~
Is| =o@ L *? 7 (1og 9B + 0(@)
R_ - 5
- 0" (10g %) +o@ *hH
where
- 1 -5 L oL yRy 1
Ho=l -+ (1= 5 )+ —kGe D) (L = 5 D5
1 § 1 1 R 1 [
s 1= =g gy - @D A - 5200 5 1 - 7 a7

choosing R as in Lemma 5; and the proof is completed.

Proof of Lemma 6. Put e = &6/(2(k+1)-8). We may assume
Q' s N 5 Q. Then
-1+ 6 ,
N S AN ,
and hence the results follows from Lemma 5.
§3. Proof of Theorem. Let jo be a positive integer chosen

sufficiently large. Then, for each integer jzjo, there is an integer
njzl such that

j-2

r < g(nj) < rjnl < g(nj+l) < rj ,

since g(t) < g(t+l) < rg(t) for all large ¢t. It follows from the

definition that nj< ns<n if and only if rJ_lg g(n) < rJ, and that

j+1

for jzjo, where <, and c, are positive constants independent of j.
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Let J be a positive integer such that nJ< x £ ny.p» SO that
J = logr g(x) + 0(1)

Put X_=x-n and X.=n,

J J 3 J+1_nj for 3j<J. Then, writing
N _(g(n)) = Nr([g(n)];blbz'.'bz) for brevity,
3 nj+Xj
, [ NEgm) = ] I Ng@) + o), (N
nsx =i, n=nj+1

where the constant implied is independent of x. Here it can be written

that
= _g(m)
N(g(n)) mixl( o ) (nj< n s “j+1) s
where
2 b L b
1 4f J—st-[t]< | ko,
k=1 £~ k=1 £ .
I(t) =
0 otherwise,
so that
n +X . n,+Xj
I wee = 11 neR@
n=nj+l m=L n=nj+1 r

We construct, for each J, functions I_(x) and I+(x), periodic with
period 1 such that I _(x) s I(x) s I+(x), having Fourier expansion of the

following form;

1+

e~ 8

1 1
I,(x) = —¢ -—j—+ A, (v) e(va)
r V==
V20

where

la ] s o(min( -, —15 )
[v] [v]
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(See Chap. two, Lemma 2 in [4].) Thus

nj+Xj
77 N(g(n)) = L x, + 0(x)
n=nj+l rg 3 J
o nj+Xj
cocd T min(—- , 3| 7] e gD, (®
m=2 v=1 v n=nj+1 ¥

where the constants implied are independent of j.
We shall estimate the exponential sums

n,+X,

1.3
S(Fomv) = ] e(—=g@) ,

n=n,+1 r
J

where j, m, and v are integers with ijo, 2smsj, and vzl. In what

follows all the constants as well as those implied in O-symbols will be

independent of j, m, and V. The proof will be carried on in two cases.
First case: Let B(>0) be not an integer. We apply first Lemma

6 with k=[8]+2 (22) and f£f(x) = vr—mg(x). Since

+ -k-1
£ (0 v L ap(p-1) e (80T
r
we have
(k+1)
f (x)
A< —aIDT < coA (njs x S nj+Xj) ,
or the same for —f(k+l)(x), where
-t —-'é—(s—k—l) —k-1+(1- Sy
A = cvr = cvQ J
and Q=rj/8. (In the sequel, the same letters s cy» and ¢ may denote

different constants at different occurrences.) Let & be a positive

constant chosen sufficiently small. If (&5)m £ —%—(8—6), or equivalently

- 10 -
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if (1= —‘j“—)s 2 6, then

k=146 5 -k-1+(1~- —‘;‘—)s < ~k-148 < =2 ,
so that
Q—k—1+6 <s Q—l
provided ISijz. Hence by Lemma 6
—-1-0)

IS(j,m,v)] = 0(r )

provided 2 s m S ~%~(8~6) and 1 £ v &S jz.

On the other hand, if (j2)m 2 —%—(8-6), we can appeal to Lemma 1

with f£(x) vr—mg(x). Then, for these m and ijz, we have

] (1= =)

—mhi (1- —é—)
0 < covr < f'(x) < ¢

1
VF <2

throughout the interval [n,, nj+Xj], since

3

j(l——;—)-mSj(l——é—-)—j(l—-—g—)< ‘5;1 <0 .

Hence by Lemma 1
1 "%“"'“‘j
[s¢zmv)| =0( = )

provided —%—(8—6) Smsj and 1 s v s jz.

Combining these estimates, we obtain
. - .
% 2 min(T » "‘j_z)ls(jsm’\))l
m=£ v=1 v

2 o
RO S L) [5G mv |

)
m=§ v=1 v=j2+1 v

- 11 -
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2 .
1
= )1_ )} — |s(3,m,v) | + O(X,)
m=2 v=1 v 3
TR +
= 0(r J log j) + 0(r ")
g 2
+ 0(r 8 ) rm~j( i -17 ))
(1-8/B) jsms] v=l v
g
- = 0(r B )
which together with (7) and (8) yields
z r ;4
N(g(n)) = — ( j(, ,-n.) + J(x-n.)) + 0( r ")
nsx IEETE A I 373,
L
= —lz xJ + O(r 8 )

-
T

1
_;E x 1°8rgCX) + 0(x) ;

and the theorem is proved when B8 is not an integer.
Second case: Let B(>0) be an integer. Then there is a non-

integer Bh’ hzl, such that B8, Bl,---, B are integers. Put b=f and

h-1
y=8h, so that bzl and vy>0. In what follows, v is always assumed to
be ISijz. We apply Lemma 6, Lemma 1, and Lemma 2 with f£(x) = vr "g(x).

It is easily seen that

(b+1)
f (x)
A s —ED 1 < coA (njs x S nj+xj)
or the same for —f(b+1)(x), where
yboie g =l
A= cwQ J ’ Q=r1r .

- 12 -
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If (LS)m S —%—(Y~6), where 6§ 1s a positive constant chosen sufficiently

small, then

—b-l1+8sy-b-1- —%—m s -1-6 ,

so that
1
-b-14 ——8
Q 2 < s Q~1
Hence by Lemma 6
—L-(1-0) .
[s(3mv) | = oCx ) (@ s ms —=(-6) (9)

where p, o<p<l, is a constant.

On the other hand, 1f (j2)m > —l—(b=1+§) then

-t —l-(b-1) —mt —%~(b»l) ~6—%—

0 < e vt < f'(x) < cvr < c)vr <1

for njs X S n,+X,. Hence by Lemma 1

id

1 "%" -] j
S(Gmv)| = 0( —— ¢ )y (- (b-1+8) smsS i) . (10)
| | 5 +

We may now assume b22, since, if b=l then
—%—(b—1+6) < —%—(Y—G), so that (9) and (10) cover all integers m in

the range £smsj. Then

£'(x) v ab(b-Lvr x> = 0,
so that
- (b-2)-n
£'"(x) > cvr >0 n.S x S n,+X,
(x) ( 3 5 J)
v —%—(b—Z)—m
Hence, putting in Lemma 2 a=nj, b=nj+Xj, Y = cvr , and

- 13 -
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S T

£ (ng#K,) - £'(n)) - o(r ° vr )

3
we get

tonm
|s(i,m,v)| = 0((vr ) )

3 dpezyem &
+ O(r b (vr b )2 )

+ 0(j + log(l+v))
Thus, assuming —%—(b-2+6) Sm (s —%—(b—1+6)) or equivalently

—%—(b—Z)—m < -~ —1§— we obtain

s - L
BT R S U
i) (1 )
IsGmw| =0 2 r? 2 y +o0( 2 r” 27y 1o
S I S I
- i) (1 )
o 2 b 2 )y +0(r ° 47 (11

(L-(o-246) s ms - (b-146) )
It remains to estimates the sum S(j,m,v) when
L r-5) sms Lo-246) (12)

so that especially when 0<y<b-2 as Y 1s not an integer and so bz3.

For this, we modify the proof of Lemma 5 taking these conditions into
o
account. We assume first that (joS)j < J-1, so that Xj = r
Put k=b-1, P=n,, Q=X,,
3> &
1
rm b-1
q=10 (=) 1,

and define S, T(n), and S(q) as in §2. Then (1) follows. Setting now

- 14 -
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8(y) = -—‘r’; (8(nty) = g(m) = (b1 + tyy” +eeet t 3% 4 _:3 ay®)

for nJSnSnj+Xj and 1Sysq, we get (2) with (3) and g(b)(n+ey)—a(b!)

= O(QY—b). Hence, assuming (4) again, we find
v -b b-1
T™"q

' - o( v
latn | = o€ —=) + o =0

)
1 Y-b 1
=0(— )+0 = 0( —
(q)(Q)(q)

and thus (5) follows as in §2,

Now put in Lemma 4 M=P+l, N=Q-q-~1, and

-m 1 (b-1)
¢(n) = vr (n)-t for MsnsM+N-l. Then ¢(n+l)-¢(n) =

-7 & b-1

L
2

~m 1

VI oY g(b)(n+e) ~ abvr T, so that § S ¢(n+l)- ¢(n) < e s

, where

§ = —— abvr " and c=2. Also put w = 1/(26qb—1) . Hence it follows

—

from Lemma 4 that

SquP+§—q (n,t) = 00(Q —= ub + 1) ( —— r 4 1) =0 %+ D)
XAn, m b-1 oabv m )

n=P+1 r q r

This together with (1), (5), and (6) yields

1
m b1
[s(3mv)| = oI +0(C—=) ),

where

1 1 1 (R
1- == —b(b-1)(1- —) ==
21 = Q 2L (q 2 b-1 «Q "25 . 1))ZL .

As for the second term, we see
m oL laoly gL

( 5 )b-l <r b-1

If —%— S m (g —%—(b—2+6)), then er—m= 0(v), so that

- 15 =
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1 1 R1 1
I-g9p —®-DU-57) 57 7T
q v

o
—
]
(@)
—~
o

1 1 R1 1
-5y m—dU-53) 7T
r v )

]
lo]
~
o

1 1 1 R 1 1
- Ly Lygooreya- )R L
2 4 - 2 41,
Lo ab b=1 7 52k < o(aq )

]
o
~
L

choosing R large enough to satisfy b(b-2+8)(1- B%T )" < 1. On the other

hand, if (—%—(y—d)s)m < —%— , then er-m> 1 and m2 -3 —%— , so that

1 1 1 R 1
1- 5=  =—mb(l- = ) ==
I, - oG L2 b1 o v 7y

1 1 Rl
-m(l- —5-b(l- +=7 ) )57 3%
0(qr 2 b-1 2L 2L

1 1 1 R1 1
1- = (1= —=b(l- == )" 5= 37
- o 2 2 -1’ 2L 7L

i
=o@@ oy,

choosing R large enough to satisfy b(1l- E%T )R < 1., In any case, we get

- l-p
I, =o@™
. 1
where p = min( T1 * i’ %f ) . Accordingly
. 1-
[s(,mv)| =0(Q ™"
for all (jos)j < J-1 and m in (12). Therefore, as in the proof of

Lemma 6, we obtain for any (jos)j sJ

1~ B

IsGamw| =0o@ 2) (o) sms —L--2ve) (13)

The theorem with integral g can be deduced from (9), (10), (11), and (13)

as in the first case; and the proof is completed.

- 16 -
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Remark. The conjecture mentioned in §1 is true for the case of

f(x)=x. Indeed, Mirsky [2] proved that, for any integer r22 and b,

0gb<r,

1
) N_(n;b) = —— x log_ x + 0(x)
nsx

Here the error term O(x) cannot be replaced by o(x), since it can be

easily seen that

[1]

(2]

(3]

- [4]

) N_(n31) = —Cer® 4 (=D +

n<rk+rk_1
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A class of normal numbers II

Y.-N. Nakai and I. Shiokawa

§1. Introduction.

Let r 2 2 be a fixed integer and let 0.a1a2a3 see = agr o
azr‘_2 + a3r'3 + e++ be the r-adic expansion of a real number
6 (0 <0 <1). Then @ is said to be normal to base r , if for any

L
7Ck bl e bQE{O, 1, %y r‘"l} *

Ly o(1)

L N (85 byeeeby n) = v
as n -+ = | where Nr(eg b]"'bg? n) is the number of indices 1 £ n-+1
such that a;= b1 > A4417 b2’ et 54017 bz . Various kinds of construc-
tions of normal numbers have been known. However, most of them are very
complicated and by no means easy to write down (see, e.g. [4]). One of
the simplest algorithm which gives normal numbers is the following: Q[x]
denote the set of polynomials in x with rational coefficients. Let
f(x)e Q[x] with 1< f(n)eZz (n=1,2, »--). Then Davenport and
7:dﬁs [1] proved that the decimal O.f(1)f(2)f(3)--- 1is normal to base
10, where each f{(n) 1is written in the scale of 10, and the digits of
f(1) are succeeded by those of f(2) , and so on.

We consider a pseudo polynomial with real coefficients, which is

a function g(x) of the following form:

B B
g(x) = ax® + X Ly a X d (1)

where a = Ogs Gy "°*, 04 are non-zero real numbers and B = BO > 81 >
s > By 20 {(d 2 0) . In this paper we always assume that g{x) > 0
for x 20 . The set of all such pseudo polynomials will be denoted by

iR[x“IR+] . For each g(x)g;R[xAIR+] , we define the number

-1 -
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.= 0,.(9) = 0.[9(1)1[g(2)1[g(3)] --- ,

r r
by the infinite r-adic fraction O.allalz---alk(l)a21a22---a2k(2)a31-~- s

k(n)-1 k(n)-2
r

2

is the r-adic expansion of the integral part of g(n) .

where [g(n)] = 301302 @k (n)= 3n1" +a, toeee tag

k(n)
We proved in [5] the normality to base r of the number er(g) s
when g(x)EER[x”lR+]\IR[x} » i.e., when at least one of B, By, ***, By
in (1) is not an integer. Here R[x] denotes the set of polynomials in
with real coefficients. In the present paper we shall prove that the
number er(g) is normal to base r for any g{x)€R[x] and hence
combining this with our results mentioned above, er(g) is normal to

base r for all g(x)ElR[x“iR+] . Especially, we have

Example. The number 6, = 0.[a][a26][a36] .+« is normal to
base r for all o >0 and g > 0 .
More precisely, we obtained in [5] the following estimate: For

any g(x)€R[x~R,J\ R[x] and any b eseb_ e&{0, 1, ---, r-l}2 , We have
+ 1 L

= L
R, := = N

n (8,(9)5 by++bys n) = r™* = 0(1/0g n)-

rr
- prove this, we used tricky estimates for exponential sums of the
Vinogradov type. For g(x)e€ §[x] , Schiffer [6] showed that
R, = 0(1/10g n) . We shall prove in this paper the following
Theorem. For any g(x)€&IR[x] and any block bl--obze{o, 1,.

see, r-l}g, we have

2 N.([g(n)]5 byeeeb)) = r“¥x 1og g(x) + 0(x Toglog x)
nsx r

as X » o , where the constant implied depends possibly on the a's ,
B's , r,and & .
As an immediate consequence, we have

Corollary. For any g(x) and bl"'bz as in Theorem,

-2 -
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we have

- loglog n
Rn o log n )

as n -+, Especially the number er(g) is normal to base r .

Our method of proof, which is different from that of Schffer
[6], is to make use of estimates on Weyl sums in a somewhat unusual manner
and a simple estimate on diophantine approximations. The error term
estimate R = 0(1/1og n) is best possible for g(x) = x , in the Sense
t ¢t it cannot be replaced by o(1/7log n) (see [5], Remark). It remains
the problem of replacing the error term Rn = 0(loglog n/log n) by
0(1/70g n) for g(x)eR[x]I\ Q[x] .

§2. A Lemma.

Lemma. Let f(x) be a polynomial with real coefficients
and the leading term Axb (A=0) . Let a/q be a rational number such
that (a, g) =1 and |A - aq'll < q'2. Llet V21 be a real number.
Then, if b2 2,

| = e(f(n))]
1sn2Q

b-1) $

<< (0 ™L v (109 0)B+ (g7 + qMog g + ¢ (P1) 4+ q7Pq 10g q)3

(b-1)

where § = 27 and e(t) = exp(2n/-1 t) . Here B 1is any constant

satisfying

z (Tb_l(n))2 << x(log x)®
nsx

as x »+ = , where rb_l(n) is the number of expressions of n as a
product of b-1 positive integers (Tl(n) = 1 by definition).
)2-

It is known that the choice B = (b-1 1 1is sufficient
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(cf. [3] Chap. III, Problem 8, p.60, for instance).
Corollary. Under the same assumptions as in Lemma, let q

be such that

(log Q) << q << Q°(1og )M, (2)
where H =B + Zb'l-ZG + 1 with a non-negative real number G . Then
| = e(f(n)] << Q(log Q)¢ . ©(3)
1snQ '
Remark. If b=1, Corollary still holds with B = 0.
Proof of Lemma. As is usual in treating Weyl sums (cf.

Lemmas 3.3 and 3.4 in [2], or Lemmas 2.3 and 2.4 in [7]), we have

2b-l
| © e(f(n))|
1

1

b-
< (292 (b-Dleipqpb-ly g 221 (ymin(, Ay )

1ysb1g”!
where |lt| = min(t-[t], 1+[t]-t) . For k=0,1,2,..., we have

- b 1 «< (ZkV)_2 z (Tb_l(Y))z

1gysb1QP! 1gysb1QP1
o
.1 (¥)22°V

<« (2%v)72 *L(10g Q)B ,

and then

z oY) << 2 207V z 1
1gy<bigPl k=0 1gy<bigP?
11 (Y)Y 7.1 ()22

k+1

< T 2k+1V (ZkV)_2 Qb'1(1og Q)B
k=0

b"].(

« v P lr0g )8,

-4 -
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so that

: T2 () min(Q, ay] ) << v a®(10g @) .
lgysb!Qb'1
As for y's with Tb_l(y) <V, we have

p-1(¥) min(Q, [Ay] 1)

<< V b min(Q, [AY ] -1)
1<ysb1Q®”
<< v(@® g7t + 1)(q + q Tog q)
by routine arguments in treating Weyl sums (cf. Lemmas 3.5 and 3.6 in

[2]). These inequalities imply the lemma,

§3. Proof of Theorem.

Let the Teading term of g(x) be axb . Let jo be a

positive integer chosen sufficiently large. Then, for each integer

2Jj. , there is a positive integer ny such that

0

pi-2 < g(nj) <t < g(nj+1) <.
It follows that nj<n s nsisl if and only if rj'l < g(n) < rj , and that
nj >> << rj/b and nj+1- nj >> << rj/b , where the constants implied are

independent of j . Let J be a positive integer such that

Ny <X SNj.q » SO that
J = Tog, g(x) + 0(1) = 0(log x) .

Put XJ= X - ny and Xj= ”j+1' "j for (Jog)g <dJ . Then, putting
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N.(9(n)) = N.([g(n)J5 by+=+b,) for brevity,

J nj+Xj
Z N(g(n)) = £ N(g{(n)) + 0(1) . (4)
nsx j=jo n=nj+1

Using the periodic function I(t) with period 1 defined by

2 2
1 if g bkr_k st-[t] < = bkr'k+ r¥ .
_ k=1 : k=1
I(t) =
0 otherwise,
have
n.+X. . n.+X.
J J J
D0 Mgty = & x0 &l
n=nj+1 m=2 n=nj+1 r

Up to this point, our proof is the same as that in [5].

Choose now a sufficiently large constant Co . Then we have

nj+Xj
( z + 5 ) = 1(3%';—1)
QSmscolog J j-Colog Jjsmsj n=nj+1 r
= O(leog J) = O(leog1og X) . (5)

i what follows, we treat those m with Colog JjJsms j-Co1og J . There

are, for each j , functions I (t) and I+(t) , periodic with period 1,

[ 74

such that I _(t) s I(t) I.(t) , having Fourier expansion of the form

() = r %27l e 3o (v) elut)
y==-co

VZ0 -

n

with [A,(v)] << min(]v]™, §]v|72) . Then

X
ni*Xy

I N(g(n)) = r'ljx. + 0(X,) + 0(X,loglog x)
n=n.+1 J J J
J



KSTS/RR-00/007
December 17, 1990

J.2 nj+Xj
+ 0( z r min(v L, iv2) | = e(—YHg(n))I) (6)
Colog jgmgj-co1og Jj v=1 n=nj+1 r

where the constants implied are independent of j .

We shall estimate the exponential sums

n.+X.
. J 3 v
S(3mv) = = e(—=fg(n)),
n=nj+1 r

.2

where J 232 3., j-Colog Jzmz Colog j,and 1svsg Here the

0
leading coefficient of vr Mg(x) is vr™a . Assume first that j $d.

For any pair (m,v) for which there is a rational number a/q such that

‘ 1
(a,q) =1, |2a--2]s5
m q q2
and (7)
H b -H
. < < X, .
(1og XJ) q S X; (1og XJ)
with G =3 and H as in Lemma, we have
[S(3sm,v)| << Xj(log XJ.)'3 << ij_3

by Corollary with Remark. Hence, denoting by I' the sum over all pairs

wm,v)  having this property, we have the following estimates:

£z min(vl, jv2)|s(5.mv)]
mwv
.2
g4 1 L2 -3
<< £ I min{v T, jv7°) .« X.j
m=4 v=1 J
irb

<< j log j - ij—3 << Xj < r

If j=J , there are two cases. Assume first that Xy = O(rJ/bJ'3) .

Then we have trivial estimates
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g g2 1
Tz min{v T, v °)|S(d,m,v) |
m=% v=1
e 1 -2y /b3 J/b-1
<< ¢ ¢ min{v , Jdv ) 0T <«<r’7d .
m=g v=1
. . J/b,-3 '

Otherwise, namely if XJ >> r/' g , then we have 1log XJ >> << J , SO
that we can repeat the same argument as above for s J . In any case,
we get

22 min(v'l, #v ) [s(imv) | << /P (8)

mwv

It remains to estimate the sums over all (m,v) with
j-Colog jzmz2 Colog j for each of which there is no rational number
a/q satisfying the conditions in (7). (If Jj=J , XJ is supposed to be
>> rJ/bJ'3.) But, it will turn out that there is no such pair (m,v) .
To show this, we choose, for each pair {m,v) in question, a rational
number a/q such that

(a,q) =1, 1sq s X?(]og xj)'H

and

v a b -Hy-1 -2
l—;ﬁ-a | < (a X5(T0g X,)™)7 (97%) .
This may be done by choosing an appropriate Farey approximant. If
b
J
any more. This implies that

2 <q < X:(log Xj)_H, then 2 <q < (log XJ.)H , since (7) is not satisfied

v 1 1 1 -H
—Y‘WQI)T——(“—Z—?‘:—2—6>>(]09XJ-) ’

so that
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H+2

m Tog Xj)H <«< e,

r' << |val(log XJ.)H 2

<< j

and therefore

(C,log § =) m< (H#2)Tog J + 0O(1) ;

which cannot happen, if Co is sufficiently large. Now let q =1 .

Then "vr_ma” < X?(]og Xj)H D C N YAl 9 1/2 , then r™ <<y << j2 :
which is impossible again by the same reasoning as above. Otherwise,
i, if Jur ol < 172, then [urMal = [ur e < ng(log XJ.)H .

This implies that

b
J

m

r > fval X )-H

(log Xj

>> (r3/P)P (09 370 g(1))7H

>> pd j"H ,
so that

(§ - Cylog j 2) m>j - 0(log J) ;
which is also impossible.

Combining (4), (6), and (8), we have

"5 % i/b
b N(g(n)) = r %jX. + 0(X.loglog x) + O(r'/®) .
n=n.+l1 J J
J
Therefore
J -2 i/b

I N(g(n)) = = (r jx, + 0(X.loglog x) + 0(r /"))
ngx j=Jj J J

0

rYax + O(rJ/blog1og X)

"

r'£x1ogrg(x) + 0(x loglog x) ,

and the proof of our theorem is completed.
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A class of normal numbers III

Y.-N. Nakai and I. Shiokawa

To the memory of Gerold Wagner

§1. Introduction

Let r 22 be a fixed integer and let 6 = O.ala2 cee=agr 4
F] =2, ... be the r-adic expansion of a real number © with 0 <6 <1.
2’ i . LN ] M
For any block b1 vee bz,e{o’ 1, eee, r-1}7, Nr(g’ by bl, n) denotes
the number of indices 1 s n-2+1 such that a, = bl’ a41° b2’ see, and

Qg1 T bz . Then © 1is said to be normal, if for every fixed 2 21

8):= sup 2]—%—Nr(e;b1---b2;n) - —iil = o(1)
byeeeby «{0,1,°0-,r-1}

as n > =, As this paper is a continuation of [2] and [3], we omit some

historical comments on the study of normal numbers connected with our

results, which can be found in the introductions of our preceding papers.

~ A pseudo-polynomial with real coefficients is a function of the

form

B B
g(x) = axB + ax Ly oo s a X d R

where a = Ogs G35 *** Oy are nonzero real numbers and B8 = BO > B1 >
cee > By 2 0 . In this paper, we always assume that g(x) is nonconstant
and g(x) >0 for all x 20 . The set of all such pseudo-polynomials

will be denoted by £ . For each g(x)e# , we define the number

0.(g) = 0.aj53y5 ==+ A1k, %21 %22 *T7 2k,
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to be the infinite r-adic decimal obtained from the r-adic expansion
kn-l kn-2
[g(n)] = 8938, *°* Ay = AT +a,r + oo + ankn of the integral
part of g(n) , which will be denoted simply by
6, =6.(g) = 0.[g(1)] [g(2)] [g(3)] --- .

We note that the sum k1 + k2 + eee + kn of the numbers of the digits in
the r-adic expansions [g(1)], [g(2)], <+, [g(n)] is
n log. g(n) + 0(n) ,

where 1ogr y = (log y)/log r .

We proved in [2] that, if g(x)eg is not a polynomial,

- 1
Rn(er(g)) 0(~13§—3~) s
while in the case of a polynomial g(x)edk we had in [3] a slightly

weaker estimate

Ry(0,(9)) = O(-1%f 080y

By combining these results, we see that the number er(g) is normal to

"~ se r for any g(x)e& . In particular, the number
6, = 0.[a] [a2®] [a3®] -

is normal to base r for any a >0 and B > 0 . Schiffer [4] showed
that Rn(er(g)) = 0(1/log n) , if g{(x) is a polynomial with rational
coefficients. Thus it remains the problem to replace the error term
0((1og Tog n)/log n) by 0(1/log n) 1in the case of polynomials g(x)
with real coefficients, which will be settled in this paper.

Let o be a finite string of r-adic digits and let Nr(o; bl"'bz)
denote the number of occurrences of the block blo-- bR’E{O, 1, eo-, r-l}z

in the string o . Then we prove the following theorem.
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Theorem. Let g(x) be any nonconstant polynomial with real
coefficients such that g(x) > 0 for all x > 0 . Then, for any block
bl"' bl e{0, 1, ee., r-l}z , we have v

LM (Ta(ms byeecby) = = x Tog, g(x) + 0(x)
as X » « , where the implied constant depends possibly on a's , B's ,
r,and 2 .
As an immediate consequence, we have

Corollary. For any g(x) as in Theorem, we have

Ry(0,(9)) = O(—ge7-)
as N+ o .

Our method of the proof in [3], which is quite different from
that of Schiffer [4], made use of estimates for Weyl sums in a some what
unusual manner and of some ideas on diophantine approximation. In this
paper, we further develop it by employing inductive arguments and have
obtained the improved results.

The error term estimate Rn(er(g)) = 0(1/7og n) 1is best possible
for any linear polynomial g(x) with real coefficients in the sense that

it cannot be replaced by o(1/log n) (cf. [2], [4]).

§2. Preliminaries of the Proof of Theorem.
Let g(x) be as in Theorem. Let jo be an integer chosen

suffic{ent]y large. Then, for each j 2 jo , there is a positive integer

ng such that rj'z s g(nj) < rj"l s g(nj+1) <y . It follows that

if and only if rj'l s g(n) < rj and that

nj<n5nj+1

ik,

Jrk
., >><< - , >>»<L r
n; r nJ R

J+l
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J
where k 2 1 is the degree of the polynomial g{(x) . Let x >r 0 and let

J be a positive integer such that Ng<XSNjpqs SO that

J = log, g(x) + 0(1) = 0(log x) .

Put XJ =x-n and Xj =ngq-n for (jos) j £ J-1 . We denote
N(g(n)) = N.([g(n)]; bys++ by) , then

I N(g(n)) = ¥ I N(g(n)) +o0(1) .

nsx OSJSJ n. <n5nJ X,

Defining the periodic function I(t) with period 1 by

1 if %-ﬁ-b“s'c-[thz_h_h 1
h=1 r h=1 2 ’
I(t)
0 otherwise,

we have

I Ng(n) = ] R )

< .+ i n.< X
"j nSnJ Xj Lsmsj nJ nSnJ XJ r

Let j be any integer with JO S j<J and let C be a constant chosen
sufficiently large. Then it is proved in [3; p.208] that

) (r-alndy L Loy . o(rdky
Clogjsms j-Clogj nj<n$nj+Xj r r

and in [2; p.26] that

) (-2ndy - Ly o o(rd/K)
jChy$MJn<Mn+ﬁ M r

Therefore, if we can prove the inequality

) (1-8lndy - Loy = o(rdrky (6)
2sm<Clogj nj<nSnJ.+Xj r r

we shall have obtained
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-2y - Logxwo(rd/hy
Lsme j nj<nSnJ.+Xj r r J

which leads to

T Ng(n) = L7 xa + o(r?/¥)
nsx r

1
1 x Tog. g(x) + 0(x) ,

the theorem. Thus it remains to show (6).

§3. Lemmas.
Lemma 1 ([3], Corollary of Lemma.). Let p(x) be a polynomial
with real coefficients and the leading term yxk

Let Q 22 and let A/B be a rational number with (A, B) = 1 such that

(Tog Q)M << B << Q%(109 Q)" , (7)
and
IY = —ﬁr l s 8-2 ’

k

where h 2 (k-1)2 + 2X6 with 6 >0 . Then

| I e(p(n))] << Q(log Q8 ,

1snsQ

where e(x) = e2™X

To prove the inequality (6), we need to generalize Lemma 1 as in
the following.
Lemma 2. Let f(x) be a polynomial of the form

ky ~ k k
f(X)‘BOXO+BIX1+"-+BdXd,

where k0 > k1 > ens > kd 21 and BO’ cee, sd are nonzero real numbers.

, where y#0 and kz21.
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Let G > 0 be any constant and X 2 2 . Let s be an integer with

0sssd, let Hi, K (i=0,1, »e«, s-1) be any positive constant,

1
and let H: , K: be constants such that

* ks+1 s-1
Hg 2 2 (G+ max Hy + 1) + ko ] Ky

Osi<s i=0

k*l s-1

(G + max Hy + 1) + 2ksjzol<1 .

*
HS 22
Osi<s

Suppose that there are rational numbers Af/B1 (0s 1< s) such that

Ky AL (leg X))
1sB,s (logX) ' and |[B- | s 948 (0s1<s)
i i ABf ki
31X

and that there is no rational number AS/BS with (AS, Bs) = 1 such that

*

* H
K A s
s s (log X)
158 s (log X) and IBS- B | s k-
BSX
Then for any real P and Q with 1 s Qs X
| 1 e(f(m)] << X(log x)78 .
- P<nsP+Q
Proof. We may assume P =0 and
X(log X) ¢ s Qs x . (8)

If s =0, the inequality follows immediately from Lemma 1. We put

p(x) = f(x) , so that y =8, and k =k, . Since s =0,

s-1
max Hi = Z Ki = 0 . We choose, by the well-known argument, a rational
Osi<s i=0 :

number A/B with (A, B) =1 such that
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xK A
1sBS ——qp and IY - —E-I

H
(log X) ©

*

where H;, Kg 2 2k+1(G+l) . Then by the assumption, we have B 2 (log X)
These inequalities as well as (8) imply (7) with h = (k-1)2 + 2Xg .

Therefore we obtain

| T e(f(n))] << Q(log Q)% << X(1og X)~C .
1snsQ

Let s =1 . We denote by D the least common multiple of

BO’ LRI Bs-l and by N the integer defined by
DN S Q < D(N+1) ,
so that
K- s=1
15D s (log X) with k = ] K,
i=0
and by (8)

X(1og X)'(G+K) << N >><< _%_ < _%_ )

It follows that

D-1 N
I e(f(n) = § 1§ e(f(x +Dv)) + 0((log X)¥)
1=nsQ A=0 v

We put
s-1 k1 A1
fA(Y) = 1=091(A + Dy) s 91 = Si - ‘E;-
d . k1
Ialy) = I8(x+Dy) ",
i=s
and

< log X (S 8-2) ,
BX

K

*

0
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v
) = ] elg(n) .

Then we have

D-1 N
A§0 vzle(f(x + Dv))
D-1 s-1A; k; N
= Agoe(izo_g? x) vzle(fx(v))(TA(v) - T, (v-1))
D-1 s-1A, Kk, N
= AZOE(1ZO-E? A D e(f, (N1))T, (N) + vzl(e(fk(v)) - e(f, (v+1)))T, (v)}

D-1 N
< LUTMNT+ 4 le(f(0) - e(f, (V1)) [T, (V)]) .

Here we have, using the mean-value theorem,

le(f, (v)) - e(f, (v+1))]

s-1 k1-1 log X H
<< D § fQil Q << D with H = max H, .
i=0 Osi<s
Therefore we obtain
"7 T e(er + b))
e(f(x + Dv
AZO v=1
D-1 H N
P RGADIRE R RO ST RO (10)
2=0 v=1
We next prove that
IO = | Y@, (m)] <« —F— (11)
v = e n << 11
A sl A D(Tog X)°*
for all v with 1svsN. For this, we may assume that
D(Tog X)
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We put p(x) = iPA(x) in Lemma 1, so that the leading coefficient is

k
Yy=0D SBS . Suppose first that there is a rational number A/B with
(A, B) =1 such that

1 k 1
(1og )" < B 5 x (10g x)7H (13)
and

Iy -4 | s8?%,

k_+1
where H' = 2 5 (G+H+1) + ksK . Then (13) together with (12) implies

) k )
(log v)h SBsv S('Iog v)'h .

k
where h' = (ks-l)2 + 2 S(G+H) . Hence we have by Lemma 2

-(G+H) X
T 1
IT, (V)| << v(log v) << 0e

If there 1s no such rational number, we can choose a rational number A'/B'®
with (A', B') = 1 such that

1 ) H.
1 sB' 5 (log X)H and |y - —%T | s Tog X
B'X °

Then we have
%*

k H'+k _K K
D SB' 5 (log X) S g (log X) S

and
*

HS
A | s (Tog X)
DkSB‘ DkSB'XkS

|85 -

which contradicts the assumption on Bs

Combining (9), (10), and (11), we obtain
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f(n))
| ZSQE( l(n |

1sn,

D-1 H
<< (tog )"+ T (1 onUogX ) X
A=0 D(log X)

<< X(log X)'G ,
and the proof is completed.

Lemma 3. ([5], Lemma 4.8). Let f(x) be a real differentiable
function in the interval (a, b] , let f'(x) be monotonic, and let
| f'(x}] < 1/2 . Then

b
) be(f‘(n)) = f e(f(x))dx + 0(1) .
a

a<ns

Lemma 4. ([1], Chap. 1, §1.). Let f(x) = aoxk + alxk'1 + eee
+a, be a polynomial of degree k with integral coefficients and let g

be a positive integer with (q, s 81, **0, ak-l) =1 . Then

9

1
l ISESqe(Tf(n))I «(k) q

§4. Proof of the inequality (6).

In this section, we shall prove (6) for those j for which at
least one of the coefficients of g(x) has no rational approximations with
emall denominators in a sense stated in Lemma 2,

To estimate the sum

R )

< +X .
nj nSnJ XJ r
in (6), we approximate the function I(t) by functions 1 (t) and I+(t)
periodic with period 1, such that I_(t) s I(t) s I+(t) ,» having Fourier

- 10 -
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expansion of the form

L) =g e 5+ 1 Avelvt)

rl véZ,v=0

with A (V)] << min(|v|'1, Jv'z) , where the constant implied is absolute
(cf.[6]). Then we have

) I(_ﬂi%l_)
nj<n5nj+xj r
X, X, %2 . v
=_Lr“ +o(—pl) + oL~ I o aCICI (14)

< +
j nSnJ j
We shall evaluate

e(— g(n))]|
nJ<nSnJ+X‘j r
with 2 smsClogj and 1 S v s j2 s by making use of Lemma 2
inductively.
Let the polynomial g{(x) be of the form

k k k
= O 1 se e d
g(x) = agx © Fax T+ togx o,

where k = k0 > k1 > see > kd 20 and a,, °°*-, a4 are nonzero real
numbers. We may assume kd 21 in estimating the exponential sum written

above, We put in Lemma 2
f(x) = rvg(x)
so that
g8 _ .-m 0
§ = vy (0 s1sd).

k

We choose a constant ¢ > 0 such that crj/ 2 Xj for all

j $J, and define a parameter X by

- 11 -
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X = X(j) = cri/K (Jpsdsd).
Then

log X = J.1+o(1)

as Jj > o, so that
™ < (log X)Clog r+o(1) , vs (log x)2+o(1)

since ms Clogj and v g j2 .
Case 0). Let j be an integer with j, s j s J for which

there is no rational number ao/bo with (ao, bo) =1 such that

h

2h a 0
0 0 log X
15 by s (log X) and  Jay - 5—| s (1og k) ,
boX
where
_ H* + ] 1 * _ ko+1
h0 = Hy Clogr +1, HO =2 | (G+1) .

The set of all j of this property will be denoted by Jb . If Jedy
there is no rational number AO/BO with (Ao, BO) =1 such that

2H,
1s8Bys (log X) and [BO -5 | s

since, 1f there is such a rational number AO/BO , We have

2H8+3 2hy
15 vBys (1og X) s (log X)
and
He+Clogrel h
m ogr
rAy (1og X) ° (log X) ©
lon - | s s R
0 vB0 kO k0
vBOX vBOX

- 12 -
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which contradict the assumptions in this case. Hence we can apply Lemma 2

with s = 0 and obtain

(2 g(n))] < —2— (15)
nj<n§nj+xje " S | (log X)

for all jEJO .

Case s). let 1sssd. Weput

«  kgtl . kg*l
H0 =2 (G+1) , H0 = H0 + 2 (G+1)

and define H: and H, (1515 d) 1inductively by

« kgl
Hy =20 (G + Hy_ g+ 1)+ 2k(Hy + <=+ + Hyg)

*
Hy = Hy + 2(Clogr +1).

i

Also we write
hy=H +Clogr+1 (0515 d)
Let j be an integer with jo s js dJd for which there are rational numbers
ag/bgs *os ag_1/bg 4 such that
h

R N (PR

i i
b1x

2h

lsbis(logx) i

a
and |0t1 )

but there is no rational number as/bS with (as, bs) = 1 such that

h
2hs a (log X) S
k .

s
1 sbg s (log X) and  |ag, - 5| s .
bSX

The set of all j of this property will be denoted by J; . If jeg

we have

- 13 -
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"
2H va i
1s rmb1 s (log X) T and |si - m1 | s (1og X&
rb; M x !
for 0 S i< s , but there is no rational number As/Bs with (As’ Bs) =1
such that
*
2H* A s
' log X
lsBss(logX)s and |3S_les(09')(

s s
BSX
since otherwise we have a contradiction as in Case 0). Hence, by Lemma 2
with these H1 , H: and K, = 2H1 . K: = ZH: , we have again (15) for all
J s'Jg
Choosing G = 3 in (15), we get
v pi/k

e( g(n))| <<
m .2 ’
. X

nJ<nSnJ XJ r J

for all (8) msClogj, (1s) v s jz , and JEJOU eee Y Jd , and hence
by (14)

J/k
(1(_9121_) -y = o)
25m$%1ogj nj<nSnJ+XJ M rz J

for all jé%u-"ll% 

It remains to prove (6) for j§ JoU *=+ U Jy with jysjsd,

which will be done in the next section.
§5. Proof of the inequality (6). Continued.

Let Jy,, be the set of all integers j with j, S$jsJ for

which there are rational numbers aO/bo, LEEIN ad/bd such that

- 14 -
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hg
i

2h a.
1sbys (log X) 4 and la, - b1 | s (1og xa

1
i
bix

for all i =20, 1, **+, d , where hd is defined in §4. Then by definition
{dgs Jgtls =ovs I} = Jg U o0 U J U Ty,
In the rest of this paper, we shall prove (6) for all je€ J&+1 by a method
different form that used in the preceding section. We assume kd 21. The
proof 1s valid also in the case of kd =0 .
Ltet j€J

d+l °
ag, ***» a4 and by b* the least common multiple of by, *°*, b, . Then

We denote by a, the greatest common divisgr of

(a , b) =1 and
1sb s M, 18, <«

where h = 2(d+1)hd + 1 . We then define integers cq, °*°, ¢4 by

a, a,Cy
K

so that (b*, axCps **"» a*cd) = 1. Wewrite for brevity L; =logj and

Lw = log Lw-l

which Lw 23,

(25 ws wj) » where Wy is the greatest integer w for

For a given positive constant C , we have

I 1 (1 Mg(n)) - ¢
25msClogj "j<"5"j+xj

s I N I G T I TR PN O
15w W; VL 4 SmsVL ny<n nJ+X‘j

where V 2 C 1is a constant which will be chosen suitably at the end of the

proof. For each w , there are functions I;(t) and I;(t) , periodic

- 15 -
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with period 1, such that (t) s I(t) s I;(t) , having

lw
of the form

() = v e s ] AN(v)e(vt)

+

W veZ,v=0

with [A%(v)] s min([v]™!, L2 v2) , (cf.[6]).
Then it follows that

(1(rMg(n)) - r%
nj<n5nj+xj

<< XjL;2 + ) v'll ) e(r"™g(n))| .

1svva4( ny<nsn X

Fourier expansion

(17)

Here we have, for any fixed m with VLw+1 <ms VLw and v with

ISVSL:Q

) (1(r™"™vg(n))

nj<nsn3.+xj
V Ay k d
= 7 *e(——a—;— I ¢ i ) . e(_ym_ -Z an
OSASr‘mb r b 1-0 \);n=k+rmb v r 1-0
. X
nJ<nan XJ
vV ag d ki y d K
=1l Lep DU L el ] agx
0 sr™ b 1=0 "j<"$"j:x3 M 4=0
x=x+r"b y
va, d k
SR ST
OS}Srmb r i=0 r'b nj<n5nj j r

using Lemma 3, where Q = a4 - a1/b1 . Defining now r

Ry/Q (0 siss) by

- 16 -
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oL (=¥ 2y uith (Q, R R R,) =1
=—.———-—;— T me— w] N N s LI =
Q M o 51 0 1 d

and applying Lemma 4, we get

e(r"™yg(n))

.+
nj<nsnJ X‘j

m_* X
r'b 1-9/(10k) i m,_*
<< ___U__ Q rmb* +r'b

e XJQ-Q/(IOk) + ¢ih

and hence by (17)

| (1(r™Mg(n)) - ¥y
<msVLw nj<n$nj+xj

VLw+1
<< ) (X L2 4+ x, ) v‘IQ_gl(wk) +L Y'mjh)
VL SemgvL W T 4 wtl
w+l W lsvst
«rd/k ey g ;o vlg/iok) (18)
JyL,, <msVL 4
wtl W lsvSLw
Therefore it follows from (16) and (18) that
d] . (1(r""g(n)) - r'h)]
. X,
esmsClogj ny<nsn+X g
e Pk, Ky I SRR it PN )
lsw5wj VLw+1<m$VLw ISvSL: :

But, since VQ = rmebi/a1 >> rM by the difinition of Ri/Q , we obtain

Lo i1k

gmsVL 4

wtl W ISvSLw

lséswj VL
<< z (rm)-Q/(IOK)

lséswj VL émsVL 4

w+l w lsvst

- 17 -
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VL
« 3 VLW.L: (r WH1y-9/(10k)
lswsw,
J
9 log r
5 - ————UE——— v
<V ] L 1 «<Vv ¥ L‘;1<<1,
1sWsw W 1sWsw 3

provided that V 2 max(C, 20k/(3 log r)) . Combining this with (19), we
have (6) for all jé€ Jh+1 . Therefore, (6) is proved for any Jj with

jo s Jj sJ, and the proof of the theorem is completed.
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