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Limit Theorem and Large Deviation Principle for

Voronoi tessellation generated by Gibbs point process

KoJ1 KuroDa*
HIDEKI TANEMURA™®*
Dedicated to Professor Joel L. Lebowitz on the occasion of his 60th birthday.

Abstract. The Voronoi tessellation generated by a Gibbs point process is considered. Using the algebraic
formalism of polymer expansion, the limit theorem and the large deviation principle for the number of Voronoi

vertices are proved.

1. Introduction

The Voronoi tessellation has been used in various fields such as mathematical statistics and statistical
physics to study a topological structure of a system. It is defined for a random point process as an
aggregate of cells which covers a space without overlapping. Let us consider a random point process
€ ={z;},in V = (-3L,3L)¢ d = 2 or 3. For each particle z;, the set T, of points in V having
z; as closest particle forms an open convex polygon (d=2) or polyhedron (d=3), and the aggregate
V = {Ty,}, of such convex polygons or polyhedrons tessellates the space V. This random tessellation
V = {T,,} constructed as above is called a Voronoi tessellation.

The mathematical investigation of the Voronoi tessellation has been made mainly for the Poisson
point process ([1]~[4]). For this process no interaction works on the system of particles. However, we
consider a system in which a nonnegative(repulsive) interaction works between all pairs of particles.
R.L.Dobrushin, O.Lanford and D.Ruelle [5~ 9] introduced the notion of Gibbs point process or Gibbs
measure to investigate an interacting particle system in an equilibrium state. In particular, it is used to
investigate the phenomena of phase transitions mathematically. See [10] and [11] for detail.

The topological structure of Voronoi tessellation is obtained by studying the stochastic behavior of
the number of particles Ny and the number of vertices Dy in the Voronoi tessellation. Other geometrical
parameters such as the number of polygon edges By can be expressed in terms of Ny and Dy from the
Euler identity.

For the Poisson point process Meijering [4] gave the expectations of the number of vertices Dy,
the length of a polygon edge and the area of a polygon. R.E.Miles [2] defined the generalized Voronoi
tessellations V,, (n = 2,3,...) and determined the expectations of these geometrical parameters for V,,.
K.Tsuchikura [3] proved the central limit theorem for Dy in Voronoi tessellation generated by the Poisson
point process.

In this paper we consider the Voronoi tessellation generated by the Gibbs point process with a
nonnegative pair interaction. Using the algebraic formalism of the polymer(cluster) expansion we first
express the expectation and the variance of Dy in terms of Ursell functions and derive its asymptotic
estimates. Concerning the asymptotic behavior of Ny for the Gibbs point process, many results are
obtained in various models. See [8] or [9] for references. We prove the existence of the limits

Ev[Dv]

Vary(Dv)
4

Vi — 15(z) as V - RS,

— eg(2) and

where Ey[Dy] and Vary (Dy) are the expectation and the variance of Dy with respect to the Gibbs
measure in V with an activity z and the reciprocal temperature 3, respectively(Theorem 1).

Secondly, we prove the central limit theorem for Dy . (Theorem 2)
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The central limit theorem for Ny for Gibbs point processes has already been investigated by several
authors [12,13].

Finally, we prove the large deviation principle for Dy in the two dimensional system, that is, the
probability distribution py (K) of -Il%)i- decays exponentially for all closed subsets K C R which do not

contain eg(z) . The decay rate is given by —infycx I(z), where I(z) is some nonnegative function on R
taking minimum value 0 at z = eg(z).(Theorem 3)

2. Gibbs measure and Voronoi tessellation

2.1 Gibbs measure

In this section we introduce necessary terminologies for the Gibbs measure and the Voronoi tessel-

lation. :
Let us consider a system of particles in a cube V = (—%, % 4. d =2 or 3. We define a configuration
space Qy of particles in V by
oo
(2.1) Qv = U ,and Qua = (V")/S,,

n=0

where (V") ={(z1,-- ,22) € V*;2; # z;(i # j)} and S,, is a symmetric group of order n.
For any W C V we define a o-algebra By as the smallest o-algebra generated by subsets of Qy

{£eQ; Na(© =k} , ACW and k20,

where N, (€) is the number of particles of ¢ in A € B(R9).

Throughout this paper we use the following abbreviations
2, = (1, 2n), {Zo}={21, 20}, and dz, =do; - don.

An interaction between two particles is defined by a R. -valued measurable function on R satisfying
the following conditions:

(2.2) o(z) >0 for all z € R,
(2.3) &(—z) = ¥(x) for all z € RY,

(2.4) There exists a positive number rg such that ®(z) = 0 whenever |z| > ro.(finite range)
For simplicity we assume that ro = 1.

To each configuration £ = {z,} € Qv we associate an interaction energy

UE) = Uz,) = Y ozi—z)

1<icjgn

Definition 2.1 A probability measure Py(-) on (Qv,Bv) is called a Gibbs measure in V with an
activity z > 0 and a reciprocal temperature § > 0 if the equality

j QL
PRGLIGES = ey RN EAL SN

holds for any By -measurable function f > 0.
The normalizing factor Zy is called a partition function and is given explicitly as follows

7y = Z_%Z_' /V dz, exp{-AU(z,)}.
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Furthermore we define an interaction energy U(€|¢) with a boundary condition { = {v,} C V° by

U¢1Q) = U©) + W(IO),

where W(¢|() = Z15ign,1gjgk ®(z; — vy).
Changing the role of U(£) to U(E|C) we define a Gibbs measure Py (-) with a boundary condition
and a partition function Zy, with C.

It is well known that the following limit exists

L

logZy for all z > 0.
Vi

Fp(z) = Jim,

In the above (and also in the sequel) V — R? means that L — oo. This function Fg(z) is called a free
energy, and is used for the study of the asymptotic behavior of Ey(Ny) as V — R4, where Ey (-) is the
expectation with respect to Py (-).

Using the algebraic method of cluster expansion we expand Fg(z) in powers of z,

- (2.6) Fg(z) = Y baz",

where b, is described in terms of Ursell functions.
The definition of Ursell functions and their properties will be stated in Section 4. Also we summarize
the algebraic method of the cluster expansion in Section 4.

We denote the radius of convergence of the power series (2.6) by Ro. For any z € (0,Rq) the
asymptotic behavior of Ev(Ny) and the variance vary (Ny) of Ny are obtained as follows,

1

2. li —FEy(Ny) =

(2.7) TV v(Nv) = pp(2),
. 1

(2.8) Vlirgd mval‘V(NV) = ag(z),

where pg(z) = 2F’p(2) and 03(2) = 2p'4(2).

2.2 Voronol tessellation and Delaunay network

Let £ = {z1,---,%,} C V be the point process which has the Gibbs measure as its distribution.

For any particle z; € £ we define a territory of z; by
T:(&)={peV; p—=zi| <lp—zj| for all z; € £(j # i)}.

Then T3, (£) is an open convex polygon and V = {T;,(£)}7, is a convex polygonal random tessellation of
V. Ignoring the null set of polygon boundaries, every point of V belongs to one and only one territory of
V. This random tessellation is called the Voronoi tessellation. Also we call the vertices in the tessellation
Voronoi vertices.

Let us first consider the two dimensional system. Assume that T%,(€) has m neighbouring territories
{Tl'kj (€)}7,- Each side of Ty, (£) is the portion of the perpendicular bisector between z; and some zj;.
A probability that more than four particles exist on the same circle is zero with respect to the Gibbs
measure, so that each vertex of Ty, (€) is almost surely a circumcenter of z; and an adjacent pair xy,
T, (See Fig.1.)

When a circumcenter of the triangle with vertices ;,,z;, and z;, is a vertex of a polygon of V,
we call such a triangle ” Delaunay triangle”. The network consisting of Delaunay triangles is called the

3
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Delaunay network. To each configuration ¢ a Delaunay network is given almost surely with respect to
the Gibbs measure. When a Delaunay network is given there is a one to one correspondence of the set of
all vertices of Voronoi tessellation and the set of Delaunay triangles. The following property of Delaunay
triangles plays an important role for the study of Voronoi tessellation.

Lemma 2.1 When a set of Delaunay triangles is given there is no particle in any interior of the
circumscribed circle of Delaunay triangle.

In the case of d=3 a territory T5,(£) is an open convex polyhedron and a vertex of a territory is a
point with the same distance from four particles {z;, }4-, of four neighbouring territories {7y, ©Y_,
almost surely. We call the tetrahedron with vertices {z;, }i_, " Delaunay tetrahedron”. In the same way
as the case of d=2 a Delaunay tetrahedron is assigned to each vertex of Voronoi tessellation. Also the
same property as Lemma 2.1 holds for three dimensional system.

Denote by Ny (€) and Dy (£) the number of particles in V' and the number of Voronoi vertices in
V respectively. For two dimensional system, if we denote by By (£¢) the number of edges in the Voronoi
tessellation, then By (£) is expressed in terms of Ny (£) and Dy (€) from the Euler’s identity;

(2.9) Nv(€)+ Dv(€) - Bv(§) = 1.

Let us note that Ny (¢) and Dy (€) correspond to the number of vertices and Delaunay triangles(d=2)
(or tetrahedrons(d=3)) in the Delaunay network, respectively. We use this fact in Section 5.

3. Statement of Results

Theorem 1

Assume the conditions (2.2)~(2.4) on ®. Then there exist functions eg(z) and 75(2) defined on
[0,Ro) for any B > 0, and the following estimates hold for any z € (0, Rq)

(3.1) |Ev(Dv) - es(DIVIl < CAIVIT,
(32) vary (Dv) — 75(2)2|V ]| < C3(2)IVI*F,

where Cj(2) and C3(z) are some positive constants.
Furthermore e5(z) = 2pp(2) if d=2.

As a corollary of this theorem we have the following probabilistic estimate

Dy ()
(3.3) Pv(l—|v‘;|~ —ep(2)] 2

g(V) C3(2)?
vE S

for any function g(V') of V satisfying
g(V)—> oo and g(V)[V|‘7} -0 as V — RY,

where C§(z) is a positive constant.

The second result concerns a central limit theorem for Dy (). We define a random variable Yy (-) by

1
Yv(-)= —\/I-—V—I{DV(‘) — Ev(Dv)}.

Theorem 2

For any z € (0, Ro)
Yy (-) = N(0,75(2)*)

4
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in law as V — RS, where N(0,75(2)?) is the normal distribution with mean 0 and variance 75(2)*.

In particular, for a two dimensional system, we prove that
() = 427p(2) 2 (1 - 2C(B)p(z) > 0

for any z € (0,Rg), where
c) = [ ds1 - expl-pa()).

Let us remind that

mvarV(NV) — 2pj(2) as V — R%

Also we prove that the limiting covariance matrix of Ny and Dy degenerates, more explicitly
1 < vary (Nv) covv(Nv,Dv)> . 2pj(2) 2zp’ﬁ(z))
[V] \ covyv(Dv, Nv) vary (Dv) 22p(2) 4zpp(z) )’
where covy (Dyv, Nv) = Ev{(Nv — Ev(Nv))(Dy — Ev(Dv))].
Finally we shall state the result about the large deviation principle for the probability distribution
of Dy (:)/IV].

We restrict our argument on a two dimensional system and assume that the hard core condition on
d(.), i.e. ¥(z) = oo whenever |z| < ry for some ry < ro=1.

In section 8 we prove that the limit

1.(0) = lim = logBy [exp{0Dy )]

~R2 |V]|
exists for any § € R and z € (0,00) and satisfies
—z < f,(8) = Fp(2¢*) — Fp(z) < ze*.

Define the rate function I, (z) by
I(z) = sup{0z — f.(9)}-
9ER

Now we shall state our final result..

Theorem 3
(1) For any closed set F C R

— 1 Dy .
— =¥ <- )
Ve e (g € ) <~ b )
(ii) For any open set G C R
. 1 Dy .
lim —logPy(—+ € G) > — inf I,(z).
A ey €92 - e

4. cluster expansion

In this section we summarize the algebraic formalism of the cluster expansion in powers of an activity
z. See [11] for detail.

Let A be a set of sequences 9;
¥ = {¥(2n)}n>o0,

5
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where 1(z,,) is a bounded complex valued Lebesgue measurable function on R™?. Notice that 0-th com-
ponent (@) of ¢ is a complex number. We denote by X a sequence z,, = (1,2, -- - , £,) of finite number
of points in R4, and write
Y(X) = ¥(zn)-

We say (X1,X>) is a partition of X and write X; + X3 = X , if X, is a subsequence of X and

X» = X\X1. We define a product in A by
Prxga(X)= D $i(Xn)¥a(Xa),
X14Xa=X

where the sum is taken over all partitions of X. With this product and a sum defined naturally A is a
commutative algebra with a unit element 1 defined by

1, if X =0,

0, otherwise,

1(X) = {

where # means the configuration of no particle.
We define subspaces .4g and A; by

Ao ={v € A:9y(0) =0} A and A; = {¢ € A: (@) = 1}, respectively.

The power series expansion of the exponential yields a well-defined mapping from Aq to A; :

n times

> X
(4.1) Expy(X) = 1(X) + 3 w*n—’j‘“)

n=1

We remind that the above sum is a finite sum for any X, because some subsequence X; of X must
be @ for sufficiently large n.

As an inverse mapping of Exp we define a logarithm mapping from A; to Ag by

n times

X /_1\n+1
(42) Logy(x) = S E ST, wea,
n=1

where ¥ = 9 — 1 € Ag. The above sum is also a finite sum for any X.
Now we define the Boltzmann’s factor ¥3(X) and the Ursell function ¢g(X) by

¥p(X) = exp{-BU(X)} and @p(X) = Logyp(X),

respectively. It is easily seen that ¢z(X) is translation invariant.

The connection between the Boltzmann’s factor and the Ursell function will be stated in the following
lemma.

Lemma 4.1  Let x(-) be a Lebesgue integrable function on R4, If the power series

oo n n
Z f—/ dgnzpp(gn)Hx(:c,-) is absolutely convergent,
n=0 n! Rnd

i=1

then the power series e z"_': Srne dzn0p(2,) TTi2; x(2i) is also absolutely convergent and the fol-
lowing relation holds

O n i ©_n n
(43) S5 [ st [Txe =on (S 5 [ deapaten [Tnteo)

6
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Let us introduce a power series of z,

o0
(4.4) Fp(z) =Y baz",
n=0
where 1
b, = dzy---dzpppg(o, T2, -, 2n).

- n! Rnd

Lemma 4.2 If an inieraction function ® satisfies (2.2) ~(2.4), then the following properties (1)~ (3)
are obtained.

i) (=)™ tpp(z,) >0 for alln and z,,,

. 1 |bn | n"2
—1)*1p, > bt

(ii) (=1)* ", >0 forall n and - < BT S Al

(iii) the radius of convergence Ro of Fg(z) satisfies

1 1

—— <R < .
C(g) =" = CB)
We define the Boltzmann’s factor 33(X|¢) with boundary condition

¢ ={w} eRiby
Pp(X|¢) = exp{-BU(X|{)}.

In the same way as ¢g(X) we define the Ursell function ¢g(X|¢) with boundary condition ¢ by

pp(X¢) = Logs(X|().

It follows from a simple calculation that
ep(X[() = exp{-BW(X|()}pp(X).

Lemma 4.2 implies that the power series,

n

ad z
> = / dz,ep(z,)
ne0 n: Jyn

is absolutely convergent if |z| < Ry. Hence, it follows from Lemma 4.1 that the partition function Zy
can be rewritten as

(45) zv=exp(> 5 [ dzapa@)) il < Ro.
n=0 "
From this formula we have

1 = ..
(4.6) Aim m1og;zv = r;)bnz if |2] < Ro.

Let Ny (€) be a number of particles in V of the configuration £. In the same way as (4.5) we have
(4.7) Ey(exp{V=TtNy}) = exp{}_ %/ dz, (exp{v~1 tNv(z,)} — Dep(za)}
n=0 = JV*

7
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if |z] < Ro. From this formula we can express the expectation and the variance of Ny as follows

(48) Bv() =3 gy Aot
(49) By (V) = Be (V) = 5y [ daaate)

Using the translation invariance of ¢g(z,) we can prove the convergence,

(4.10) Jim, By (V) = po(2),
(4.11) Jim | (B (V) - B (W)?) = o3(2),

uniformly on every compact set contained in {z € R : 0 < z < Ro}, where pg(z) = zF4(z) and
03 = zpjp(2). The explicit form of ps(z) is given by,

o0
pa(z) = an,,z" for z€(0,Ro).
n=1

5. Asymptotic behavior of Ev (Dv)

In this section we study an asymptotic behavior of the expectation of the number of Voronoi vertices
in V. Let us remind that the number of Voronoi vertices is the same as the number of Delaunay triangles
(tetrahedrons) with their centers of the circumscribed circles (spheres) in V, and that there is no particle in
the interior of the circumscribed circle(sphere) of each Delaunay triangle (tetrahedrons). If a configuration
of particles in V is given by z, = (z1,---,2,) € (V")', then the number of Voronoi vertices Dy (z,,) of
z, is written as

(5.1) Dule)=Dv({z)= Y s, @) vy,
{4, )iz}
where S(£d+1) is the interior of the circumscribed circle (sphere) of the triangle (tetrahedron) with vertices
Y1, Yd+1, } 0
1 if{zg,}nA=
J =J = =n AcCRY,
alza) = Jaliza}) = { 0 otherwise ’ <
and 1 ifth £S(y. )isin V
if the center of S(y is in
Hv(de) = { . Satt
= 0 otherwise.
It follows from (5.1) and Lemma 4.1 that
!
(5.2) Ev(Dv) = G Zy Jyen dzg1195(Zay1) Hv (Zay1)
(o] zm *
X / Y, T5(z,,,) () XP{=BW (2as1ly,)} ¥ (y,,.)
m=0 . Vvm
LA+1

= T o b1 B () g )0 (=K,

8
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where

63 K= 2 o [y a0 - stz (1) 0 (=AW (2anly, )

m=0

Now we shall prove (3.1) for eg(z) given by

d+1
(5.4) () = iy [ . dEavs(0. 2D exp (=Ko, 20),
where
(5.5) Ki(Zap)= Y, %/Kd dy 8y, )1 = Is(z,, p(W, )exp{-BW (2ar1ly,,)})-
m=0 : "

For simplicity we shall only prove (3.1) in the case of d=2. The extension of the proof to the case
of d=3 is obtained similarly.

First we prepare several lemmas for the prof of (3.1).

Lemma 5.1 For any z with z € (0,Rg) there exist functions ¢; = ¢1(z) > 0 and Lo = Lo(z) > 0 such
that

(5.6) Kv,:(z3) 2 c1]S(zs)]

for any x5 with r(z3) > Lo and Hy(z35) = 1, where r(z3) is a radius of S(z3).

Furthermore we have the same estimate for K,(z3):

(5.7) K,(z3) > c1]S(z3)| for any x5 with r(z3) > Lo.

Proof. Since W(zsly, ) > 0, we have

1<V,z(£3)> —{/ 5 (Y )—/(V\S(ﬁa))m dy,.¢5(y,.)}

We decompose the integrals of the summands as follows,

/ dy_es(y, )—/V\S(z . dy es(y,, )~|S(_a)ﬂVI/ Y, _1e8(0.Y,, 1)

- / dym/ dy _es(y,)
vnS(z,) {gm_leRZ(m—l);{gm‘l}nV‘:#O]

+ / dym / 4y, 195(Y,,)-
V\S(z,) {y_m_leRa(m—l);{lm_l}ns(ga);to and {gm_l}cv}
Here we have used the translation invariance of pg(-).

Since [S(z3) N V| > £|S(zs)| for all z; with Hy (z3) = 1, we have

(58) Kva(20) > 3 Fa(:)1S(aa)
(o] Zm

g DY

/ dy 1oy ).
ol 'y, eremiynevas(z,) and {y,_In(VNS(z,)*#0}

9
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Since ®(:) is the interaction of finite range, ps(y, ) = 0if m < |y —y;| for some i and j € {1,--- ,m}.
Taking this property into account we have

> i [ dy, los(y,)|

S m=DUy eramyevns(z,) and {y_ In(vns)ezey T
o0 zm

< — dym dy sy
n;(m“1)!/{zmER’;d(ym'a(Vnsw)Sm} sy 1198 ()|

<10V N S(zg)l Y m*[bm =™,

m=1

where |0W| is the length of the boundary 6W of W C R2.
Combining this estimate with (5.8), we obtain (5.6).

From Lemma 5.1 we see that eg(2) is finite.
Lemma 5.2 For any z € (0,Rq) there ezxist positive constants c; = c3(z) and c3 = c3(z) such that
(5.9) Ko (23) — K (2s)] < cal(2a)| exp{—cod(3(za), V)}
where §(z;) = S(23) U Bro(21) U Bro(22) U By (32). (B, (@) = {y € R¥ ly— 2] < 1)
Proof. From (5.3) and (5.5) we have

z

|Kv,.(z3) — K2(z3)| < ) dy, les(y,)l
m=1

- m! /{ngR’m;{gm}n5(£3)¢ﬂ and {y_}nVe#e}

0 00 m
~ z

< |5(z nV‘|§ mbmzm+§ —/ dyl/ dyz/ dys - dym|pp(y, )|
(-—'3) ) | I =, (m_2)' 5(&) . R2(m—2) ml ﬁ(_m)l

Since ®(-) is the interaction of finite range,

ep(y,,) = 0if m < d(S(z;),0V), {y, } NS(z5) # B and {y _}NV°#0.

From this property we have

(5.10) |Kv,:(z3) — K. (z3)l
<) VLY mibmle™ + 82l Y, m(m = 1)[bm 2™
m=1 m=d(5(z,),dV)

The radius of convergence of the second sum in (5.10) is also Rg. Hence, we obtain (5.9).

Now we come to the position to preve (3.1) in the case of d=2. We decompose the right hand side
of (5.2) into several terms,

3
(5.11) Ev(Dv) = -;—!/Vdm/l;‘ dzop(zs)exp{—K.(z3)}
Z3
- ?/ dzs / degyp(zs)exp{~K.(zs)}
v {z,€R4{z,}nV £}
3
3 [ deatiaa) o (z0) ~ Dexp(—K. ()

23

+ 357 | dzsHv(zs)¥p(zs)lexp{—Kv,:(z3)} — exp{—K.(z3)}]
3 Jys

=S ep(2)|V] = L(V) + L(V) + I(V).

10
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Using Lemma 5.1 and the fact that

kg
[S(za)l > Eﬂxl — 23 + |21 — 23 + |22 — 23]’}

we have
|I;(V)| < constant / dxl/ dzq exp{—ﬁ—l-kcl — z4]%}
v Ve 12
1
+ 523 . (L0|8V|) . (47([102)2‘
Hence
(5.12) |[L(V)] = 0(|oV]), as V — R2.

The third term (V) is estimated similarly:

23

[L(V)] £ dzgexp{—c1|S(zs)[}

3! /{gaew;c(z_nevc and r(z3)2Lo}

3
+ S (LolV)) - (47 L3)?,

where ¢(z3) is the center of the circle S(z3).

Since
15(2s)] 2 Ty{les = w2l + |21 — zal* + (21, 0V)?} if e(zs) € V*
we have
(5.13) |L(V)| = O(J6V]), as V — R2.

Finally we shall estimate I3(V'). Remind that
lexp{z} — exp{y}| < |z — ylexp{z V y} for all z,y € R.

Using this inequality and Lemma 5.2 we have

Cy 2‘3

(V)] < dzs Hy (25)|5(2s)|exp{—cad(S(z35), 0V) — c11S(zs) [}

3! /{zaevs;r(mzm

6223

e/ ey Hy (25)|3 (25 lexp{ —cod(3(z22), 0V)}.
¢ e, €V3ir(zy)<Lo}

Using the standard argument on calculus we obtain
(5.14) [I3(V)| = O(|aV]), as V — R2

Putting these estimates together we have (3.1).

6. Asymptotic behavior of vary(Dv)

6.1 variance of Dy

In this section we study an asymptotic behavior of Vary (Dy ), the variance of the number of Voronoi
vertices in V.

11
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In the same way as (5.2) we derive the expression of Ev(sz) in terms of Ursell functions:

2(d+1)

(6.1) Ev(Dy*)= ) %/w dvp s ()

k=d+1 @yl y ) Eagp Uy, =]

Hy(zay1)Hv (Y, sy, s, ) (@) - exp{=Kv, (2441194, )}

Za+41

where

, o= 2™
(6.2) Kva(gagilyg,) = 2 — /V w05 (W)
m=0 ° m

{1 = Is(e,, pus(y,, ) (@m)exXP(=BW (241, Y,y [0m))}-

Now we shall prove (3.2) for 75(z) given by
S2d+1) o
((d + 1)!)2 _/Rd(zu.l) L4 gd‘“
[wﬁ(oyﬁd)£d+1)']5(£d+l)(0yﬂd)JS(o,gd)(gd_H)eXP{_[{z(O’ﬁdly(H,l)}
= ¥p(0,2)¥p (Y, Jexp{—Ka(0,20) — Ka(y,, )N

(6.3) 75(2)* =

241 g
+ E F/a(k-:)dﬁk_l
k=dt1 © IR (Zagr ¥y )i Zag Yy, =100 )
¢p(0,2k_1)ls(gd+l)(£d+1)Js(gd,rl)(ﬂd_,_l)exP{—K2(£d+1|£d+1)},
where
(6.4) Ko (Zap1ly ,,)

© ,m
m=0 m! ‘/(Rd)m ﬂ'{""pﬂ(ﬂm)

{1 = Is@, 0 @m) sy, , ) (@n) exp{(=BW(zas1, ¥4 [wm))}-

For simplicity we shall only prove Proposition 6.1 in the case d = 2. The extension of the proof to
the case d = 3 is obtained similarly. We prepare two lemmas similar to Lemma 5.1 and Lemma 5.2 for
the proof of Proposition 6.1.

Lemma 6.1 For any z € (0,R,) there exist positive constants cq, L1, My such that

(i) Ky, (z3ly,) > calS(zs) US(y,)l  if Hv(zs) - Hv(y,) =1 and |S(z3) U S(yy)l 2 L1,
(i) Ky, (z3ly,) 2 —M;.

Lemma 6.2 For any z € (0,Ro) there exist positive constants cs and cs such that

@) 1K (25ly;) — Kv,s (2sly,)l < es15(zs) U S(y,)l exp{—cod(S(zs) U S(y), V)},
(ii) 1K (23ly,) — K (zs) = K: (y,)| < e515(23) U S(y,)lexp{—csd(S(za), S(y,))}
(iii) 1K (z5lys) — Kv,:(2sly,) — K (2a) = K (g) + Kvz(23) + Ev,z (y,)]

< e5]S(z3) U S(yy)] exp{—co(d(S(zs), S(y5)) V d(S(zs) U S(y,), V)}-

12
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The proof of these lemmas are obtained in a similar way to Lemma 5.1 and Lemma 5.2. Using these
lemmas and modifying the argument in Section 5, we obtain the proof of (3.2).

In a similar way to the proof of (3.2) we obtain the following proposition.
Proposition 6.1 For any z with z € (0,Ro) the following limit ezists,

Jlim. T BelDy ~ By (DY) = 75(2) <o

6.2 Two Dimensional System

Now we shall restrict our argument on two dimensional systems. For two dimensional systems we
have more detail results about eg(z) and 75(2).

Proposition 6.2 When d = 2 the following relations hold for any z € (0,Ro)

) es(2) = 205(2)
(i) 75(2)” = 4p)(2).

To prove this proposition we prepare several lemmas. We take a boundary condition ¢ as follows
¢=0vVnz?
where V = [-1L — 1,1 L + 1]°. See Fig.2. We define a function Dy ¢(-) on Qv by

Dve{z )= D JstyUza} Vo)
{g,}ciz.}

For simplicity we abbreviate Dy ¢({z,}) to Dv(z,) in the following.

Let us note that Dy ¢(z,) is the number of Delaunay triangles whose vertices are taken from {z,}
under the configuration {z, } U{.Denote a polygon consisting of all these Delaunay triangles by Gv,¢ (z,)
and the number of vertices of this polygon by N‘b/,g(.@n)- Using the elementary argument on geometry we
have

(6.5) Dyy(z,) = 2Nv(z,) = Ny (2,) = 2.

Also we denote by N{(z,) the number of vertices of the polygon Gv(z,) consisting of all Delaunay
triangles for the configuration {z, } with their centers of circumscribed circles in V. In the same way as
we obtained (6.5) we have

(6.6) Dy(z,) = 2Nv(z,) — Ny (z,) — 2-

We remind that N¥(z,,) is rewritten as

N(z)=t#{ie{1,2,---,n}: e —yl= 11<11_ié1 |zj — yl, for some y € OV}
<jgn

We now present the analogue of Lemma 5.1.

Lemma 6.3. For any z with z € (0,Ro) there ezist functions ¢y = c1(z) > 0 and Lo = Lo(z) > 0 such
that

Ky . (z3) > c1]S(z3)l,

13
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for any x5 with r(z3) > Lo and Js)({) = 1.

The proof of this lemma is much the same as that of Lemma 5.1 and we omit it. We can show the

following lemma on the same procedure as the proof of Theorem 1 by using Lemma 6.3 instead of Lemma
5.1.

Lemma 6.4. For any z with z € (0,Ro)

(i) i ,|V|EV(Dvc) es(2),

(i) |V| =[Bv(Dy ) — Ev(Dve)’] = 75(2)*.

From (6.5) and Lemma 6.4 it is enough to show the following lemma to prove Proposition 6.2.
Lemma 6.5. For any z with z € (0, Ro)

o) Jim H1/|E'V(NV<) =0,
(i) Jim, B AV %) = Ev (Ve = 0

Proof. When {w,} C {2,}, Js(w,y)({zn} U() =1 for some y € ¢ if and only if the line segment
Wi Is a side of the polygon Gv¢(z,). Hence,

(67) Nlb/,((ﬁn) = Z E JS(gz»y)({ﬂn} UC)

ye¢{w,}ci{z,}

We obtain the following formulas from the algebraic method of cluster expansion,

) =S5 [ s, 0 Obs(n) expi- Kz ),

ye¢
md BANLY= Y S5 L dua(e) >
Y1.y2€( k=2 (w3 wd){witu{wi}={v,}
Tsqws o) {2} U O swa,pey({e} U Q) exp{—Kv,. (wh, y1|w3, y2)}.
From the formulas and employing the same argument developed in Section 5 and Section 6.1 we

have Lemma 6.5.

Hence, the proof of Proposition 6.2 is obtained .

7. Central Limit Theorem

To prove Theorem 3 it is enough to show
2
(7.1) ngl;j O(s) = exp{—;ﬁs?}, for any s €R

where 0r(s) is the characteristic function of Yy . For simplicity we shall only prove (7.1) in the case of
d = 2. The extension of the proof to the case of d = 3 is obtained with minor modifications. Put

m=m(L) = [ﬁ{]z’ a=a(Ll) = 7;??2-) — L% and b = b(L) = L3, where [¢] is the integer part of
¢ > 0. We subdivide V into m squares Vi, Vs, -- -, Vi, with side a(L) and B = V\}_I., V;, as in Fig.3.

Define . B
Dvi(za) = D Hvi(es)Tse,)(@n),
z,Ce,

14
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where

1, if S(zz)C Vi,
0, otherwise.

u(es) = {

Then Dy, is the number of Delauny triangles whose circumscribed circles are contained in V;. Employing
the same argument developed for Dy in-Section 5 and Section 6, we have

(7.2) Jim VllEV (Dvi] = es(2),
(73) Jim. ﬁEV‘,c[{DV.- — Broc(Dv)Y) = (),
(7.4) Jim |V|2EV H{Dv, = Bv,c(Dv)}*] = 75(2),

uniformly in ¢ € Qp, where Ev, ¢[] is the expectation with respect to the measure Py, ¢. Put

D (D, = Ev\p¢(Dv)}]-

i=1

0r(s) = /; Pp(dC)Ev\p,¢[exp{ V-1s

The proof of (7.1) follows from the following two lemmas.
Lemma 7.1. For each z € (0,Ro),

2
(7.5) lim 6r(s) = exp{—T—ﬁgisz}, s €R.
L—oo 2
Proof. Since Dv',i =1,2,---,m are independent under Py\p((-), we have

0= [ Potac) VI Bvaslexot 2By, - BracBrl

=1

From (7.3) and (7.4) we obtain

TT Bovs clexol22 (Bv, — Byvsc (Br))

i=1

=TI~ g (B = B (D) + OCE)

2
= exp{—?ﬁsz} + o(1), as L — oo.

This completes the proof of the lemma.

Lemma 7.2. For any s €R,
(7.6) Llim 16.(s) — 8L(s)| = 0.

Proof. From the definition of the Gibbs measure we have

0.(s) = /ﬂ PB(d()EV\By([exp{\/—_lS

(Dv — Ev(Dv))}].

Using the standard argument on calculus we have
(7.7
16(s) — 6 (s)|

< / Pp(d¢)Ev\B,¢[lexp{ \/—_
s

(Dv — EDV — Ev(Dv)+ ZEV\B ¢(Dv )} =1])

i=1 i=1

—/ Pp(d¢)Ev\p¢[|Dv —ZDV - EV(DV)+ZEV\B ((Dv)Il-

i=1 i=1

15
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We estimate the last term in (7.7) as follows

(78) ([ Pal@c)Bovs Dy = 3 D~ Br (Do) + 3 B c (Bl )

i=1 i=1

< /n Pa(dQ)Ev\g ([IDv = 3 Dy, = By(Dv)+ 3 Eyyp o(Dy,)F]
B =1

i=1
2B [{(Dy 3 Dr) - By (Dy - 37 Dy}
i=1 i=1
+ 2/n PB(dC)EV\B,([EV\B,C(Z Dv,)* - EV(Z Dv,)’]
B i=1 i=1

Employing the same argument as in Section 6, we have

1 m m
. im — Ey[{(Dv ~ - - Dv)¥=0.
(7.9) i, B Dy ;Dv.) Ev(Dv ; v)}1=0
From (7.3) we have
1 mo mo
(7.10) lim —/ Pp(dQ)Ev\p ¢[Ev\B,c(Y_ Dv.)* — Ev (3} Dv,)*] =0.
V—R4 IVI OB i=1 i=1

Putting these estimates together we obtain the proof of Lemma 7.2.

8. Large deviation

In this section we prove the large deviation principle for the probability distribution of Dy (-)/|V].
Throughout this section, we restrict our argument on a two dimensional system. Furthermore, we assume
that the potential function ®(-) satisfies the hard core condition, i.e. ®(x) = co whenever |z| < r; for
some r; < 1.

We define functions 1

fV,z(g) = IV|

logEy [exp{6Dv }].

Proposition 8.1 For any § € R and z € (0,Ro) the limit
£.0) = Jim_fv(0)

exists and satisfies :
f:(0) = Fp(2>") — Fp(2) < ze”.
The following lemma plays a dominant role for the proof of this proposition.

Lemma 8.1 For almost all £ € Qy we have

Nb(€) < 2—’;16V1.

Proof.  Let us remind the definition of the polygon Gy (£). To each edge A;B; of Gy (€) we draw a
perpendicular bisector £;. These perpendicular bisectors do not intersect with one another in V\Gy (¢).
If two of them intersect in V\Gy (£), they create a new Voronoi vertex. This leads to a contradiction.

Denote by Q = {g1,¢2,- -+ ,¢n} a set of intersecting points of these perpendicular bisectors and V.
We draw an arc f; connecting A; and B; with center at ¢; to each (g;, £, A;, B;), as shown in Fig.4.
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From the hard core condition on ®(-) we have

k
(8.1) My (z,) <10Gy (2,) < 10| as.

i=1
where |8Gv(z,,)| and |0;] means the length of 8Gv (z,,) and 6;, respectively.

Take one edge AB of the square V. Let {q1,¢2, - ,qn, },71 < n, be the set of all points of @ on
this edge. Denote by o a curve obtained jointing arcs 61,02, - - , 0, . Take the z-axis along AB with the
origin located at A. The z—coordinates of the points 1,92, - ,gn, are also denote by ¢i,q2,--- ,qn,-
Now we express the curve o by the following functions defined on [0, L],

F(z) = lg}glﬁ(z),

where  fi(z) = /{a? — (z — ¢;)2} VO, and a; is the distance between ¢; and A; (or By).
We call an arc 6; type 1, if a line which is perpendicular to z-axis and passes through g¢; intersects
with 6;. Other arcs are called type 2.

Let us consider a curve & consisting of arcs of type 1 and line segments on z-axis. It is explicitly

given by the function

F(z) = fi(z). (See Fig.4.)

~ max
1<i<naifi(gi)=F(g:)

Projecting all arcs of & upon z-axis we obtain the estimate of |&| as follows

(82) C jal< oL

™

2
Furthermore, comparing the lengths of arcs of « with & we have

(83) o] < &l

Hence, from (8.1),(8.2) and (8.3) we have

.3
Ny () < E|5V|-

This completes the proof of Lemma 8.1.

From Lemma 8.1 ,(6.6) and the definition of the free energy function Fg(z) we obtain the proof of
Proposition 8.1.

As a remark we state the following lemma.
Lemma 8.2 For any 0 € R and z € (0,Ro) there exists a positive constant ¢ = ¢(z,0) > 0 such that

Evy¢lexp{6Dv}]

exp{—c|0V|} < Ey[exp{6Dv }]

< exp{c|oV}
for any square V C R? and { = {v;} C V°.

The proof of this lemma is also obtained from Lemma 8.1 and (6.6). Using this lemma we can prove
that fJ, .(6) defined by

fe,z’g((?) = T%IOEEV,C [exp{6Dv }]

converges to f,(6) independent of the boundary condition ¢ = {z,} C V°.

Proof of Theorem 3
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The proof of the first statement of the theorem follows from the exponential Tchebycheff’s inequality,
Dy A .
(84) PV(TVT € F) < exp{~|0||V|min z} Ev[exp{0 Dy }]

for any closed subset F' of R.

To prove the second statement we introduce a set function

QG) = — lim —

Dy
logPy(— € G
A sty € )

for a open subset G of R, and a function
¢(z) =sup{Q(G);G > r and G : open },

where the supremum is taken for all open subsets G satisfying G 3 z.
It is easily seen that Q(-) satisfies

(8.5) QEUF) =Q(E)AQ(F)

for any open subsets E and F. It follows from this property that g(z) is lower semicontinuous and

1
(8.6) lim —

Dy .
logPy(— € G) > — inf ¢q(z
A plos V(IVI ) 2 — inf q(2)

for any open subset G C R. (See [17] for the proof of (8.6).)

For the proof of the second statement it is enough to prove that
(8.7) L(z) = q(z).

The first step in proving (8.7) is to prove the following lemma.
Lemma 8.3 Foranyfd € R
f:(z) = sup{fz — q(x)}.
T€R

Proof. First we shall show that
(8.8) f:(0) 2 sup {0z — q(2)}.
z€R
Take any open subset G C R satisfying G 3 z. In the same way as (8.4) we have
. Dy
By [exp{8Dy )] > exp{|V] inf 0y} Py (2¥ € G).
y€G 4
From this inequality we obtain
2(8) > inf 8y — Q(G).
f:(0) 2 inf 6y - Q(G)

Taking the limit G — {z} we obtain the proof of (8.8).

Next we shall show the converse estimate of (8.8),
(8.9) f:(0) < sup {0z — q(=)}
TE
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for any # € R. .
For any M > 0 we decompose Evy [exp{§Dy }] as follows

Ev[exp{0Dv}] = Ev[exp{0Dv }; % < M+ Ey[exp{6Dy }; T%Kl > M)

Using the same argument as before we have

Ey[exp{20Dy }exp{-0|V|M} if6>0

E 6Dy }; i
v[exp{6Dv}; Ey[exp{Dv }lexp{—|V|M} if6 <0,

w7 > <

consequently, the following estimate holds

£:(20) —0M £ 6> 0

Tim logEv[exp{ODV} £ = Mifo<0
(1) — <o.

voR2 V]

v > s

Since f,(#) < zexp{20}, for any € > 0 there exists a number My = My(¢) > 0 such that

Vlmrlv |V|)ogE'v[exp{0Dv} |V| > M) <

holds for any M > M,. )
Let {G1, ...,Gr} be a finite open covering of [0, M]. Taking into account the inequality

lim log(ar +b,) < ( lim %logan)v(li_m %logbn)

n—00 n-—00 n—o0o0

for sequences of positive real numbers, we have

lim —logEy[exp{6Dv }; <M]< [max { sup 0y — Q(Gy)}.
V_R2 1V| |V|

From estimates obtained above it follows for any € > 0 that

(8.10) f.(8) < max {sup 0y - Q(G;)} + ¢ for any M > My(e).
1<i<k yea,

Taking {G4, ..., Gk} such that |G;| < ray for any i=1,....k, we have
f:(8) < sup{fz — q(x)} + 2e.
z€R

This completes the proof of Lemma 8.3.
Next we shall prove the convexity of ¢(z).

Lemma 8.4 ¢(z) is a convex function..

Proof. Since ¢(z) is lower semicontinuous, it is enough to show the following inequality for the proof of
Lemma 8.4,

(8.11) q(Zm Xxm

i=1

We partition the square V = (—%, %) X (—5, 2) into four congruent squares
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Vi, Va, V3, V4 and a corridor part B:
1L
3 5) (3:3)
1 1 L 1 1L L 1
BElpxtpmy) =G x5y

L 1 11
V=G =593

and B = V\U?___1 Vi.

From Lemma 8.1, (6.6) and the hard core condition of & we obtain

4
3
. - ) <4 —+
(8.12) 1Dv(€) = 3 D @) Lo+ 50 +6
for almost all £ € Qv . Using this estimate we have
Dy (&) 1 < Dv,(§) _ 1
. - = T i T L—
(8.13) = |_4Z| i - ml o), e Lo

for almost all £ € Q4. Hence, for any ¢ > 0 there exists a positive constant L’ such that

4 1
(8.14) Pv(|D|‘;/(f) - %Ziﬂ <e)> /PB(dC)HPV;,C([DI‘;'/.(f) -] < %e)
i=1 i=1 :

for all L > L'.

Put V; = {t € Vi;d(t,dV;) > 1} and Vi = Vi \ V;. For any configuration £ € 2y, we denote by £ and
{zthe restriction of £ on V; and f}, respectively, ie. € = {t € ¢;t € V;} and 5:: {te¢te 12}

Using Lemma 8.1, (6.6) and hard core condition on & we have

Dv,(6) — D, (&) < 2Ny (6) + N3, () + NE () = O(L),  as L — oo

for almost all £ € Qy,.

Hence, for any € > 0 there exists a constant L” > L’ such that the following estimate holds for all
L > L” and any ¢ € Qp

SO — 2l <30 Proc(FHEP — il < fe and €= 0)
TP —ml <39~ Pu(Ze@ - mil <o
2™ Dy, (w
_ 2y, Toremo 2 fom A, s (w, ) 11252 — 2] < L)
: ~ D
ek T2 Tommo it Jom i [ 5 dy, Yo (e - 3 )1 25522 — 21l < 3)
> —1—— > exp{—2zL}.
Em =0 k'I 1[
Putting these estimate together we have
D D 1
Py v E) _ _Zx,l <) > exp{~ SzL}HP (| |VV(|£) —ai] < 76).

This implies that
1 4 1 4

where Be(z) = {y € R;|ly — z| < ¢}.
From this estimate we immediately obtain (8.11).

From Lemma 8.3 and Lemma 8.4 we have (8.7) and this completes the proof of Theorem 3.
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Voronoi tessellation and Delaunay network. The edges of

the Voronoi tessellation and the Delaunay network are indicated

by solid lines and dotted lines, respectively.

Fig. 1

The boundary condition ¢.

Fig. 2
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Fig. 3 Decomposition

7

\\\

\
7
.y

\\\

\\\\\\\\\\\

\\\\\\\\\\\\\\ \\\\\\\\\\
. \\\\\

\
\\\\\\\ \\\\\\\ \\\\\\\\\

Z
\

\\\\
\\

\
\\\\\\\\\\\ \\\\\\\\\\\\

x

\\\
\\\
\\\

-

\\\\\\\\\\\\\\

\\
\

NN

\

\\\\
AN
NN\

A

b(L) (&\\

o(L)

{61,010, }

Fig.4 Typical realization of a set of arcs




