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Szegd Operators and a Paley-Wiener Theorem on SU(1,1)

By

Takeshi Kawazoe

§1. Introduction. In 1934 Paley and Wiener [PW] showed that the
.ourier transform f - f*» on R is a bijection of C.~(R) onto the set

of holomorphic functions of exponential type. Let G be a reductive
Lie group with a maximal compact subgroup K of G. Then the analogous
theorem to characterize the image of C2(G,K), K-finite functions in
C=(G), under the Fourier transform was finally solved by Arthur [A]

in 1983. During the these 50 years a number of authors had proved the
Paley-Wiener theorem for particular classes of groups.

Some difficulties arise in the proof of the surjectivity,
especially, of showing compactness of the support of a function whose
Tourier transform is holomorphic of exponential type, and there are
some directions to obtain the fact. The first one is, as in the case
of R, the way of changing of contours of integration in the Fourier
inversion formula. Ehrenpreis and Mautner [EM] solved the case of
sU(1,1) and Johnson [J] rephrased the result in terms of
Harish-Chandra's generalized c-functions. The main problems in this
direction were (1) how to obtain a sharp estimate for Harish-Chandra
expansion which allows us to change the contours of integration and
(20 how to treat residues which appear during the contour change. For
the K-biinvariant or right K invariant functions on general groups G

the residues don't appear. Then the main problem (1) was solved by
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Helgason [H1], Gangolli [G] for C=(K\G/K) and by Helgason [H2] for
C2(G/K). Roughly speaking in these cases the image is characterized
by holomorphic functions of exponential type satisfying functional
equations related with the small Weyl group of G.

When we treat K-finite functions on G, we encounter the residues
during the contour change, so the problem (2) is essential. This was
solved by noting a relation between the residues and matrix
coefficients of nonunitary principal series of G, especially the
discrete series of G. For the real rank one groups this was done by
;campoli [C] and for arbitrary groups by Arthur [A]. In his proof W.
Casselman's theory of a realization of (g,K) modules played an
important role to treat the residues. Then the image of C2(G,K) is
characterized by holomorphic functions of exponential type satisfying
functional equations that matrix coefficients of nonunitary principal
series of G satisfy.

The second direction of proving the compactness is completely
different from the first one and is algebraic in nature. For complex
semisimple Lie groups the Paley-Wiener theorem was solved by
Zelobenko [Z] and for any groups with one conjugacy classes of Cartan

subgroups of G was done by Delorme [D].

The aim of this paper is to offer a third direction of proving the
Paley-Wiener theorem. Especially, we shall give a new approach to
obtain the theorem for right K-finite functions on G = SU(1,1). The
Plancherel formula for L?(G) indicates that L’ functions on G consist
of wave packets and cusp forms on G. Although any functions in
C2(G,K) are uniquely determined by the integral part - the sum of
wave packets - in the Fourier inversion formula, the result stated

above <the image satisfies functional equations that matrix
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coefficients of nonunitary principal series of G satisfy> does not
express clearly the relation between wave packets and cusp forms. So,

we shall characterize simultaneouly the two parts of the right
K-finite functions on G. As mentioned above, the residues, which
appear in the contour change, are real obstacles in the proof of the
surjectivity. Therefore, we want to avoid using the Harish-Chandra
expansion from which the singularities arise. Actually, reducing the
theorem to the one for right K-invariant functions, we won't use the
theory of c-functions. In this approach the theory of Szegd

operators will play an important role.

We shall treat right n type functions on G; ne€%Z and the left
K-type is of free. In §3, as generalization of the classical Szegd
projection defined on the unit circle (cf. [R], p.178), the Szegd
operators S,.,.. (&=0, % and v €R) will be defined (see (3.11)).
They are deeply related with the principal series and the discrete
sereis of G, and some properties will be investigated in §4 and §5.
Then, in §6, we shall rephrase the Plancherel formula for L%(G), L’
functions on G with right K-type n, by using the Szegd operators
(see Theorem 6.10). Actually, wave packets can be written as an
integral of S.,,. with respect to wu.(A2)dA, where u, is the
Plancherel measure and ¥= Y%+iA, and the discrete part - L?> sum of
cusp forms - as a finite sum O0f S,x. (1<m=<n, me }%Z and 2m=2n
mod(2)). This new phrase of the Plancherel formula is useful to
express the relation between wave packets and the discrete part of
compactly supported, C* functions on G (see Lemma 7.1), and moreover,
it makes easy to see the fact that the formula can be reduced to the
one for right K-invariant functions on G by applying a suitable
differential operator on G (see Corollary 6.4 and Remark 6.5). This

indicates that the Paley-Wiener theorem for right n type functions
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will be reduced to the one for right K-invariant functions which has
no discrete part (see Remark 6.5). In this direction the Paley-Wiener
theorem wWill be proved in §7. Especially, we don't use the Harish-
Chandra expansion for K-finite spherical functions and we don't need
to treat singularities of generalized c-functions, only we pay
attention to the ones of P.{ i)' (see Corollary 6.4 (1)). By the same

way, this direction is also applicable to the characterization of I?

Schwartz space on G with right K-type n {(see Theorem 7.4).

§2. Notation. Let G be 8U(1,1), the group of all C-linear
transformations of €2 which are of determinant one, and G = KAN an
Iwasawa decomposition of G, where K, A and N are, respectively the
maximal compact, vector and unipotent subgroups of G consisting of

all matrices in G of the form:

910/2

ke = ( ) (056 <4nm),

e—xs/z

cht/2 sht/2
ar = ( ) (t€R)
sht/2 cht/2

and 1+ig/2 -1 £/2
ng = ( ) (£ €R).
iég/2 1-ig/2
Let g = k + a + n denote the corresponding Iwasawa decomposition of

the Lie algebra g of G. Let A* = {a. ; t>0} and M = {*1}, the
centralizer of A in K. Then the Cartan decomposition of G is given by
G = KCL(A')K. For x€G we define H(x) as the unique element in a such

that x€KexpH(x)N and ¢ (x) as the unique positive number such that
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X €Kaqs K. Let u. denote the complexification of an algebra u and
01 io

u:* the dual space of uc. Then ac = C[ ] and he=ke= C[ 1 are
10 0 i

Cartan subalgebras of g.. We define p.€ac” and p €h’” as follows.

01 io
pol(l D=1 and po(l 1) =1i.
10 01

Let D be the open unit disk |z]| <1 in C and T the boundary of D.
Then each element g in G acts transitively as analytic automorphism

of D under

a g
z >g-z=(Bz+ a)*(az+ B);eg=( _ ) andzeD.
B «
This action is naturally extended to the boundary T. Then K and M are

respectively the subgroups of G fixing 0 in D and 1 in T, so we have

the identifications:
D=G/K and T = K/M.

Let dk=(47x)'d® denote the normalized Haar measure on K and dg

the one on G normalized as the following integral formula holds:

4an o 4n

fa f(g)dg = 2w (4n) 2§ § § f(keatks-)sht dOdtde” (2.1)
6 0 O

whenever the integral exists. For each measurable space (X,dx) L?{(X)
(1£p< o) denotes the space consisting of all the functions f on X
for which §:]| f(g) |?dx <o with obvious norm.

Let K* and M* denote the sets of equivalence classes of irreducible
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unitary representations of K and M respectively, which are

parametrized as

KA={ Ttn;nek%l} and ¥ ={ o.; =0, & }.

Actually, they are defined by 7.(ke) = e™ and o.(x1) = (+1)%.

Last for &=0, )% we let

Z. = {neWl ; 2n=2¢& mod(2) }.

§ 3. Szegd operators. For oc.€M” and 7.€K~ let

(K, g)={f €C=(X); f(mk)=0c.(m)f(k) for meN, k ek}

and

C=(6, Tn)={f €C=(G); f(gke)=Tn(ke)f(g) for k€K, geG}.

Obviously, if let

I, : C=(T) > C=(K, &)

denote the operator defined by I,(F)(k,)=e'*°F(e'), we can identify

c*(T) with C~(K, &), especially, I. is an isometry between L*(T) and

1?(K, € ), the L? completion of C=(K, &).

For v €C the Szegd operator

Se.von ¢ c=(K, 5) - C=(G, Tn)

is defined by
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v H(x"*k)
Se.v.n()(®X)=fx e To(x (x72k)) £ (kD dk
= ein(6+0’)(1_ I W ' 2)—v (3.1)
2x I 1-e7**w I 2n
x § ———— | l-e7*w | Zrem*f(k)dy,
o (l_e—ivw) 2n

where x=Ksa:K.-€G and w=x - 0=tht/2e? €D (see [KW], p.178). Clearly,
S..va(f)=0 except neZ,, and when &=}, v=-) and n=%}%, the
integral of Sk .ux(f)(x) coincides with the classical Szegd
projection operator on L*(T) (cf. [R], p.178). Actually, for FeL*(T)

with the Fourier series I, aze'®, if we let

Fa(W) = Z o2 apgw® (WED),

then

S %(Le(F)) (x) = e#n<e*e>(1- | w | #)* Fo(w)

and 3.2

Sy s (L (F)) (x) = 72+ (1- Jw | 3)* F.(w).

§4. Principal series and S..y.n. For ¢ €{0,%} and v e€C let

(7. ,,L2{T)) denote the principal series representation of G, that

is defined by, for FeL*(T)

B at+pB
e (@E(E)=| B E+a | -2( —————)2 F( ——— ), (4.1
| B7&+a” | B Ct+a
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a B

where ¢ =e* €T and g'=[ ]€G (cf. [Sul, p.207). Let {ex(&) ;
8 a

pe 2} denote the complete orthonormal system of L?(T) given by

es(§) = £7° = e*rv,
Then it follows from (4.1) that

A-1wl®” 11-w& |
”"'(X)ep(C)=ei(p+:)(a+o') ———— ( ——— )2(p+£) C—p’(4-2)
I1-w& 12 1-w

where x=Kksa:ks-€G and w=x - 0€D, so we see that
Lemma 4.1. There exists a positive constant C such that
| we.v(ep(§) | £ Ce? IR (xe6).

Moreover, by comparing the definition (3.1) of S,,. with (4.1), we

can deduce that

Proposition 4.2. Let &£€{0,%}, neZ, and v €C. Then for

f el (K, &)

Se.on(B)(X)=Tz mecv(@ea o (EIITHEI(E)AL.

Let #n%3(x) (p, q€Z) denote the matrix coefficient of =..,(x)

(x€G) defined by

e.v(x) = (e, v(X)eq,e0). (4.3)



KSTS/RR90/005
September 14, 1990

Then, by substituting (4.2) for (4.3) the explicit form of =?23(a:)

is given by

-v-g-&
(1-r2)*r*( ) F(v-q-¢&, v+pt €;p-9+151%)  (p24q)
p-q
and (4.4)
-vigq+ e
(1-r2)"r+?( ) F(v+q+e, v-p-e;9-p+15r?)  (a2p),
q-p

where r=tht/2 and F(a,b,c;z) is the hypergeometric function (cf.
[sal, p.74). Then, using this expression, we can easily deduce that
the matrix coefficients satisfy the following relations (cf. [J], 8§4

and [B], p.26).

Lemma 4.3. Let £€{0,%}, ve€C and p, q€Z. Then for xeG

1 =23 = -G
@ #2.3(x) = wi3 ®Ei-,(0),

where w?%.$ is given by

-y-q-& -l+v-q-¢ -viat e -l+tvigte
( )/ ( ) (p24q) and ( )/ ( ) (a2p).
P-q P-q q-p q-p
01 0-i
We regard X=}I[ ] and Y=%[ ] as left invariant differential
10 io
operators on G and put E; = *X + Y. Then, since E;,~ = *d=n.,.,(X) +

idz..,(Y) make a shift of K-types according to

(pt €+ ¥)epn

E+~ep
and (4.5)

E-“ep = (P+E-YV)epa

H
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(cf. [Sul, p.216), it follows from Proposition 4.2 that

Lemma 4.4. Let the notation be as above. Then

E.tsa,v,n(f) = (n—:"’y )Sl.v.ntl(f) .

§5. Discrete series and S, ,.a. For ne%Z and |n|lz21 let

(Ta,A2.:(D)) denote the discrete series representation of G, where
Az..(D) is the L? weighted Bergman space on the unit disc D={zeC;

| z]|<1} defined by, for nz21

Az.n2(D)={F:D - C; F is holomorphic on D and

I F il 2.n-a=[(20-1) =2 § o|F(2) 12(1-[2{?)**"2dz]* < oo}

and for n<1l, it is made up of conjugate holomorphic functions on D

with the norm given by replacing n with |n|. Then T.(g)F (ge€G and

Fe€A;.:1(D)) is defined by, for nz1

B B az+ B
Ta(g) (F) (2)=( B 2+ @ )"2"F(——— ), (5.1)
B zta
a B
where z€D and g'=[  ]€G; for n<-1, it is defined by T.(g)(F) =

a
coni(T,.n (g)(coni(F))), where conj is the operator taking the complex

conjugation (cf. [Sul, p.229). Let {ei(z); peN}! denote the complete

orthonormal system of A,.:(D) defined by

-10-



KSTS/RR90/005
September 14, 1990

e2(z) = 28z (n21) and An(z)® (ns-1),

where (A>T (p+2|n]|)/T(p+1)T(2|n| ). Let T(g9) (p,q€N)

denote the matrix coefficient of T.(g9) (g€G) defined by

TR *(g8) = (Ta(g)el,en). (5.2)

Then, ||TP¢ |? = 4z (2|n}|-1)" (cf. [Sul, p.326), and comparing

(4.1) with (5.1) and (4.3) with (5.2), we can deduce that

Lemma 5.1. Let &£€{0,%}, m, neZ,, n2m=1 and P, 9€2Z2, q2Zm-¢.

M 7em(@ene(E)=(An20) " T-n(8) ea2(2) | socem-e( L),

@ miEt(e) = (AB)%/ ABuAZar, T nm (g),

Let Q@ be the Casimir operator in U(gc) given by -H?+ Y% (X2+Y?),
where -2H=[X,Y]. Then it is well known (cf. [Sul], p.288) that Z(gc) =

CQ and
Lemma 5.2. Let &£€{0,%}, nez, and In| 21. Then
Q7 n(x)=QTa(x)=n(1-n) (x€6).
In what follows we shall investigate the relation between the
discrete sereis T, and the Szegd operators Se.v.ne
Let V, (2 €N) denote the set of all homogeneous polynomials of

degree (¢ with variables 2z, and 2,. Then the finite dimensional

representation (z,,V.) of G.=8L(2,C) is defined by

-11-
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we(g)P(z) = P(z-8) for z = (21,22),

ab

where PeV, and z-:g=(az;+cz,,bz,+dz,) if g=[ ] €G:.. Especially,
cd

when g=ksa.ke-, z:+-9g and z,-g are respectively given as follows.

giCo+6°3/20 01 /2 7, + e iC6-97>/25ht /2 2z,
and -9

ei(o—-a')lzshtlz 21 + e—i(a-o-a-)/zcht/z Z2.

Let d=d,=dimV,=¢+1 and J,={1,2,..,d}. Then v, =[(i-1)!1(g-i+1)!]1™
z,01z,0" (ieJ,) is a (2i-¢-2) p-weight vector with respect to

he and Veas=[(1-1)1(2-i+1)!1/ 0 11%(2:-22) " (2:42,) Y (1€J,)

is a -(2i-0-2) po-weight vector with respect to a.. Especially, we
shall equip V, with the inner product for which {v;;ieJ,} 1is an
orthonormal system of V.. If we put Cu=(v;~,vi) and [Dyl=[Ciy]™,

Wwe see that Cyu=27f[(i-1)!(@¢-i+1)!]1%, vl 2=02 2% and

v;© o= 2 Cjsivs and V; = 2 Dsavi™. (5.4)
i€l, i€l

Let z& (x) (i,j€J,) denote the matrix coefficient of =n.(x) (x€G)

defiend by
(7o (XIVs,Va). (5.5)
Lemma 5.3. Let a, beZ., (&=0, %) and |b| fa. Then

eaH 7 (£ (%)) * = Ca-brr a2 Ca-b+1 2 7 33(x),
i€lJza

where d=2a+l.

-12-
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Proof. Noting the Iwasawa decomposition of xe€G, we easily see that
the left hand side is equal to Caws ¢ '( 72a(X)Ve,Vasa™). Then,

substituting with Visa™=3iCawa iVi, We have the desired result.

Let £€{0,%}, meZ, and i€ Jumi. Then for fel’(K, ¢) we define

Sta()(®) = 2 Suo-n.u(f m288) (%) a2 (x7Y) (5.6)
P € Jzm+1

" where d=2m+2 and fz 2, is the function on K given by f(k) z.(k)

(keK). Then it follows that

Proposition 5.4. Let e£€{0,%} and m, ne€Z,. Suppose that m2-)%

and -m<n<m+l. Then for felL*(K, &)

St.n.n(f) (X) = Cw-n-ﬁz cl._:l z C-—rnz i Sji,-(f)(x)»

i €Jomna

where x€G and d=2m+2.

Proof. We can rewrite the integral in the definition of S... as

-Y2H(x7*k)
Se.m.n(£)(X)=§ e Tu( £ (x7*k))7?

(m+ ¥%)H(x7*k)
X e Ta-u( £ (x72k))"*f (k)dk.

Then, noting the assumption on m and n, wWe can apply Lemma 5.3 for

a=m+% and b=n-)% to the right hand side. Then it follows that

-13-
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-VH(x"k)
=Co-n+z a™* £ Ca-n+z 1 § xe Ty(x (x72k)™*
i€Jzmer

X 73 (x7k) £ (k) dk.

Then, since #ni4 (X 'K)=Z .78 (x') n:24(k), the desired result

follows from the definition of Sy k.x.

Theorem 5.5. Let & €{0,%}, meZ, and m2-%. Let f(&) = ¥ a,&"?
pEZ,

be a function in L*(K, € ) satisfying |a,|=0 for [p| Sm. Then
Se.m.mea(£)(x)
= (1_ | w I 2)n+)§ ei(n*lé)(lH-ﬂ') S”’_”.K(fe-i(-*}i)ﬂ)
= (1_ I W ' 2)-+1 ei(n#l)(oﬁ'e') (I(-lf)’(")"—(lwl)’

where x=ksa:k,-€G and w=x-0€D.

Proof. Since v~ (s€J:s) are weight vectors with respect to hc,

we see from (5,4) and (5.5) that
7[5;1»1(‘(0) = Znggcgpe(_('*”)'(’—l)>ig
Therefore, we can rewrite (5.6) as follows.

Stu(f)(x) = 2 DasCapSp.-y.u(fe #2002 3=10) g, (x71)
S,P €Jzme1

-14-
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= SK-—K,K(fe_icm*Da) 2 s.de-C-p"._l T zi.‘.'u(x‘l) .

Here we used (3.2) and the assumption that a, = 0 for |pl|l < m to

obtain the last equation. We note that

2 s.plasCap¥™®* ' 7w 21:4‘1()(-1)

Zs DasW* (T 2mea (X"1)Va™, V1)

"

(7 2mer (x72) (WZ2422)9 %, vy) .

Then, it follows from Proposition 5.4 that

Se.mme1(£) (X) = CiaSk.-n. x(fe *m99)

X 2 Cas(Zamea(x72) (WZat22)27,vy).

1 €J2mea

= C1a™*Syu.—u.u(fe 2 =®>7)

X (zmea (x72) (WZat2zZ2) 2, V7).

We recall that maum.{(x?') transforms wz,+z, to

(1- fu | 2% ercered>rz g, (5.7

(see (5.3)). Therefore, since v," = (0 !)%2,*! and Cu'|v:i~ |2 =

(2!)*, we can deduce that S,....(f)(x) must be equal to

Su.-n.u(fe 1m0 (1- | y | 2)=+% gacmeid Co+e™>

-15-
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The second equation in the statement easily follows from (3.2)

Q.E.D.

We retain the notation and the assumption in Theorem 5.5. Then the
theorem and (2.1) implies that if m20, S,a..a(f)€L?(G) and thus,
by Lemma 4.4, S,..(f) (0£mg<n-1) also belongs to L?*(G). Then
substituting the decomposition of f: f(§) = Xa,¢®, where p€Z, and
Ipl >m, with Proposition 4.2 and using (4.5), we see that S....(f)
can be written as an L? linear combination of the matrix coefficients
n&%™¢, where gq2m+l and so T4 ™' by Lemma 4.3 (2) and Lemma
5.1 (2. This fact also follows from the left K-type decomposition of
Sema(f), say = S(f). In fact, each ,S(f) is an L’ function on G
with K-type %QG,ZI;) and, by Proposition 4.2 and Lemma 5.2, it 1is also
a Z(gc)-eigenfunction wiht eigenvalue -m(m+l1). Therefore, ,S{f) must

be a cusp form on G, and thus a scalar multiplication of the matrix

coefficient T4=4*™! of T (mn. Clearly, ¢ 2m+l. So, we obtained

Proposition 5.6. We keep the notation and the assumption in Theorem

5.5 and suppose that neZ, and 0=<m<n-1. Then 8,..(f) can be

written as an L? linear combination of ThNh}! (p20).

Next theorem will not be used in the argument below. However, it is
an important and interesting property that expresses the relation

among the Szegd operators S;a.. (0Em<n-1).

Theorem 5.7. Let meZ, (&=0, %) and m2-%. Then for f in L*(K, ¢)

2m-1
2 ( Y(e*<er ey )™t Sy mmrz-n (£) (X)
N € Jzme n-1

-16-
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(1- | w | 2)=+% picmeX¥dCo+0°> s“__K.K(fe—i(m»)&)s)

(1_ I W l Z)M:I. el(n»l)(ﬂ‘l\a') (I‘—lf)+(")“—(u*1)’

u

where x=kjak,-€G and w=x - 0€D.

Proof. We keep the notation in (3.1). Then we note that

2m+l (1-e7*y) 2

> ( ) [ e ei(!—ﬂ) I W l ]n—l
nE€Jzmer n-1 | 1-e~**u | 2
(1-e-*y) 2
=1+ ———— giCv=0> | y | )zm+2
| 1-etw | 2
1-lwiz
= ( ———— — ) 2m+1
1-e**w

Therefore, the desired relation follows from (3.1) and (3.2).

Q.E.D.

§6. Plancherel formula. In this section we shall rewrite the

Plancherel formula for L?(G) (cf. [Sul, p.344 and p.346) by using the
Szegd operators S, ...

The Plancherel formula implies that each L? function f on G can be
written as f = * + ° f, where *f is the sum of wave packets, the
integral part of the formula, and ° f is a linear combination of cusp
forms, the discrete part of the formula, so L?(G) has a direct sum

decomposition:

-17-
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L2(6) = FL2(G) & ° L2(G). (6.1)

For f in L?(G) we denote by f = ¥ .f. the K-type decomposition of f,
where m, ne€ %Z and the K-type of .f. is (m,n). When we restrict our
attention to L? functions on G with right k-type n, we denote the

decomposition (6.1) as

L%a(6) = FL%a(G) & ° LZ%a(6)

By the same way we denote the decomposition of compactly supported C~

functions on G with right K-type n as

2.n(B) = PCon(G) ® ° Cca:n(G)-

For R20 let G(R) denote the compact set in G defined by o (x)=R
when x€G(R). Then C{ (G;R) denotes the set of all C* functions on G
whose supports are contained in G(R) and C2.(G;R) the subspace with
right K-type n. Let ° C.(G) denote the space of cusp forms on G with
right K-type n. Then the following proposition will play an important

role in §7.

Proposition 6.1. For each R>0

® C.n(G;R) = ° Ca(G).

Proof. By the definition it is clear that ° C&(G) < ° C.(G), so
we shall prove the reverse. Let f be in ° C.(G). First we assume that
the left K-type of f is q (g2 ¢). Then, as stated before Proposition

5.6, the discrete part of L%(G) with K-type (q,n) is an L? span of a
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finite number of cusp forms on G, say ¢. (1<s<N) that are linearly
independent and real analytic on G. Therefore, for an arbitrary open
subset S8 in G(R) we can choose compactly supported, C> functions h.
(1£t<N) on G such that (h., #¢.) = 8. (15s,t<N) and supp(h) <

CL(S). Obviously, we may assume that the K-type of h. is (g,n). Let

g = 3 (f, $)he.
1=t<N

Then, ge€Cs(G), supp(g) < CL(S) and ° g = £, because

(g, $s) = 2 (f, p)(he, 85) = (f, ).
1<t <N

Therefore, we see that fe° C.32(G).

Next we shall consider the case of an arbitrary f in ° C.(G). Let
f = 3.f denote the left K-type decomposition of f and S. (m€3Z,) the
open subsets in G(R) such that CL(S,) n CL(S,) = ¢ if p#q. Then,
as proved above, for each m there exists a compactly supported, C*

function ,g with K-type (m,n) such that ° .g = .f and supp(.g) < S..
Therefore, if we put g = 2.9, we see that geCZ.(G;R) and ° g = £,
so fe€° C.3(G;R).

This completes the proof of the reverse: ° C&(G;R)D ° C.(G).

Q.E.D.

Let £ €{0,%}, neZ, and v=l%+iA €C. For £ in C2(G) we define
the Fourier transform f£fA(A,&) ({(A,{)eRXT) associated with the

principal series =n,,, by

fA(2,8) = e f(@conj(m..,(gen-.(E))de (6.2)
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and moreover, for meZ, we define

=fA(2) = e f(@)conj(z &y »*(g))de. (6.3)

Let a(A,&) be a function on RXT. Then we define A.(a)(A,x)

on RXG by

An(a)(lyx) = St.v_-l.n(Ita(/‘l, * ))(X) (6-4)

whenever this integral exists. When a (A, &) is integrable in & for
a fixed A €R, the integral exists for the A (see Lemma 4.1 and
Proposition 4.2). We call a(A,&) a holomorphic function of uniform
exponential type R if it is holomorphic in A and if there exists a

constant R20 such that for each N20

sup e RIImAT (I+ | A )Ml a(A,8) | <oo.
A€C, & eT

Then, as noted above, it follows from Lemma 4.1 that, if a(Aa,§) is
a holomorphic function of uniform exponential type, A.(a)(A,x) is
well defined for (A ,x)eCXG and holomorphic in A. We also define
antiholomorphic functions of uniform exponential type by the same

way.

Lemma 6.2. Let f be in C2(G;R).

(1) =fA(A) (A €C) is an antiholomorphic function of

exponential type R and .f*"(1) = (ufa)*(1).

@ fACA,E) ((A,E)ecxT) is an antiholomorphic
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function of uniform exponential type R and

fAA,8) = 2 LfA(A)ew(E).
mne’,

3 AR(EMD(A,3) = Aa(E) (- 2,00 ((A,x) ERXE).

Proof. (1) and (2) are obvious from Lemma 4.1, (6.2) and (6.3), so we

shall prove (3).

AN (A, = Srmaav(Xen (A, 8)dE

3 WfAMA) mEEFEA(X)
HEZt

i

z fe f(@coni(mers ™ ¢ (&) m.mf = (x7))dg
neZ,

§e f(@conj(m77s » ¢ (x72g))ds.

Then, since w™¢™* =1, (3) follows from Lemma 4.3 (2).

Q.E.D.

Now we shall consider the inversion formula of the Fourier

transform defined by (6.2). Let

Axth(me A) (&=0)
() = (6.5)
Arch(m ) (e=l).

Then it is well known (cf. [Su], Ch.V, §8 and [B], §10) that for
f €*L%(G)
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mf(x) = SR mfA(A-)”ew.—v‘ "“(X)ﬂ.(l)dl

and (6.6)

fo laf(x) 12dx = §r |Lf*(A) [2u.(A)dA.

Let

LZ%(RXT) = {@(2,8) el*(RXT, u.(A)dAd&) ;

An(@)(A,x)=8a(a)(-1,x) for (A,x) ERXG}.

Then, for a €L%(RXT), if we define

aV(x) = §rSe-vn(lea(, - )@ u.(2)d2 (x€6), (6.7)

we see the following

Proposition 6.3. The Fourier transform f(x) - fA(A1,&{) is an iso-

metry of L%(G) onto L%(RXT) and the inversion formula is given by

z SR -fA(l)”:—v‘ n_g(x)/‘t(l)dk
mel,

f(x)

n

1

CIOMEIN

Proof. Except the last equation the assertions are obvious from Lemma
6.2 (2) and (6.6), so we shall prove the last equation. Clearly, it is
enough to prove it for fe€®C.2(G). Then it follows from (4.3) and

Lemma 6.2 (2) that

2 fraf* (Al ) u.(A)dA
REZ,
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2 Srafr(A) (e s(X)en-e, Ca-e) (A)dA
nEZ,

Sr (mev(Xen-o, conj(fr(A, ) u(A)dA.

H

This integral is nothing but (f*)V(x) by Proposition 4.2 and (6.7).

Q.E.D.

Corollary 6.4. Let £ be in *C=(G). Then

D f&) = (B §r Seumv. o (LA, - DPa(A)™) £.(A)d A,

where Po(A) = (n-%+1iA)(n-3/2+iA) + (e+¥%+id).

2 A(E*Pa)(A,x) = A (f*Pa™ (- 2,x) ((A,x) €RXE).

Proof. (1) follows from the inversion formula in Proposition 6.3 and

Lemma 4.4. We shall prove (2). By the same argument in Lemma 6.1 (3) we

see that

A (f"Pa™ ) (A,8)= Pa(A) " §o f(&)conj(x 2 7 ¢ (x"2g))de.

Then, since wl&f = P.(A)/P.(-1) and conj(P.{ A1))=P.(-21) by the

definition, it follows from Lemma 4.3 {2) that

Po(A)*m 2 = Pa(- A) 1 %5

Therefore, the desired relation is obtained.
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nemain vev. WS LULE  LLGL  LUE  LULEYLAL UL LUG  LULiudd Ll wuluiialg
6.4 (1) is nothing but apply the inversion formula for L%, (G) to the
function fA( A, ¢)P.(A)' satisfying (2). The formula for L2 (G) is

simpler than one for L%(G), because it is made up only of wave
packets, that 1is, the discrete part does not appear. Actually, the
following theorem is well known for &=0 by [H2] and &=% by the

same way.

Theorem. (1) L%(G) = *L’,(G) and the Fourier transform f - f* is
an isometry of L%, (G) onto L% (RXT).

2) The Fourier transfrom f - f2 is a bijection of C2,(G;R) onto

the set of holomorphic functions a(A,&) of uniform exponential

type R satisfying A, (a)(A,x) = A, (a)(-41,x).

The reduction formula in Corollary 6.4 will play an important role
in 8§7. In fact, it reduces the proof of the Paley-Wiener theorem for

Cza(G) to the one for C&,(G) stated in Theorem (2).

Next we shall consider the Fourier transform associated with the
discrete series T (m€¥%Z and|m] 21) and the inversion formula,

which are investigated in [K].

Let ne€Z, and I.={¢ €2, ; 1£0¢ Sn}. Then for meI, and f e€C.tG)

we define the Fourier transform F.(f)(z) (ze€D) associated with the

discrete series T, by

Fu(f)(z) = §e £(g)coni(Ta{g)e.(2))dg (6.8)

(see 8§85 and [K]). When we express the dependence on n, we use the

notation F, instead of F... Let f*A(z) denote a vector of functions
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on D given by

f2(z) = (F-a(f)(2) ; mel,). (6.9)

Then we see the following

Proposition 6.6. Let the notation be as above.
1) F2a(L2(6)) = F2(L2(8)) = Az, 0-2(D).
(2) For each B €Az.n1(D) we define

Bv(x) = (47[)_1(2E‘1) (1_r2)mein(a+6')ﬁ(")

>

where x=ksatke- €6 and w=x - 0=re*®€D. Then
F2a(BY) = B.
(3) We keep the notation in (2). Then

F2.((I (20)/ T (n-n+1) T (n+m))* E,"=8Y) = 8.

Proof. See [K], Theorem 4.1 and Theorem 5.5.
proofs of (2) and (3). Obviously,

for each £(z) = e;"(27) =

A%2° (p€eN). Then it easily follows from

(5.1) and (5.2) that B8v(x) = C.?TR° (X), where c.? = 47 (2m-1)7,

and moreover, since T.(g)ei"= 3, T3°(g)ey

FEa(cn™TR9(2) = §g ca2T2.°(g) conj (T-u(8)es™(2))dg

=ep (27).
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Therefore, (2) is obtained. We recall that T2° = (AFA"/ A%m.) X
n»e¢ = (see Lemma 5.1 (2)). Then, applying E.*™ to the right hand

side (see (4.5)) and using Lemma 5.1 (2) again, we see that

E,o® TR0z (T(n-ntl) T (n+m)/ T 2m))* T5 ™.

Then, repeating the argument in the proof of (2), we can obtain (3).

Q.E.D.

Let

Azn(D) = @ AZ.-—l(D)
ne€l,
be the direct sum of the weighted Bergman spaces A;.:(D) (meIl,)
with the norm given by the sum of | |.»: (m€I,). Then for each

B=(Ba;mel,) €A%(D) we let

BY(x) = 2 (I'Cm)/T (n-p+1) T (n+m))*
) K=N .

X Em((47x) " *(2m-1) (1-r2)me3=+9"> g (W),
where x=Kksa:ke,- and w=x.0=re*®*. Here we note the fact that the set
of the discrete series T, that has an element with K-type n in the

representation space A;,.(D) is just given by {T. ; me€Il.}. Then,

applying Proposition 6.6, we can deduce the following

Proposition 6.7. The Fourier transform f(x) - £2(z) is an isometry

of ° L%.(G) onto A%(D) and the inversion formula is given

f(x) = (V).
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We say that B=(f8.) €A%(D) has a bounded boundary value if each
Bn€A,n:(D) has a bounded boundary value function on T. Then we

have the following

Lemma 6.8. Let fBa.€A,..(D) and suppose that it has a bounded

boundary value function on T. Then

B-V(x) = (4 n)—l(zm_l)sl.-"l.h(I!(A'l'l.l-/ ln,—-e)zlr?—n-]' ﬁllet*ll)(x)-

roof. Since B, is bounded on T, the right hand side is well defined
(see Lemma 4.1 and Proposition 4.2), and so the equation holds if it
holds to each e® (z7) = A2® (peN), In fact, it follows from

Proposition 4.2 and Lemma 5.1 (2) that

Se.m-1.n(Te(A8n/A2)? A% t(es™ er-w) (%)

AB aARAR 2 & 518 (%)

. AB R ABAR .72 conj(z .2 ™™ (x71)

conj(T2z* » (x71))

i

TP, (%).
Then, by the same argument in the proof of Proposition 6.6 (2) and (3},

the desired equation for e;> follows.

Q.E.D.
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Corollary 6.9. If B=(f8.) €A%(D) has a bounded boundary value,

BY()= TUr)(28-1) (An-n/ An-e)% Se.m-1.n{ An-u2Ic Bute-m) (X).
m€l,

Last, for fel%(G), we let

A= (FAA, E), £2(2)) ({4, & ,z) eERXTXD).
see (6.2), (6.8) and (6.9)). Then Proposition 6.3 and Proposition

6.7 imply that

Theorem 6.10. The Fourier transform f - f* is an isometry of L%(G)

onto L%L(RXT) ® A%4(D) and the inversion formula is given by

f@x) = £AC-, 2 )V + £2(-)Y

SR Sn.—v,n(I:fA(l, * ))(X) ﬂg(l)d/l

+ 2 (I@m/T (n-m+1) T (n+m))* E.»™ F_a(£)V(x).
neEl,

§7. Paley-Wiener theorem. We retain the notations in the previous

sections. In this section we shall give a characterization of Fourier

transforms f* of compactly supported, C~ functions f on G.

Let f be in C2(G). Then, by Lemma 6.2 (2, £f*{(A1,§) is an anti-

holomorphic function of uniform exponential type, and by Lemma 5.1 (1)

and Lemma 4.1, F.(f)(z) (meIl,) has a bounded boundary value on T.

Especially, we can obtain the following relation.
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Lemma 7.1.

f"(-(m-Vz)i, C) = ln—-—l F—n(f)(c)et—m(c)-

Proof. It follows from Lemma 5.1 (1) that

fAC-(m-%)i, &) = §o f(g)conj(m.. u(g)en(§))de

= A2 .t §af(@)coni(T-n(g)en®a(z))de | z=cec-w( &)

= ln—-—lF—m(f)( C )ei-ll( C ) .

Let PW be the subspace of L%L(RXT) & A%(D) defined by

P = {y=(a(A,8), B(2)) €L*(RXT, u.(A)dAdE) & A%(D);

N 1) a(ar,€&) is an antiholomorphic function of

uniform exponential type,

2 A(ad(A,x) = Aa(a)(-2,x) ((A,x) €RXD),

B a-(m-1)i, &) = Aaw? Bu(f)ecw(l) (L €D,

where £(z)=(Ba(z); n€ls). }

and PW(R) (R>0) the subspace of PW consisting of 7¥=(a,B8) such

that the exponential type of a is R. In particular, the condition (3)
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of PW implies that

B has a bounded boundary value, (7.1a)
and
a(-(m-%)i, &) has zero at &=0 of order m-¢ (7.1b)

and has a holomorphic extension on D.

Then the main theorem can be stated as
. sorem_ 7.2. (Paley-Wiener Theorem on SU(1,1)) The Fourier transform

f » f* is a bijection of C.%(G;R) onto PW(R).

Proof. Except the surjectivity, the assertion follows from Theorem
6.10, Lemma 6.2 and Lemma 7.1, so we shall prove that if ¥ €PW(R),
then yVYe€C.2(G;R). It follows from Theorem 6.10, (7.l1a), Corollary

6.9 and (3) of PW that ¥V can be written as

YY) = a¥(x) + BY(x)

§ Sevcvn(Tea (A, + D@ #2042

+ 2 (An-af An-e)®im1.alca (-(@-4)i, - )) ().
DEI,

Lemma 7.3. If B=0, then yV=aVvYeCs.(G;R).
Proof. Clearly, B=0 implies that each S.....(I.a(-(m-%)i, -))
=0 (meIl.) and thus, by applying E", S,.1w.(I.a{(-(m-%)i, :))

=0 (see Lemma 4.4). Then, since I,a(-(m-%)i, &) has zero at ¢ =0

of order m and has a holomorphic extension on D (see (7.1b)), it
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follows from Theorem 5.5 that

a(-(-%)i,&) = 0 (neln),

that is, a (A7, &) is a holomorphic function of uniform exponential
type R, that has zero at A=(m-%)i (me€Il.). Then, comparing the zero
points of P.(A) (see Corollary 6.4), we see that a(A7,E)P.(A)!
is a holomorphic function of uniform exponential type R. Then, noting
Corollary 6.4 (?), we can apply Theorem (2) in Remark 6.5 to al(r,&)

s J(A)*' and thus, by Corollary 6.4 (1), we can conclude that aVe
C2.(G;R). This completes the proof of Lemma.

Q.E.D.

Now we return to the proof of the theorem. Since gvVe° Ca(G),

°

Proposition 6.1 implies that there exists g&CZ.(G;R) such that ° g

= BV, that is, g*(z)=g8(z) (zeD). Therefore, if we let

h=19yY-g,
w. see that h*ePW(R) and h*(z)=0. Then, applying Lemma 7.1 to h*,
we can deduce that h=(h*)YeCz.(G;R), and so ¥V = h+geCs.(G;R).
This completes the proof of Theorem.

Q.E.D.

Let CR(G) (0<p=<2) denote the L° Schwartz space with right K-
type n, that is, the space of all C* functions f in L%(G) such that

for any reN and g, g'€U(gc)

sup | f(g;x;8’) | e ™P(l+6 (x))* < o
XEQG
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(cf. [EK], p.146). Let R[p] (1<p<2) denote the strip in C def ined
by {zeC;|Im(z)| £(1/p-1/2) } and R(p) the interior of R[{pl. Then,

we define

1S = {y=(a(a,t), B(2))el?®RXT, #.(2)dAd&) © A% (D) ;

1) a(A,&) is, as a function of A, an antiholomorphic function

on R[p] and for any p, g, r€N

sup | (d7dAa)e@@/de)*a (i, &) (+ ] A |)* <oo,
A eR(p), & €T

@ An(a)(2,%) = Au(a)(-2,x) ((A,x) ERXE),

3) If mel, satisfies m<1/p, then

a(-(m-1%)i, ¢) = An-w* Bu(&)eeal £),

where B=(fB8a.(z); m€l,) }.

Then we can obtain the following

Theorem 7.4. Let ne€Z, and 0<p<2. The Fourier transform f - f* is

a bijection of C”(G) onto L°S.

Proof. When the right K-type n is trivial, we know that the discrete
part A%L(G) vanishes, and the theorem is obtained by [EK] for general
groups; also when n=%, it can be obtained by the same way. So, we
shall reduce the proof to the case of n=¢.

As in the case of n=0 (cf. [EK], §4), the image f*» of f in C%(G)
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satisfies (1) of L*S, and moreover, as in Lemma 6.2 (3) and Lemma 7.1,
fA satisfies (2) and (3) of L*S. Therefore, Theorem 6.10 implies that f
-» f*» is an injection of C%(G) into L*S.

Let Y=(a,B8)€l*S, and we shall show that yveC~(G). As in the
proof of Lemma 7.3, we can find a compactly supported C* function g
on G such that the right K-type is n and ° g = BY. Moreover, if we
put h = ¥Y-g, h has no discrete part and h*(-(m-%)i, {) =0 for all
meI,. Then, since h* = ¥ - g* is in L°PS, it satisfies (1) of L"S and
thus, h*P,” satisfies the conditions (1) and (2) of L*S for n=¢& (see
¢ ollary 6.4 (2)). Therefore, the result for n=¢ and Corollary 6.4
(1) deduce that hecC’(G), so, ¥Y = h + g €C%(G).

Q.E.D.

Recently, Barker [B] removed completely the finite K-type
restriction for C®(G) and gave a characterization of CP(G) under

Fourier transform.
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