Research Report

KSTS/RR-90/003 Feb.7, 1990

New Environment for Statistical Inference(NESI)

by

R. Shibata and M. Takagiwa

R. Shibata and M. Takagiwa

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

Department of Mathematics Faculty of Science and Technology Keio University

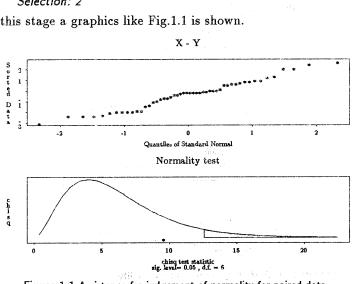
© 1990 KSTS Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

New Environment for Statistical Inference (NESI)

by Ritei Shibata and Mutsumi Takagiwa Department of Mathematics, Keio University, Japan

1. Introduction

NESI is a new environment for statistical inference on top of the S language (Becker, Chambers and Wilks (1988), The new S language, Wadsworth & Brooks/Cole). All routines are written by the S language. A few exceptions are m-sequence generation and calculation of Noncentral F-distribution, which require highly efficient computation. S is an interactive object oriented language in which basic unit is an expression, combination of operators and functions. An advantage of using such a language is not only that the any time the algorithm can be seen simply by typing the name of function but also that list is a basic data structure. It makes possible to combine the results of each statistical inference into one and specify it only by the name. There are three primary reasons behind our decision to produce the NESI. The first is to provide a vehicle for doing classical testings or inferences in the frame of modern data analysis. Such vehicle is missing in the currently available S environment. The second is to be able to experiment with such environment in instruction. Finally, we were interested in exploring a good organization of classical inference, particularly statistical testings, in such an advanced environment for data analysis.


2. Design Policy

There is no definite way to place classical inference in modern data analysis. Usually it is placed on the final stage, confirmative stage, but, even in a stage of exploring data, formal and objective inference will help user to make a decision. More importantly, classical testings are still main objectives in many field of statistical data analysis. For example, in pharmaceutical company or clinical trials, formal testing of effect or side effect of drugs are main concern. Even in such field of application, interactive environment like S will help user to analyze his/her data. - 2 -

Basic idea of the design of NESI is, dividing routines into parts, that is, S functions, and combining those into one to do an inference. Dividing into parts will make system much simpler. For example, chisquare type testing is common in various testing procedures. As is seen in Section 7 a simple chisquare test is explicitly used in three places, testing for the equivalence of two categorical data (diff.test), oneway analysis of categorical data (oneway.test), independence test of two samples (indep.test). Basic function like Chisq.test is designed very general way. User can invoke it alone and also can use it indirectly through one of parent functions as above. Then the parent function will invoke it in an appropriate form. To systematically organize such basic functions we had to establish a standard of communications between functions, what is necessary and sufficient information which should be passed through. We believe that such organization will not only make system simpler but also clarify the relation of various statistical inferences. This consideration is also applied for communication between functions for analysis and graphics. As a side effect of such standization, it becomes able to have each function a polymorphism. Each function understands any result of previous application of a function.

Another important point is how to design a good interface to the user, particularly to novice. A problem of novice in statistics is that it is hard to find an appropriate procedure to analyze his/her data. Interactive functions *diff.test*, *oneway.test* and *indep.test* in NESI will lead user to an appropriate procedure implied by the features of the given data is, for example, categorical or not, or by asking user if mathematical assumptions like equal scale or normality is acceptable or not. Also, to assist user's judge, a graphical or numerical display is provided.

> nesi(X,Y)
1: diff.test
2: indep.test
3: oneway.test
Selection: 1
1: paired
2: unpaired
Selection: 1
1: I know if x-y is normal or not
2: Judge by graphics
3: Judge by p-values

- 3 -

Selection: 2 In this stage a graphics like Fig.1.1 is shown.

Figure 1.1 Assistance for judgement of normality for paired data

If the user selects "unpaired" at the previous stage, then he/she will see a graphics like Fig.1.2.

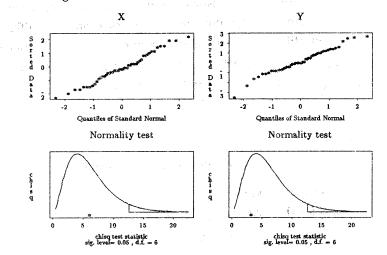


Figure 1.2 Assistance for judgement of normality for unpaired data

For the case of *indep.test*, a graphical display of a bivariate normal test will be

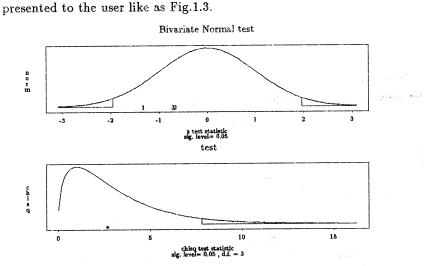


Figure 1.3 Assistance for judgement of bivariate normality.

3. Functions for statistical inference

In NESI, S function names for statistical inference basically begin with an upper case character. Names for testing functions further have a suffix test. Interactive functions and utilities have all lower case names. Interactive function will prompt user to choose one from possible inference functions. In due course, a graphical or numerical assistance is available for user to check mathematical assumptions as is described in the previous section.

3.1. Two sample problem

diff.test	interactive test for the difference of two samples
Bn.test	binomial test, signed test
F.test	F test for the equality of variances
Chisq.test	chisquare test for contingency table
Mc.test	McNemar test for the symmetry of contingency table
T.test	paired t test
Two.t.test	two sample t test
Welch.test	Aspin-Welch test
Wil.test	Wilcoxon rank sum test (U test)

- 4 -

- 5 -

-Attinue substances and and

Wil.s.test Wilcoxon signed rank sum test

3.2. Oneway analysis

oneway.test	interactive oneway analysis of variance with or without covariate
Chisq.test	chisquare test
Kr.test	Kruskal-Wallis rank test

Oneway.test oneway analysis (ANOVA)

Oneway.cov.test oneway analysis with covariate (ANOCOVA)

Q.test generalized Cochran Q test, Friedman test

3.3. Repeated t test

rep.t.test	interactive repeated t test for the difference of locations
Rep.t.test	repeated t test for the difference of locations
	1991、時間10日 総議 main contract のうちょう

3.4. Association test for contingency table

table.assoc.test	interactive	association	test	for contingency	table
	and a start of the second s				가지 나는 것이다.

Fis.test	Fisher exact test
Mc.test	McNemar test
MaHae.test	Mantel-Haenszel test
StMw.test	Stuwart-Maxwell test

3.5. Independence of two samples

indep.test	interactive independence test		
Chisq.test	chisquare test		
Cor.test	t test for zero correlation		
Kd.test	Kendall's tau and nonparametric test for zero of	correla	tion
Sp.test	Spearman's rank correlation and nonparametri	c test	ior
	zero correlation		
	and the second for		

3.6. Survival time objects

survive	create a survival time object
is.survive	survival time object or not
as.survive	make a survival time object

- 6 -

3.6.1. Estimation	of survival function as foregula and a second state
survive.fun	interactive estimation of survival function
KpMeier Lifetable	Kaplan-Meier estimate of survival function survival function estimate by lifetable method
3.6.2. Test for th	e equivalence of two survival time objects
life.test	interactive equivalence test of two survival time object
	Cox-Mantel test
Logrank.test	Logrank test (Peto & Peto test)
Wil.test Z.test	generalized Wilcoxon test (Gehan's generalized test)
3.7. Normality te	standika ana 200 kata inter ina ana kata
Bnormal.test Normal.test	bivariate normality test univariate normality test
3.8. M-sequence	random number generation
Msequence	m-sequence random number generator for various distributions
3.9. Distributions	
pf	central or noncentral F distribution of the expression of the
Binomial	binomial distribution
Hypergeometric	hypergeometric distribution and a stranged
Wilcoxon	Wilcoxon rank sum distribution
3.10. Utilities	en en la approvadé a la compositive de la compositive de la compositive de la compositive de la compositive de La compositive de la c
autocov	autocovariances
Cat	concatenation of two sets of categorical data
Conf	upper and lower confidence bounds
Show	indispic graphical representation of the result.
	and a strain at the standard of the second

~

- 7 -

4. Graphical Representation of the result

The function Show is a powerful tool for graphical representation of the result of a function of inference in NESI. This function understands any result of inferences in NESI and draw an appropriate graphics, confidence bounds, rejection region(s), or a curve of survival function. The use of this function is simple. Invoke a graphic driver first and give as the first argument to Show the object returned by functions described in Section 3.

5. How to use (an example)

One of the easiest way of using various functions in NESI is through the function *nesi*. This is a tree based menu system. This function covers almost all testing functions.

% S

> library(nesi, first=T)

- > printer() invoke a device driver
- > nesi(X, Y)

> ... interactive use ...

> Show(d < - diff.test(X,Y)) # graphical representation of the result of the testing

> interaction with user ...

- > d #look at numerical result
- > d\$prob > 0.05 #test with significance level 0.05
- > Show(d, tol=pretty(c(0,0.1))) # draw confidence bounds

4. 333397

6. Miscellaneous

6.1. Related functions

Rej	draw a rejection region for continuous distribution
Rej.d	draw a rejection region for discrete distribution
Show.r	show multiple plot of rejection regions

6.2. Objects

A specific object "survival time" is defined in NESI, which has an attribute "status" indicating death, censor(alive) or censored(dropout). Also time series, matrix, and categorical data are recognized.

the **8** - the second are reported by Aquity

Functions for	testing basically returns a list with following components:
statistic	the value of test statistic. Name of the component is that of the
p-value parameter(s)	null distribution. p value under null hypothesis parameter(s) of null distribution
alt	alternative hypothesis, "less", "two", "greater"
method Function for ponents:	(-1, 0, 1 for rep.t.test), or "one" (for chisquare type testings only). name of the method applied r discrete distribution will return a list with following com-
X	vector of integers
prob	probability or cumulative probability on x.

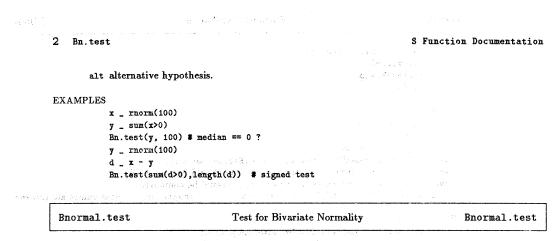
6.3. Availability

Source code is available free of charge for non-commercial use. Easiest way to get the code is to send an electronic mail to "statlib@temper.stat.cmu.edu" or to "statlib@math.keio.ac.jp". The body of the e-mail should be "send nesi from s".

NESI is an experimental program. It has been tested extensively, but the authors take no responsibility for losses or damages resulting directly or indirectly from the use of this program. The authors appreciate of receiving any bug reports or comments from the user. NESI is an evolving system. Over time new features will be introduced, and existing features may be changed. NESI is an enhanced version of NEST on old S system. It took half a year to produce NEST. In due course, various people in our statistics group contributed to this NESI, including Hiroe Tsubaki, Toshiya Takahashi and Rina Fujiwara.

Reduction and states of a

7. NESI function manuals


The followings are on-line manuals for functions in NESI.

- adotas ora sul doloro (1942) in bestañ se en 18 antes ana sello - Couradalacas se ou ensue y

Bn.test 1

7

Binomial	Binomial Distribution		Binomia
L	dbn(n,p,xmin=0,xmax=n)	23. SA	
	pbn(x,n,p)		
	qbn(prob,n,p)		
	rdn(nn,n,p)	·. · ·	
	n de la sugerier de la Barrelle de l Transmission de la Barrelle de la Bar	111 (1194) 1	. 192
ARGUMEN			
	number of trials. probability of success.	and the second	
X	number of success. vector of probabilities. Missing values (MAs) are allowed.		
prob	minimum of x, from where the probabilities should be co	monted.	
Xmin	maximum of x , to where the probabilities should be com	iputed.	
xmax	sample size. If length(nn) is larger than 1, then length	h(nn) rando	m values are returned.
VALUE (1920)		sto fri Lini	
	The function dbn returns a list with components:		
x	vector of integers; max(0, xmin):min(n, xmax)		
prob	vector of probabilities on x.		
ารเอยอาสต์ก็ได้	据增值就是《Gale 6.44版》中的"《Gale 4.56 Constants"中国的"《Gale 4.56 Constants"中国。		
	Other functions return vector of cumulative probabili		function is given by
	sample(rbn), respectively for Binomial distribution. The		
	sample(rbn), respectively for Binomial distribution. The $P_{n,p}(x) = {n \choose x} p^{x}(1-p)$		
EXAMPLES	$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$		
EXAMPLES	$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$		
EXAMPLES	$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$		
EXAMPLES Bn.test	$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$		Bn.tes
[$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$ $dbn(8,0.4)$) ^{n-s}	
[$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$ dbn(8,0.4) Binomial test) ^{n-s}	Bn.teg
[$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$ dbn(8,0.4) Binomial test) ^{n-s}	Bn.teg
[$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$ $Binomial test$ Bn.test(r, n, p=0.5, alt="two")) ^{n-s}	Bn.teg
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x} (1-p)$ $Binomial test$ Bn.test(r, n, p=0.5, alt="two")) ^{n-s}	Bn.teg
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ $Binomial test$ Bn.test(r, n, p=0.5, alt="two") TS number of success.) ^{n-s}	Bn.teg
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials.) ^{n-s}	Bn.teg
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested.) ^{n-s}	Bn.tes
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less) ^{n-s}	Bn.tes
Bn.test ARGUMEN	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p).) ^{n-s}	Bn.tes
Bn.test ARGUMEN I P alt	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p).) ^{n-s}	Bn.tes
Bn.test	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two"). TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p).) ^{n-s}	Bn.teg p) or "greater"(grea
Bn.test	$P_{n,p}(x) = {n \choose x} p^*(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two"). TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p). a list representing the result of binomial test: number of trials.) ^{n-s}	Bn.teg
Bn.test ARGUMEN I P Alternation VALUE	$P_{n,p}(x) = {n \choose x} p^{x}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p). a list representing the result of binomial test: number of trials.) ^{n-s}	Bn.teg
Bn.test ARGUMEN p alt VALUE p P	$P_{n,p}(x) = {n \choose x} p^{*}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two"). TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p). a list representing the result of binomial test: number of trials.) ^{n-s}	Bn.teg
Bn.test ARGUMEN I B B B B B B B B B B B B B B B B B B	$P_{n,p}(x) = {n \choose x} p^{*}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two") TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p). a list representing the result of binomial test: number of trials. prvalue) ^{n-s}	Bn.tes
Bn.test ARGUMEN I B B B B B B B B B B B B B B B B B B	$P_{n,p}(x) = {n \choose x} p^{*}(1-p)$ Binomial test Bn.test(r, n, p=0.5, alt="two"). TS number of success. number of trials. probability of success to be tested. alternative hypothesis, "two"(not equal to p), "less than p). a list representing the result of binomial test: number of trials.) ^{n-s}	Bn.tes

ARGUMENTS

x,y numeric vectors. The x and y must have the same length. A two column matrix can be given to x. MAs are allowed but ignored at calculation.

VALUE

- a list representing the result of bivariate normality test with the following components:
- z vector of differences Z_1, Z_2 and Z_3 among the number of pair of observations which fall in each four quadrants of the x-y plane.

$$Z_{1} = \frac{N_{1} - N_{3}}{\sqrt{n \left(\frac{1}{2} + \frac{1}{\pi} \sin^{-1}R - \frac{1 + R}{\pi}\right)}},$$

$$Z_{2} = \frac{N_{2} - N_{4}}{\sqrt{n \left(\frac{1}{2} - \frac{1}{\pi} \sin^{-1}R - \frac{1 - R}{\pi}\right)}},$$

 \mathbf{and}

and the second and the second s

$$Z_3 = \frac{N_1 + N_3 - \frac{n}{2} - \frac{n}{\pi} \sin^{-1}R}{\sqrt{n \left(\frac{1}{4} - \frac{1}{\pi^2} (\sin^{-1}R)^2 - \frac{1 - R^2}{\pi^2}\right)}}$$

where N_i is the number of observation which fall in the i-th quadrant. The *n* is length(x)=length(y), and *R* is the sample correlation coefficient between x and y. Z_1, Z_2 and Z_3 are asymptotically independent and normally distributed under the hypothesis.

prob vector of p-values (asymptotic). alt alternative hypothesis. Always "two".

method the name of method applied.

lethod the name of method applied.

sigma vector giving standard deviations of each value of z.

REFERENCE

Y.Shibata, Normal Distribution (Seiki-Bunpu), pp. 246-253, Tokyo Daigaku Syuppankai (In Japanese).

Chisq.test 3

Cat	Concatenation of two sets of categorical data	Cat
L	Cat(x, y)	
ARGUMEN'	1 1	1
x,y	categories. Assure filterally	
VALUE	a category which is a concatenation of x and y.	
EXAMPLES	3	
	Cat(Cat.X, Cat.X)	
	n an	
Chisq.t	est Chisquare test for contingency table	Chisq.test
· · · · · · · · · · · · · · · · · · ·	and a second second Second second	
	Chisq.test(x, y, correct=TRUE, difference=FALSE)	
	non-negative. Was are allowed but ignored at calculation. t If TRUE, Yate's continuity correction is applied. This correction is categories.	
	categories. e If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compar	y are vectors, a goodness o y as observed frequencies
	categories. e If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compar	y are vectors, a goodness o y as observed frequencies
differenc VALUE	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: 	y are vectors, a goodness o y as observed frequencies red.
differenc VALUE	categories. e If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compar a list representing the result of chisquare test: a chisquare statistic. table x. If degree of freedom, (levels(x)-1)*(levels(y)-1) or (length)	y are vectors, a goodness o y as observed frequencies red.
differenc VALUE chis	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. 	y are vectors, a goodness o y as observed frequencies red.
differenc VALUE chis d pro	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: iq chisquare statistic. table x. if degree of freedom, (levels(x)-1)*(levels(y)-1) or (lengthed difference=TRUE. be p-value (asymptotic). the name of method applied. 	y are vectors, a goodness o y as observed frequencies red.
differenc VALUE chis d pro metho	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. b p-value (asymptotic). b the name of method applied. 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) whe
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b difference=TRUE. b p-value (asymptotic). b the name of method applied. b alternative hypothesis. Always "one". b This component is TRUE if the test is a goodness of fit test. 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b difference=TRUE. b p-value (asymptotic). b the name of method applied. b alternative hypothesis. Always "one". b This component is TRUE if the test is a goodness of fit test. 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. b p-value (asymptotic). b the name of method applied. b alternative hypothesis. Always "one". b This component is TRUE if the test is a goodness of fit test. 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. a difference=TRUE. b p-value (asymptotic). b the name of method applied. b alternative hypothesis. Always "one". it This component is TRUE if the test is a goodness of fit test. on the test is a chisquare type difference. 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component ce test other than goodnes of
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. tf degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. b p-value (asymptotic). b the name of method applied. tt alternative hypothesis. Always "one". it This component is TRUE if the test is a goodness of fit test. omitted. st This component is TRUE if the test is a chisquare type difference fit test. This component gives dimnames attribute of contingency table. The definition of chisquare statistic when difference=FALSE is 	<pre>y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component ce test other than goodnes of </pre>
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. b degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. b p-value (asymptotic). b the name of method applied. bt alternative hypothesis. Always "one". it This component is TRUE if the test is a goodness of fit test. omitted. st This component is TRUE if the test is a chisquare type difference fit test. st This component gives dimnames attribute of contingency table. 	<pre>y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component ce test other than goodnes of </pre>
differenc VALUE chis d pro metho al goodness.f:	 categories. If TRUE, chisquare type difference test is applied. If both x and fit test is applied, regarding x as expected frequencies and otherwise, frequencies in x and y with the same level are compare a list representing the result of chisquare test: a chisquare statistic. table x. tf degree of freedom, (levels(x)-1)*(levels(y)-1) or (length) difference=TRUE. b p-value (asymptotic). b the name of method applied. tt alternative hypothesis. Always "one". it This component is TRUE if the test is a goodness of fit test. omitted. st This component is TRUE if the test is a chisquare type difference fit test. This component gives dimnames attribute of contingency table. The definition of chisquare statistic when difference=FALSE is 	y are vectors, a goodness o y as observed frequencies red. (x)-1)*(length(y)-1) when Otherwise this component ce test other than goodnes of on) ²

		and the second
SEE	diff.test, indep.test, oneway.test	
EXAMPLE	e e	engen die 1949 - Al
EARMIDE	Chisq.test(Cat.X, Cat.Y)	
		e de la companya de l La companya de la comp
Conf	Confidence bounds	Cor
	Conf(x, tol=pretty(c(0.0,0.1)), alt="two")	
	n an	
ADOUME	тре- тре-	
ARGUME	r a list like that returned by Paired.t.test, (Cortest. Cortest. Sp.test. Rd.to
	Two.t.test, Welch.test, Wil.s.test or Wil.tes	
to	vector of tolerances.	
	t If "two", lower and upper bounds are calculated	. If "greater" or "less", only upper
	lower bounds are calculated, respectively.	
VALUE		
	a list with following components:	
	1 vector of tolerances.	
conf.b	a matrix of confidence bounds. Each row is a vector	or consisting of lower and upper bounds
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	each value of tol.	
sta parameter	t value of the statistic. The actual name is the same s parameters of the distribution. The actual name representing distribution parameters.	e as that of the component of statistic in nes. are those of the components in
motho	t the name of method applied.	
	t alternative hypothesis.	
EXAMPLE	Š.	
	x Two.t.test(X,Y)	
	bd _ Conf(x,tol=seq(0,0.1,len=100))	
	Show(bd) #plot both confidence bounds for the di	fference
	# of locations of X and Y	
	$C = \frac{1}{2} $	
	<pre>bd _ Conf(Cor.test(X, Y), tol=seq(0,1,len=100))</pre>	
	<pre>matplot(bd\$tol, cbind(bd\$conf,bd\$t), type="1") #</pre>	
	<pre>#point estimate of correlation of X and</pre>	Y are plotted.
Cor.tes	t T test for zero correlat	ion Cor.te

- ARGUMENTS
 - x, y numeric vectors. x and y must have the same length. Was are allowed but ignored at calculation. alt alternative hypothesis for zero correlation, "greater" (greater than 0), "less" (less than 0)
 - or "two" (nonzero).

	S Function	Documentation		Сох	.test 5
and the second second		- Littline of the Providence	and the second		
atta 🤞	VALUE	en e			
	VALUE	a list representing the result of Stud	ent's t test.	1. g.t	
	rho	correlation between x and y.	cht s t test.	and the state of the state	
		normalized rho.			
		degree of freedom.			
		p-value (asymptotic).			
		the name of method applied.			
	alt	alternative hypothesis.	ang sa sa sa sabara ng s Na sa sa ng sa	n an the Theory Sola	
			and the second	e e e e e e e e e e e e e e e e e e e	
		The statistic is given by	101.4-1 101.4-1	1	
				a cale to	
			$t = \frac{\sqrt{n-2} \text{ rho}}{\sqrt{1 - rho^2}}$	e de la companya de la	
			$\sqrt{1-rho^2}$		
		where n is length(x)=length(y).			
	EXAMPLES				
		Cor.test(rnorm(10), rnorm(10))			
		この 見知の 名類	2		
an sa an	[<u>ing de la constance de la cons</u> t La constance de la constance de			7
	Cox.test	Cox Mantel test for the equ	uvalence of two surviva	d time objects C	ox.test
	L				
		Cox.test(x, y, alt="two")			Cox.test y), "less" s for x and
			all shows the state		
	ARGUMEN	FS	anger i Branne Alenne i	gian de casa	
and the second s		survival time object like that returned			
	alt	alternative hypothesis, "greater"	(survival function for	x dominates that for y), "less"
and and a start	م به اوپا این این این اهمین ساله	alternative hypothesis, "greater" (survival function for x is dominate y differ)	d by that for y) or "t	wo" (survival functions	for \mathbf{x} and
4		y differ).			
				ere state	
	VALUE		n an	a garanar é in	
		a list representing the result of Cox		N. GRANNER -	
				Sec. March	
		standard deviation. z is normalized	Dy this amount.		
	prob	p-value (asymptotic).	A Start Start	a da terra da la compañía de la comp	
		alternative hypothesis.	434	長田 医酸乙	
	art	attentative hypothesis.	$\forall \sigma \in \mathcal{G}_{\sigma}^{\mathcal{G}} : \mathcal{G}_{\sigma}^{\mathcal{G}}$		
		The statistic $z = u/\text{sigma}$ is calculated	ated from		
		i i i i i i i i i i i i i i i i i i i	aa aa kadha a 19		
4.55		a see the second s	$\dot{u} = d - \sum m[i] a[i].$		
			$u = d - \sum_{g[i]\neq 1} m[i] a[i],$		
		and	11/ 11 TAX 11	(
		$sigma^2 =$	$\sum \frac{m[i](g[i]-m[i])a[i]}{m[i](g[i]-m[i])a[i]}$	(1-a[i])	
		 9	$\sum_{\substack{i:j\neq 1}} \frac{m[i](g[i]-m[i])a[i](j)}{g[i]-1}$,	
		where d is the number of death case	es in v. Survival time	objects x and y are class	sified into

where *a* is the number of death cases in y. Survival time objects x and y are classified into several classes by levels, rev(sort(unique(c(x,y)))). The m[i] is the total number of death cases in the i-th class. The g[i] is the total number of cases with survival time being longer or equal to the i-th level. The a[i] is the ratio to the number g[i] of the number of cases in y with survival time being longer or equal to the i-th level.

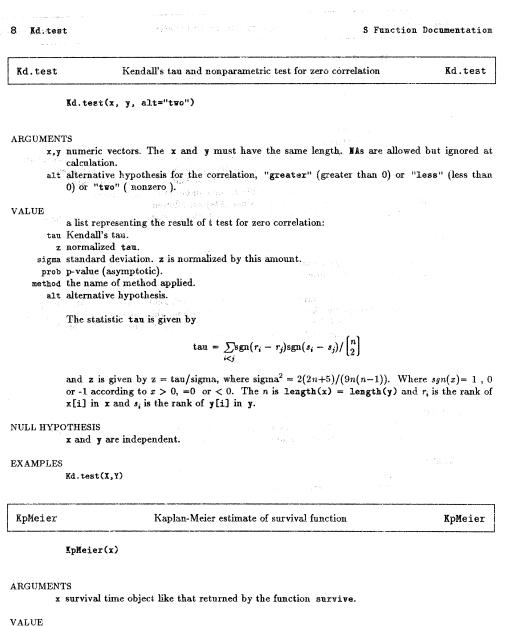
			$(\gamma, \ell_{\gamma, \ell})$	as kardina yang	an ang taon ang taon Taon ang taon	- 73
6 Cox.te	st			n na saka I	5 Function	Documentation
NULL HYP						
	Two survival functi	ons are equivalent	i Partina			
EXAMPLES			1997) A 269 - 19 - 1			
	Cox.test(Surv1,Surv	72)				
			Sector and			
F.test	F te	est for the equalit	y of variances of	two samples		F.test
	F.test(x, y)	an a		an an an an Arranga. An anns		- -
					in de la sector Comencia	
ARGUMEN'	rs numeric vectors. II	s are allowed but	ignored at calcu	lation.	9-	
VALUE	Aumeric rectors. M					
VALOD	a list representing t	he result of F test	with following	components:		
	F value, that is, va	r(x)/var(y).			terita di seconda di s Seconda di seconda di se	
	degree of freedoms,	length(x)-1 and	d length(y)-1.	n series de la composition de la compos		
-	p-value.					
	alternative hypothe the name of method		•			
me onou		na na mana ana ana ana ana ana ana ana a				
NULL HYP	OTHESIS	and the first state of				
	Equal variances of	x and y under no	rmality assumpt	ion.		
			and the second sec			
Fis.test	: Fisher e	xact probability t	est for a 2 by 2	contingency	table	Fis.test

ARGUMENTS

- x,y categories. A 2 by 2 contingency table may be given for x. Categories should be dichotomous. The x and y must have the same length. Table values must be non-negativ
 - MAs are allowed but ignored at calculation.
 - alt alternative hypothesis with respect to the variable, the value of the [1, 1] cell, "less" (negative dependency), "greater (positive dependency) or "two" (any dependency).

VALUE

- A list representing the result of Fisher exact test:
- hyp frequency of the [1,1] cell.
 - m marginal totals with respect to the first column.
 - n marginal totals with respect to the second column.
- k marginal totals with respect to the first row.
- prob p-value. If x and y are given, the p-value is calculated for table(x, y).
- method the name of method applied.
 - alt alternative hypothesis.


Under the following null hypothesis the statistic hyp is distributed as a hypergeometric distribution with parameters m, n and k.

NULL HYPOTHESIS

x and y are conditionally independent when all marginal totals are given.

norse en con diverse sage daga i corre els const incorre d'une e c'in decorre daga Nypergeometric 7 EXAMPLES Fis.test(Fis.X,Fis.Y) Hypergeometric Distribution Hypergeometric Hypergeometric dhyp(m, n, k, xmin=0, xmax=min(m,k)) phyp(x,m,n,k) qhyp(prob,m,n,k) rhyp(nn,m,n,k) ARGUMENTS m number of red balls. n number of black balls. k number of balls drawn without replication from an urn with m red and n black balls. xmin minimum of x, from where hypergeometric probabilities should be computed. xmax maximum of x, to where hypergeometric probabilities should be computed. x vector of values of random variable x, the number of red balls drawn. prob vector of probabilities. Missing values (NAs) are allowed. nn sample size. If length(nn) is larger than 1, then length(nn) random numbers are returned. VALUE The function dhyp returns a list with components: x vector of integers; max(0,k-n,xmin):min(m,k,xmax). prob vector of probabilities on x. Other functions return vector of cumulative probability(phyp), quantile (qhyp), or random sample(rhyp) for the Hypergeometric distribution, which is explained by Urn Model with m red and a black balls. Any sequence of k drawings resulting in k-x black and x red balls has the same probability. The probability function is given by $P_{m,n,k}(x) = \frac{\binom{m}{x}\binom{n}{k-x}}{\binom{m+n}{k}}$ SIDE EFFECTS The function rhyp causes creation of the dataset .Random.seed if it does not exist in working directory, otherwise the value is updated. EXAMPLES dhyp(4,6,7) rhyp(10,4,7,6) #sample of 10

าคณ ช่องไป สระการ การเปลี่มีสาวัย แก่เลื่อง กลุ่มหากการเหลือจะไปไป ครั้งสระเมติดตั้งการเปลาไปได้ การเปลาการเป 1971 - และแสบบารกระสรอง การเหลือสาก ได้ไป 1971 1971 สุดตัวเป็น เป็นสร้างสาว เพราะพรรรษที่ (ค.ศ. 2017) การเปลาการ

survival function object, that is, a list with following components:

time time vector.

survive.rate vector giving the survive rate for each value of time.

stderr vector giving the standard error for each value of time.

method the name of method applied.

The survival function changes its value at time when a death case occurs. For later convenience, both previous and updated rates are in the component survive.rate. The

Kr.test 9

പം പുക്കാന് പ്രം corresponding values of time are .99999*t and t for the time t of death. Before calculation of the statistic, the values of x are sorted and ties are odered according to the order of levels 1, 2 or 3 of the attribute "status". The rate is cumulative product of ratios of the number of alives to the previous number of alives at each time of death. EXAMPLES s_ KpMeier(Surv1) Show(s) #show survival function matplot(s\$time, s\$survive.rate, type="1") # same as above Kruskal-Wallis rank test Kr.test Kr.test Kr.test(data, level) ARGUMENTS data data vector. A data matrix can be given. In this case, the second axis is regarded as corresponding the level, so that the following level should be omitted. MAs are allowed but ignored at calculation.

level integer vector giving the level for each value of data. WAs are allowed but ignored at calculation.

VALUE

a list representing the result of Kruskal-Wallis rank test:

- chisq Kruskal-Wallis statistic.
- df degree of freedom, the number of levels k 1.
- prob p-value (asymptotic).
- method the name of method applied.
- method the hame of method applied.
- alt alternative hypothesis.

The test is a oneway analysis of variance for the case when normality assumption might be violated.

The statistic chisq is currently defined as

chisq =
$$\frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{r_i^2}{n_i} - 3(n+1)$$

the second second second second

where r_i is the rank sum of data with level *i*, the n_i is the number of such observations, and the *n* is the total number of observations.

NULL HYPOTHESIS No factor effects.

EXAMPLES

Kr.test(Data,Level)

10 Lifetable

S Function Documentation

L	Le Estimation of survival function by lifetable method Lifetable
angalan sal Ma	
전에 같이 있을 것이다. 	Lifetable(x, breaks=5)
V MARINA (1942) - 281	Parties of the first of the design of the second of the se
ARGUMEN	
	survival time object like that returned by the function survive.
	either a vector of breakpoints or the number of equal-width intervals into which the values of
	x should be cut. The first interval always starts from 0.
VALUE	
	survival function object, that is, a list with following components:
	time vector
survive.rate	vector of survival rates at each intervals time[i-1] to time[i] i=1, 2,, where time[0] is
	assumed to be 0.
	vector of standard errors at each intervals.
method	the name of method applied
	survive.rate is cumulative product of instantaneous survival rates on each time intervals.
	Instantaneous survival rate is defined by $1-d/n$, where d is the number of death cases and
	the <i>n</i> is the effective number of cases; (the number of alives at the beginning of the time
	interval) - (the number of censored cases, (and number of alves at the beginning of the time interval)/2.
NOTE	
	TER 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	II breakpoints are given for breaks, the right end of intervals should be given, since the
	If breakpoints are given for breaks, the right end of intervals should be given, since the values of x are cut into left open and right closed intervals. For example, if x takes only
	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals $[0, 3]$ and $[4, 7]$, then a simplest way is to give $c(3,7)$ to breaks.
	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals $[0, 3]$ and $[4, 7]$, then a simplest way is to give $c(3,7)$ to breaks.
EXAMPLES	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals $[0, 3]$ and $[4, 7]$, then a simplest way is to give $c(3,7)$ to breaks.
EXAMPLES	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals $[0, 3]$ and $[4, 7]$, then a simplest way is to give $c(3,7)$ to breaks.
EXAMPLES	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals $[0, 3]$ and $[4, 7]$, then a simplest way is to give $c(3,7)$ to breaks.
EXAMPLES Logrank.	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi)
,	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test
r	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y)</pre>
r	values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test
Logrank.	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y)</pre>
Logrank.	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS</pre>
Logrank.	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y)</pre>
Logrank.	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive.</pre>
Logrank.	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive.</pre>
Logrank. ARGUMEN x,y VALUE	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive.</pre>
Logrank. ARGUMEN x,y VALUE chisq	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive. a list representing the result of Logrank test:</pre>
Logrank. ARGUMEN X,y VALUE chisq df	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive. a list representing the result of Logrank test: Logrank statistic.</pre>
Logrank. ARGUMEN X,y VALUE chisq df prob	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive. a list representing the result of Logrank test: Logrank statistic. degree of freedom 1.</pre>
Logrank. ARGUMEN x,y VALUE chisq df prob method	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive. a list representing the result of Logrank test: Logrank statistic. degree of freedom 1. p-value (asymptotic).</pre>
Logrank. ARGUMEN X,ÿ VALUE chisq df prob method	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Surv1) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) IS survival time objects like that returned by the function survive. a list representing the result of Logrank test: Logrank statistic. degree of freedom 1. p-value (asymptotic). the name of method applied. alternative hypothesis.</pre>
Logrank. ARGUMEN x,y VALUE chisq df prob method	<pre>values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and which should be cut into intervals [0, 3] and [4, 7], then a simplest way is to give c(3,7) to breaks. Lifetable(Survi) test Logrank test for the equivalence of two survival time objects Logrank.test Logrank.test(x, y) TS survival time objects like that returned by the function survive. a list representing the result of Logrank test: Logrank statistic. degree of freedom 1. p-value (asymptotic). the name of method applied.</pre>

MaHae.test 11

S Function Documentation

chisq =
$$\frac{(n_x - e_x)^2}{e_x} + \frac{(n_y - e_y)^2}{e_y}$$

where n_x and n_y are the number of observed death cases respectively in x and y and e_x and e_y are expected number of death cases under the hypothesis.

T internet	ULL HYPC	THESIS Two survival functions are equivalent.	the star of the
	EXAMPLES	Logrank.test(Surv1,Surv2)	
	MaHae.te	st Mantel-Haenszel test	MaHae.test
tan ing	t¥ona g Olusi,	HaHae.test(x,y,strata,correct=T)	n an an tair tair. An
	strata	dichotomous categories. A 2 by 2 by s table (array) may be given for x . of different strata. vector giving the number which identifies stratum to which each value This argument can be omitted when a 2 by 2 by s table is given for x . If TRUE, continuity correction is applied.	
	df prob method	a list representing the result of Mantel-Haenszel test: Mantel-Haenszel statistic. degree of freedom 1. p-value (asymptotic). the name of method applied. alternative hypothesis. Always "one".	
		If two categories x , y and strata are given, a 2 by 2 by s array is chisquare statistic chisq is calculated based on the array as	s first created. The

chisq =
$$\left| \left| \sum_{n_{11h}} \frac{\sum_{n_{1.h}} n_{.1h}}{n_{..h}} \right| - \text{correction} \right|^2 / \sum_{n_{1.h}} n_{2.h} n_{1.h} n_{.2h}$$

where n_{ijh} is the [i,j,h] element of the 2 by 2 by s array.

NULL HYPOTHESIS

x and y are conditionally independent when all marginal totals are given.

EXAMPLES

MaHae.test(Array) # 2 x 2 x s table (array) MaHae.test(Fis.X, Fis.Y, Strata)

$\rightarrow i \odot O O D \otimes i B$

and an an an ann an an an an an ann an ann an Arrien an Ar Arrien an Ar Arrien an Ar

Mc.test	McNemar test for the symmetry of contingency table Mc.test
	<pre>Hc.test(x, y, correct=T)</pre>
ARGUMENT	rs
x,y	categories. A square table may be given for x. The x and y must have the same length and
	the same number m of levels. Table value must be non-negative. Has are allowed bu
	ignored at calculation.
correct	If TRUE, continuity correction is applied if x and y are dichotomous or if a 2 by 2 table i given for x .
	RIACUTOR Y.
VALUE	an a
	a list representing the result of McNemar test:
chisq	McNemar statistic. If both x and y are given, the statistic is calculated based on the tabl
	table (x, y) . Otherwise, the statistic is calculated based on the given table x.
	degree of freedom $m(m-1)/2$.
	p-value (asymptotic). the name of method applied.
	the name of method applied. alternative hypothesis. Always "one".
a10	
	McNemar statistic is given by (Strate as well as well as a statistic second state as a st
·····	chisq = $\sum_{i \leq j} \frac{(n_{ij} - n_{ji} - \text{correct})^2}{n_{ij} + n_{ji}}$
1977 (M.) - 4262) 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977	$\widehat{i}_{ij} = \sum_{i < j_{i} < j_{i} < j_{i} < j_{i} < n_{i} < n_{i} + n_{ji}} n_{ij} + n_{ji}$
	and a general sector of the
	where n_{ij} is the [i,j] element of table(x, y).
NULL HYPO	
NULLHIP	Matrix of cell probabilities is symmetric. This means that variables x and y ar
	exchangeable. If the table is 2 by 2 and one of variables x or y can be considered as
240 V (8 - 5 - 7 - 8)	response variable, then the test is regarded as a significance test of effects of explanator
alinar bak ali inang	which have a second sec
	· · · · · · · · · · · · · · · · · · ·
EXAMPLES	n an de l'artige de la faite en nel a constant de la faite de la constant de la faite de la faite de la gran d La faite de la constant de la constant de la faite de la constant de la faite de la constant de la faite de la c
	Mc.test(Mc.X, Mc.Y) Da Antice entry captor states a first dependence of an of the

mrbeta(n, shape1=0, shape2=1, refresh=F)
mrcauchy(n, location=0, scale=1, refresh=F)
mrchisq(n, df, refresh=F)
mrexp(n, refresh=F) mrexp(n, refresh=F) mrexp(n, retresh=F)
mrf(n, df1, df2, refresh=F)
mrgamma(n, shape, refresh=F) mrt(n, df, refresh=F) mrt(n, d1, reliesh=r)
mrunif(n, min = 0, max = 1, int = F, refresh = F)

rije (1997), 1993) ar 18 1. oktober 1993) ar 1994 je do politike na skoleter na strene od en en glande ar en granne.

Normal.test 13 S Function Documentation 18.80 Jenned 1 ARGUMENTS n sample size. If length(n) is larger than 1, then length(n) random numbers are returned. int If TRUE, mrunif returns vector of integer random numbers between 0 and 2**32-1, else returns uniform random numbers between min and max. refresh If TRUE, the seed .HRDseed for M-sequence generation on working directory is updated and a new M-sequence generation is started from that seed. See documentation for the corresponding standard random number generation function for Press (1997) 23 (1997) other arguments. VALUE vector of random numbers. Each M-sequence can be identified by two values of .MEDseed. The first value is the initial value for an internal congruence routine which derives a table for M-sequence generation. The last value is the number of M-sequence random numbers generated after creation of the new table. Successive random numbers are equivalent to a long sample from the underlying uniform distribution unless refresh = FALSE. It allows the long-term properties of the generator to be maintained. If refresh = TRUE, the first value of .MRDseed is updated by invoking once the congruence routine and the last value is set as 0. There is a useful technique for reproducing random sample in later work. Just copy .HRDseed before generating the sample for the first time, and then restore it when the sample is to be reproduced. To save computation time, it is recommeded to refresh .HRDseed before copying .MRDseed for later use. SIDE EFFECT The functions cause creation of the dataset .MRDseed if it does not exist on the working directory, otherwise the value is updated. NOTE

This function will load the C object code "mrand.o" through library.dynam("nesi", "mrand.o").

SOURCE

The original C code was written by K.Kaneko and M.Fushimi, Tokyo University.

REFERENCE

M.Fushimi, Random Numbers (RANSU), Tokyo Daigaku Syuppan, 1989 (In Japanese).

	Normal.test	Test for Normality	Normal.test
1.1	L		

Wormal.test(x)

ARGUMENTS

 $\gamma_{1} \stackrel{e^{-1}}{\rightarrow} \gamma_{1} \downarrow_{1} \downarrow_{2} \stackrel{e^{-1}}{\rightarrow} \gamma_{2}$

x numeric vector. Missing value (IAs) are allowed but ignored at calculation.

VALUE

a list representing the result of chisquare type goodness of fit of normality test with following components:

chisq chisqure statistic.

sq chisque and and a firedom. The end of the trade state of the state

14 Normal.test

S Function Documentation

prob p-value (asymptotic).

method the name of method applied.

alt alternative hypothesis.

dimnames a list representing dimnames of the contingency table. dimnames [[2]] shows the definition of classes.

Observed frequencies are calculated from x and expected frequencies are from normal distribution with the mean mean(x) and the standard deviation sqrt(var(x)), and Chisq.test called with the option difference=T. The number k of the classes is chosen as ceiling(log(length(x), base=2) +1) and each class is chosen so as to almost have the same probability under the normal distribution.

NULL HYPOTHESIS

x is normally distributed.

Oneway.cov.test Oneway analysis of variance with covariate (ANOCOVA) Oneway.cov.test

Oneway.cov.test(data,level,block,cov,tol=0.05)

ARGUMENTS

- data data vector. WAs are allowed but ignored at calculation.
 - cov vector giving the value of covariate for each value of data. MAs are allowed but ignored at calculation.

level vector giving the level for each value of data. Was are allowed but ignored at calculation.

- block vector giving the block number for each value of data. This argument may be given only when the design is a blocked design. TAs are allowed but ignored at calculation.
 - tol tolerance for the significance of covariate.

VALUE

a list representing the result of ANOCOVA:

- SS vector giving decomposed values of total sum of squares.
- cov the result of t-test for the significance of covariate. This component further has following subcomponents:
 - df degree of freedom.
 - t t statistic.

prob p-value.

alt alternative hypothesis. Always "two", that is, two sided.

between the result of F-test for the significance of difference of levels, that is, the significance of "between variance". This component further has following subcomponents:

df degree of freedom.

- f F statistic.
- prob p-value.

alt alternative hypothesis. Always "one".

block the result of F-test for the significance of block effect. This component exists only when the

- argument block is given. This component further has following subcomponents:
 - df degree of freedom.
 - f F statistic.
 - prob p-value.

alt alternative hypothesis. Always "one".

method the name of method applied

EXAMPLES

Oneway.cov.test(Data, Level, Block, Cov)

STRAME OF

	Oneway.test	Oneway analysis of variance (ANOVA)	Oneway.test
1			

Oneway.test(data, level, block)

ARGUMENTS.

- data data vector. A data matrix can be given by omitting other arguments. In this case, the first axis stands for repetition and the second for levels. WAs are allowed but ignored at calculation.
- level vector giving the level of controllable factor corresponding to each value of data. MAs are allowed but ignored at calculation.
- block vector giving the block number to which each value of data belongs. This argument may be given only for the case when the design is a blocked design. HAs are allowed but ignored at calculation. t in the state of the second sec

Acres .

VALUE

- a list representing the result of ANOVA:
- SS vector giving decomposed values of total sum of squares.

between the result of F-test for the significance of difference of levels, that is, significance of "between variance". This component further has following subcomponents:

- df degree of freedom.
- f F statistic.
- prob p-value.
- alt alternative hypothesis. Always "one", that is, one sided.
- block result of F-test for the significance of block effects. This component exists only when the
- argument block is given. This component further has following subcomponents:
 - df degree of freedom.
- - f F statistic.
 - prob p-value.
 - alt alternative hypothesis. Always "two", that is, two sided
 - method the name of method applied

EXAMPLES

Oneway.test(Data, Level, Block)

	Q.test	Generalized Cochran Q test	Q.test
- 1			

Q.test(data, level, block)

ARGUMENTS

data data vector. WAs are allowed but ignored at calculation.

level vector giving the level of each value of data. WAs are allowed but ignored at calculation. block vector giving the block number to which each value of data belongs. The design should be a completely randomized block design, that is, the number of observations in data is the same for every combination of level and block. SAs are allowed but ignored at calculation.

Q.test 15

16 Q.test

S Function Documentation

is seen more actions a

VALUE

a list representing the result of generalized Chochran's Q test:

- chisq generalized Cochran's Q statistic.
- df degree of freedom, the number of levels k 1.
- prob p-value (asymptotic).
- method the name of method applied.
- alt alternative hypothesis.

The test is equivalent to the Friedman test if no ties exist in any block. If data is dichotomous category, then the test is equivalent to Chochran's Q.

The chisquare statistic chisq is defined as

12
chisq = $\frac{\frac{12}{bk(k+1)}\sum r_i^2 - 3b(k+1)}{\sum r_i^2 - 3b(k+1)}$
chisq = $\frac{\sum (d_{ij}^3 - d_{ij})}{\sum (d_{ij}^3 - d_{ij})}$
$1 - \frac{bk(k^2-1)}{bk(k^2-1)}$

where d_{ij} is the number of ties with the i-th smallest value in the block j, r_i is the rank sum of data with the i-th level. The b is the number of blocks.

NULL HYPOTHESIS

No factor effects in any block under normality assumption.

Q.test(category(Data),Level,Block)

Rej	Graphical Representation of Rejection Region Rej
en e	Rej(name, s,, main="", sub, xlab="", ylab, level=0.05, alt="greater") Rej.d(name, s,, main="",sub,xlab="",ylab,level=0.05,alt="greater",exact=T)
ARGUM	ENTS
n	ame character string giving the name of the distribution. Currently "t", "norm", "f" or "chisq" can
	be specified.
	s vector of values of the statistic distributed as the name distribution under the nul
andri shifin	hypothesis. Missing values (IAs) are allowed but ignored.
	parameters to the distribution name if necessary. These are passed through qname or pname
	functions.
π	ain character string for the main title of graphical representation.
	and abcornetar string for the sub title of graphical representation. If missing, significance level and

sub character string for the sub title of graphical representation. If missing, significance level and the value of distribution parameters are drawn.

- xlab x axis label
- ylab y axis label. If missing the name of the distribution is used.
- level significance level between 0 and 1.
 - alt alternative hypothesis. If "two", two sided rejection region is shaded. If "greater" or "less", right or left sided rejection region is respectively shaded.
- exact If TRUE, exact proportion given by level of the barplot of the (discrete) distribution will be shaded.

SIDE EFFECTS

Density function is drawn on a plot with shaded rejection region. The value of statistic is

Rep.t.test 17

plotted by "*" below the curve. If length(s) > 1, values of the statistic are plotted with sequence numbers. Values outside of the range are plotted with "o". Rej is for continuous distribution and Rej.d is for discrete distribution.

Graphical parameters may also be supplied as arguments to this function (see par).

NOTE

This function is usually invoked by the function Show.

EXAMPLES

Rej("t",1.2,df=4) **#** Draw rejection region of t test with degree of freedom 4. Rej("f",1.5,df1=4,df2=8) Rej("norm",1.0,alt="two")

 Rej.d
 Rej.d

 Rep.t.test
 Repeated t tests based on sample mean and variance
 Rep.t.test

Rep.t.test(mean, n, var, df, alt)

ARGUMENTS

mean vector of sample means. WAs are allowed but ignored at calculation.

- n vector giving the sample size for each value of mean. If the length(n) is 1, then all sizes are assumed to be the same.
 - var common variance.
 - df degree of freedom. Default is sum(n) length(mean).
 - alt square matrix with the same number of columns or rows as the length of mean. The lower triangle part of this matrix specifies alternative hypothesis for every combination of mean: 1(greater sided), O(two sided), -1(less sided) or **TA**(no testing). Default is a 0 matrix.

VALUE

a list representing the result of repeated t test with the common variance var:

- prob matrix. The [ij] element of the lower triangular of this matrix gives p-value of the t test for the pair mean[i] and mean[j] as specified by the given for argument alt. Any other elements are MAS.
 - t matrix. The lower triangular element gives the value of t statistic for each test. Any other elements are HAS.
 - alt the same matrix as the argument alt.
- df common degree of freedom.
- sigma common standard deviation. The component t is normalized by this amount.
- method the name of method applied
- alt alternative hypothesis

See rep.t.test.

EXAMPLES Automatic States of Providence of the States of Providence of the States of Providence of P

18 Show

S Function Documentation

Show rejection region, confidence bounds or survival function Show Show Show(x, level=0.05, main, alt, tol, exact=T, child=F) ARGUMENTS x a list like that returned by one of various testing functions including rep.t.test, survival analysis functions survive.fue, RyMeier and Lifetable and the function Conf. Atomic components t,z,chisq or f are recognized as values of such test statistics. Components cov, between and block are recognized as results of Oneway test (ANOVA) or Oneway.cov.test (ANOCOVA). level significance level, the size of rejection region. main character string for the main title. This is valid only for the case of single plot. If the argument is omitted or multiple plot is required, an appropriate title is generated from the component method of x alt alternative hypothesis. If "two", rejection region is two sided, and right sided or left sided according to "greater" or "less". This is valid only for the case of single plot. For components chisq or f, alt is always "greater", otherwise the value of components alt of x is used. tol if a vector of tolerances is given, confidence bounds will be calculated and plotted from the result of testings. exact If TRUE, exact proportion of the barplot is shaded according to level. child If FALSE multiple plot is turned off. This flag is used for recursive call of Show. SIDE EFFECTS If the component time is found in x, survival function will be drawn. If the component conf. bd is found, or the argument tol is given and x the result of a testing, then confidence bound will be drawn. If one of atomic components t,z,chisq or f is found in x, corresponding rejection region is shaded. Otherwise, components cov, between or block will be searched. If found, corresponding rejection regions are plotted. Graphical parameters may also be supplied as arguments to this function (see par). EXAMPLES Show(survive.fun(Surv1)) #survival function Show(Paired.t.test(X,Y), tol=pretty(c(0,0.1))) #confidence bounds Show(tt \leftarrow Paired.t.test(x,y)) #save numerical result and have a #graphical representation tt # check the numerical result ્ર પછેલ zz -Oneway.cov.test(Data,Level,Block,Cov) # oneway covariance test Show(zz) # graphical representation Sp.test Spearman's rank correlation and nonparametric test for zero correlation Sp.test

Sp.test(x, y, alt="two")

ARGUMENTS

x, y vectors. The x and y must have the same length n. WAs are allowed but ignored at calculation.

StMw.test 19

alt alternative hypothesis for the correlation, "greater" (greater than 0) or "less" (less than 0) or "two" (nonzero).

VALUE

a list representing the result of Spearman's rank correlation test:

- rho correlation between x and y.
- 2 normalized rho.
- n number of observation.
- prob p-value (asymptotic).
- method the name of method applied.
- alt alternative hypothesis.

The Spearman's rank correlation rho is defined as

sec.

rho =
$$1 - \frac{6}{n^3 - n} \sum (r_i - s_i)^2$$

where r_i is the rank of x[i] in x and s_i is the rank of y[i] in y. The normalized rho is

$$\mathbf{z} = \sqrt{(n-1)} \left[\text{rho} - \frac{6}{n^3 - n} \right]$$

NULL HYPOTHESIS

x and y are independent.

EXAMPLES

Sp.test(X, Y)

StMw.test Stuart-Maxwell test of the marginal homogeneity of a contingency table StMw.test

StMw.test(x, y, A=diag(1, m-1, m))

ARGUMENTS

- x, y categories. A square contingency table may be given for x. The length and the level of x and y should be the same. Table values must be non-negative. WAs are allowed but ignored at calculation.
 - A a weight matrix for the generalized Stuart-Maxwell statistics. Default is diag(1, m-1, m) where m is the number of levels.

VALUE

a list representing the result of Stuart Maxwell test:

- chisq Stuart Maxwell statistic. If x and y are given, the statistic is calculated for the table(x,y). df degree of freedom, m-1.
- prob p-value (asymptotic).

method the name of method applied.

alt alternative hypothesis. Always "one".

The test is for the homogeneity of row and column marginal distributions of the contingency table.

20 ⁸ StHw.	est S Function Documentation				
14 - 12 - 1 1 - 18	The discussion statistic chief is defined on	n provenský statel statel Pr			
	The chisquare statistic chisq is defined as				
	$chisq = (Ad)^t (AVA)$	$(1)^{-1}(Ad)$			
	where $V=(v_{ij})$ is the m by m matrix with $v_{ii}=n_i+n_j$ d is the vector with $d_i=n_i-n_j$. The weight matrix $d_i=n_i+n_j$.				
NULL HYPO	DTHESIS Marginal distributions of \mathbf{x} and \mathbf{y} are the same.	el chizze - zano 7 mili	nd to a la		
REFERENC	Е				
n edgitta is	Fleiss, J.L. (1988), Stuart-Maxwell test, Encycloped Eds. S. Kotz and N. L. Johnson, John Wiley.	a of Statistical Sciences	, Vol 9, pp.32-35,		
EXAMPLES			+ house		
	StMw.test(Vision)	e with the contract of			
T.test	T test for location	1 68 2-49 8 -81	T.test		
L					
	T.test(x, y, alt="two")				
ARGUMEN'	P				
x,y	numeric vectors. The x and y must have the same is applied. HAs are allowed but ignored at calculation alternative hypothesis, "greater" (location of x (location of x is less than y) or "two" (locations of	n. is greater than that	of y) or "less"		
VALUE	a list representing the result of paired t test:				
t	a list representing the result of paired t test: paired t statistic.				
	standard deviation. t is normalized by this amount.				
đf	degree of freedom.				
	p-value.	ار بند. اوراندا ادار اردا دار ورادی ا			
	the name of method applied.				
alt	alternative hypothesis.				
	Paired t statistic is given by				
	$\sqrt{n} \overline{d}$				
	$t = \frac{\sqrt{n} \vec{a}}{\text{sigma}}$	• The structure of the state of the			
anta en 1995 este torres. En la constante de la constante	 State of the state of the state				
	where \overline{d} and signa are mean and standard deviation	n of the difference x-y.			
NULL HYPO	TTHESIS	ant in the second s			
NULLATIN	Locations of x and y are equal under normality assu	imption.			
		•	an an Albertan Barrana An Albertan Barrana		
EXAMPLES		ana ang taong ang taong tao. Atao ang taong t			
	T.test(X, Y). he we dog to show the Makari Look with				

1999年1月1日(1999年1月) 1999年1月1日(1999年1月) 1999年1月1日(1999年1月)

and the second second second second second second

S Function Documentation Two sample t test Two.t.test Two.t.test Two.t.test(x, y, alt="two") ARGUMENTS x, y numeric vectors. MAs are allowed but ignored at calculation. alt alternative hypothesis, "greater" (location of x is greater than that of y) or "less" (location of x is less than that of y) or "two" (two locations of x and y are different). VALUE a list representing with the following components: t two sample t test statistic. sigma standard deviation. t is normalized by this amount. af degree of freedom. prob p-value. method the name of method applied. alt alternative hypothesis. Unopaired two sample t statistic is given by $t = rac{(\overline{x} - \overline{y})^2}{\mathrm{sigma}}$ and be advected in the second states () as where sigma² = $\left(\frac{1}{n_x} + \frac{1}{n_y}\right) \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 1}$, and s_x^2 and s_y^2 are unbiased estimate of variances of x and y, respectively. NULL HYPOTHESIS There is no difference between locations of x and y. See T.test EXAMPLES Two.t.test(X, Y) Welch.test Welch.test Aspin-Welch test

Welch.test 21

Welch.test(x, y, alt="two")

ARGUMENTS

x, y numeric vectors. MAs are allowed but ignored at calculation. alt alternative hypothesis, "greater" (location of x is greater than that of y) or "less" (location of x is less than that of y) or "two" (two locations of x and y are different).

VALUE

a list representing the result of Aspin-Welch test for the difference of locations:

22 Welch.test

S Function Documentation

238. y. ju

19.29

t Aspin-Welch statistic.

- sigma standard deviation. The t is normalized by this amount.
- df (continuous) approximate degree of freedom.
- prob p-value (approximate).
- method the name of method applied.
 - alt alternative hypothesis.

This test is a t test of the equality of location of two samples for the case when equal variance may be violated.

The t statistic is defined as

where

 $t = (\overline{x} - \overline{y}) / sigma$ $\text{sigma}^2 = \frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}.$

The approximate degree of freedom df is

df =
$$\frac{1}{\frac{c^2}{n_x - 1} + \frac{(1 - c)^2}{n_y - 1}}$$

where starts a manual of the set

$$c = \frac{s_x^2}{n_x} \left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y} \right).$$

NULL HYPOTHESIS

There is no difference between locations of x and y under normality assumption.

EXAMPLES

Welch.test(X, Y)

Wil.s.test	Wilcoxon signed rank sum test	and and a second se	Wil.s.test

Wil.s.test(x, y, alt="two", correct=T)

ARGUMENTS

x, y numeric vectors. The x and y must have the same length. WAs are allowed but ignored at calculation.

alt alternative hypothesis, "greater" (location of x is greater than that of y) or "less" (location of x is less than that of y) or "two" (two locations of z and y are different).

correct If TRUE, continuity correction is applied.

VALUE

a list representing the result of Wilcoxon signed rank sum test:

z normalized signed rank sum.

sigma standard deviation. z is normalized by this amount.

prob p-value (asymptotic).

n in the state of the state of

	Documentation	Wil.test	23
	the name of method applied. alternative hypothesis. The Wilcoxon signed test statistic is currently defined	an that y 1 as	22
	$z = \left(r^+ - \frac{n(n+1)}{4}\right) / \text{ sigma}$		
	where sigma ² = $n(n+1)(2n+1)/24$ and r^+ is the rank sum of abs(x-y) with	x-y>0.	
NULL HYPC	OTHESIS The median of x-y is 0.		
EXAMPLES			
	Wil.s.test(X, Y)		
Wil.test	Wilcoxon U test, Test for the equivalence of two survival time objects	Wil.tes	;t
	Wil.test(x, y, alt="two", exact=T)		
ARGUMEN	D (1)		
exact	numeric vectors, or survival time objects like that returned by the function s alternative hypothesis, "greater" (location of x is greater than that of y, for x dominates that for y) or "less" (location of x is less than that of y, for x is dominated by than that for y) or "two" (two locations are differ functions for x and y are different). If exact is TRUE and x and y are numeric vectors, the exact p-value will be as both length(x) and length(y) are less than 50 and no ties exist in re Otherwise normal approximations is applied to obtain the p-value. If numeric vectors are given, Wilcoxon U statistic is calculated. Other Wilcoxon test statistic for the equivalence of two survival time data is calculated known as "Gehan's Generalized test statistic".	survival funct survival funct ent, two survi e calculated as anks of x and wise, generalin culated. It is a	ion ival far y. zed also
sigma prob method	component is $\forall i l$ and the value is a simple rank sum of x . standard deviation. z is normalized by this amount. p-value. the name of method applied. alternative hypothesis.		
	The Wilcoxon U statistic is defined as		
	$z = \frac{U - n_x(n_x + n_y + 1)/2 + \text{correction}}{\text{sigma}}$		
all and the second second	where signa is given by		
	$sigma^2 = n_x n_y (n_x + n_y + 1)/12$		
an a	and U is the sum of rank(c(x,y)) along with longer vector x or y.		
	an a		

24 Wil.test S Function Documentation Generalized Wilcoxon test statistic is calculated as $z = \sum u_{ij} / \text{sigma}$ where sigma is sigma² = $\frac{n_x n_y}{(n_x + n_y)(n_x + n_y - 1)} \sum_i (\sum_j v_{ij})^2$ and u_{ij} is -1, 1 or 0 according to 1. x[i]<y[j] or x[i]=y[j] and y[j] has status 2 or 3, i.e. censored. 2. x[i]>y[j] or x[i]=y[j] and x[i] has status 2 or 3, i.e. censored. 3. otherwise. The v_{ij} is defined as similarly as u_{ij} by putting x=y=c(x,y). NULL HYPOTHESIS Two locations are equal (U test) or Survival functions for x and y are equivalent (Genelarized Wilcoxon). EXAMPLES Wil.test(Surv1,Surv2) hear and Wilcoxon Distribution of Wilcoxon rank sum statistic Wilcoxon dwil(m, n, xmin, xmax, freq=F) pwil(x, m ,n) qwil(prob, m, n) rwil(nn, m, n) ARGUMENTS m number of observations from treatment group. n number of observations from contrast group. x vector of cumulative probability on each value of x will be calculated. min minimum of x, from where the probabilities should be computed. xmax maximum of x, to where the probabilities should be computed. freq If TRUE, the theoretical frequencies are returned, instead of probabilities. x vector of cumulative probability on each value of x will be calculated. prob vector of probabilities. Missing values(MAs) are allowed. nn sample size. If length(nn) is greater than 1, then length(nn) random numbers are returned. VALUE The function dbn returns a list with the following components: x vector of integers; max(m*(m+1)/2, xmin):min(m*(2*n+m+1)/2: xmax). prob vector of probabilities on x. Other functions return vector of cumulative probability(pwil), quantile(qwil), or random sample(rwil) for the rank sum distribution. NOTE This function will load the C object "mw.o" through library.dynam("nesi", "mw.o"). SOURCE The original C code is written by A.R.Wilks at Bell Labs.

more a vice e Sectorization	หมู่มากการสระบทศพราก สามารถบางการการสราก 1999 - ศักรณ์สังหาการสะบาที่ได้เป็นเป็นเหตุการที่เรียง (พ.ศ. การสรมมะ)/พ.ศ. ที่สามารถการการการการการกา 1991 - การการการการการการการการการการการการการก
S Function	a Documentation as.survive 25
EXAMPLES	State of the second
$v_{i} = \sqrt{2} T$	dwil(4,6) * all probabilities of Wilcoxon rank sum statistics with # m=4 and n=6
	<pre>pwil(24,4,6) # the probability of x<=24</pre>
Z.test	Z test for the equivalence of pair of survival time objects Z.test
	Z.test(x, y, alt="two", breaks=5)
lin i din artico	Diversion (1), and the state of
ADOUNDN	
ARGUMEN	survival time objects, like that returned by the function survive.
	alternative hypothesis, "greater" (survival function for x dominates that for y) or "less"
	(survival function for x is dominated by that for y) or "two" (two survival functions for x
State branks	and y differ). either a vector of breakpoints or the number of equal-width intervals into which x and y
DIGUND	should be cut.
VALUE	This function calls Titletable to abtain annula functions for a set of an 17 foot statistic to
	This function calls Lifetable to obtain survival functions for x and y , and Z test statistic is calculated based on those two functions. A list representing the result of Z test:
	time vector.
	vector giving Z statistic for each value of time.
	vector giving p-value for each value of time. the name of method applied.
	alternative hypothesis.
	The Z statistic is defined as $S[i] = S[i]$
a 1660) Aohiar a	$\mathbf{z}[i] = \frac{S_{s}[i] - S_{y}[i]}{(s_{s}[i]^{2} + s_{y}[i]^{2})^{k}}$
	where S_x and S_y are survival rates and s_x and s_y are standard errors of S_x and S_y , with respect to x and y.
NULL HYP	THEFT
nonnin	Two survival functions are equivalent.
EXAMPLES	
	Z.test(Survi,Surv2)
as.survi	ve See survive as.survive

26 autocov

S Function Documentation

	A CONTRACT OF			
autocov	Autocovariances	autocov		
ary (4)				
	antocov(, maxlag=6)			
ARGUMEN'I	Sector and the sector of th			
	any number of arguments. Each argument is interpreted as a time-series	except when a time		
•••	series matrix like that returned by tsmatrix is given. In this case, each o	column is interpreted		
	as a time-series.			
maxlag	maximum lag of autocovariances			
VALUE				
	a list with following components:	- for Karly a		
autocov	a maxlag+1 by k by k array, where k is the number of arguments give	n for If only a		
	time series given, the value is a simple vector.	monte		
tsp	time series parameter, which is intersections of time windows for the argu			
	The [,i,j] elements of the component antocov give a sequence of antocova	riances		
	The $[,i,j]$ elements of the component antocov give a sequence of antocov	A		
	1 - 1	S. A. M. Carl		
general sectors	$\frac{1}{n}\sum_{t}x_{j}(t)x_{i}(t+h), h=0, \cdots, \max \log ,$			
	where $x_j(t)$ is the j-th time series given for and the n is the length of	intersection of given		
	time series.	and a second sec		
EXAMPLES	10日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	C. 1 4		
	autocov(ship, hstart)			
	en e			
····	and the second			
cnorm	Coverage probability of normal distribution	cnorm		
	cnorm(x, mean=0, sd=1, sides=T)	. N		
	cnorm(x, mean=0, sd=1, sides=T)			
ARGUMENT	ne State Sta			
	vector of break points. Real line is divided into length(x)+1 inter-	vals. where the first		
Ŧ	interval covers from minus infinity to $x[1]$ and the last interval covers			
	to infinity.			

mean mean of normal distribution

sd standard deviation of normal distribution

sides If FALSE, coverage probabilies of both sides are not returned.

VALUE

vector of coverage probabilities calculated from the normal distribution with mean mean and standard deviation sd, of intervals specified by the break points x and the option sides.

diff.test 27

(Wil.test	137	elch.test		.t.test	(1944)
A CONTRACTOR	¥¥1	elen.test	1 WO.	. 	
dwil	ng a takan a	See Wilcoxon	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	and the first	dwil
all to bud	ar entretteration en entretteration				
indep.test Inte	eractive test for t	the independence of	two samples	inde	ep.test
indep.test(x, y	, correct=T, a	lt="two")			esta di Ser
ARGUMENTS					
x vector or category					
y vector or category					
correct If TRUE, continuit					
alt alternative hypoth		re "two", "greate	r" or "less".	This is not u	sed whe
Chisq.test is sele	ciea,			1	
VALUE					
	•	test for the inde	ependence of	two samples, (Cor.test
a list representin	•		ependence of	two samples, (Cor.test
a list representin Chisq.test, Kd.t If x and y are ca	est or Sp.test.	Chisq.test is call	led. Otherwise	the user will b	e asked
a list representin Chisq.test, Kd.t If x and y are ca normality can be	est or Sp.test. tegories, always assumed. At th	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
Chisq.test, Kd.t If x and y are ca normality can be	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y)	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y)	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic:	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y)	est or Sp.test. tegories, always assumed. At th assumed, Cor. st.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric a herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y)	est or Sp.test. tegories, always assumed. At th assumed, Cor.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric a	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y)	est or Sp.test. tegories, always assumed. At th assumed, Cor. st.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	indep.test	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st.	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	indep.test	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	indep.test	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	indep.test	Chisq.test is call is stage, a graphic test is called, of	led. Otherwise al or numeric : herwise the us th vector	the user will b assistance is ava	e asked ulable. 1
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st. indep.test category	Chisq.test is call is stage, a graphic; test is called, of same leng	led. Otherwise al or numeric : herwise the us th vector	the user will b assistance is ava	e asked i ilable. I ose eithe
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st. indep.test category	Chisq.test is call is stage, a graphic; test is called, of same leng normal=F	led. Otherwise al or numeric : herwise the us th vector	the user will be assistance is ava ser has to choo	e asked ilable. 1 ose eithe T
a list representin Chisq.test, Kd.t If x and y are ca normality can be normality can be Kd.test or Sp.te EXAMPLES indep.test(X,Y) FUNCTIONS CALLED	est or Sp.test. tegories, always assumed. At th assumed, Cor. st. indep.test category	Chisq.test is call is stage, a graphic; test is called, of same leng	led. Otherwise al or numeric a herwise the us th vector	the user will b assistance is ava	e asked ilable. 1 ose eithe T

-40 C - 3 -	is.survive	See survive	is.sur
L		an a	
367	life.test Interactive test	t for the equivalence of two survival time obj	jects life.
	life.test(x, y, alt=	"two", breaks=5)	and the second s
	ARGUMENTS		
2.) 		e that returned by the function survive. e that returned by the function survive.	and the second
	breaks either a vector of break	points or the number of equal-width interva	ds into which the v
	function for x dominate for y).	which is one of "two"(survival functions di is that for y) or "less"(survival function for	or x is dominated b
	VALUE		1. C. S
	a list representing the	result of test for the equality of two surv	ival functions, Cox
	Logrank.test, Wil.tes		and a second
		ways Z.test is invoked. Otherwise, the us st, Wil.test or Z.test.	an a
	Cox.test, Logrank.tes EXAMPLES		an a
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2)	st, Wil.test or Z.test.	an a
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2)	st, Wil.test or Z.test.	an a
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta	st, Wil.test or Z.test. See Msequence	
[Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta mrcauchy	See Msequence See Msequence	mića Wi
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta mrcauchy	See Msequence See Msequence See Msequence See Msequence	mrca mrc
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta mrcauchy mrchisq	See Msequence See Msequence See Msequence see Msequence	mrca mrc
[[[[Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta mrcauchy mrchisq	See Msequence See Msequence See Msequence See Msequence See Msequence	mrca mrc
	Cox.test, Logrank.tes EXAMPLES life.test(Survi,Surv2) mrbeta mrcauchy mrchisq mrexp	See Msequence See Msequence See Msequence see Msequence See Msequence	mrca mrc
	Cox.test, Logrank.tes EXAMPLES life.test(Surv1,Surv2) mrbeta mrcauchy mrchisq mrexp mrf	See Msequence See Msequence See Msequence see Msequence See Msequence	u mrc mics

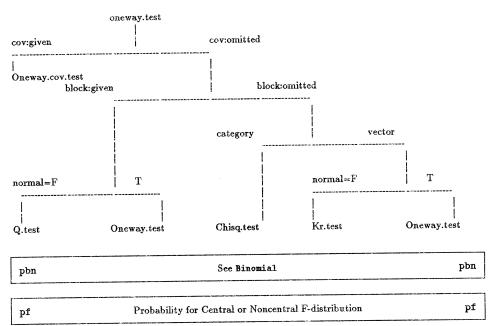
an an an an an an the second and the

mrgamma	See Msequence	mrgamma
mrlnorm	See Msequence	mrlnorm
and the second sec		
mrlogis and and a second second	See Hsequence	mrlogis
mrnorm	See Msequence	mrnorn
	a contra service proved a service of the service of	²
mrt. Market Berlinston and a	See Msequence	mrt
	and the second	. :::::::::::::::::::::::::::::::::::::
mrunif	See Msequence	mrunit
	A LETTER AND A CONTRACT OF	
nesi	Tree based menu for NESI functions	nes
nesi(, tree=	=test)	an a
ARGUMENTS	a da anti-anti-anti-anti-anti-anti-anti-anti-	$\sqrt{d_{1}} = \sqrt{2}$
S objects to be an tree a tree which deriv		
and a stand of the second s		
EXAMPLES nesi(X,Y)) # analyze X and Y	
	and a second	
oneway.test	Interactive oneway analysis	oneway.tes
2028 		ana in a sur ann ann ann ann ann ann ann ann ann an
oneway.test(dat	ta, level, block, cov, correct=T, tol=0.05)	
RGUMENTS		
	y. MAs are allowed but ignored at calculation	and as animulation
block vector giving the required only w	level of each value of data. WAs are allowed but igno e block number to which each value of data belo hen the design is a blocked design. WAs are a	ongs. This argument
	value of covariate for each value of data. WAs are	
the calculation. chosen.	This argument is required only for the case whe	en Uneway.cov.test
	uity correction is applied. This option is valid argument is required only for the case when Chisq.t	

when Oneway.cov.test is chosen.

VALUE

a list representing the result of oneway variance analysis by one of methods, Chisq.test,


-

Kr.test, Q.test, Oneway.test or Oneway.cov.test.

EXAMPLES

oneway.test(Data, Level, Block)

FUNCTIONS CALLED

pf(q, df1, df2, delta=0)

ARGUMENTS

- q vector of (positive) quantiles.
- df1 vector of degrees of freedom for numerator
- df2 vector of degrees of freedom for denominator
- delta vector of noncentrality parameters, that is, the sum of squares of mean of normal random variables when the denominator of the definition of F-statistic is decomposed into the sum of squares of such normal variables.

VALUE

Lower probability for central or noncentral F-distribution with degree of freedoms df1 and df2, and noncentrality delta.

NOTE

To use this function, the library should be attached at position 2 to mask the system function **pf**, for example, by **library(nesi, first=T)**. This function will load the FORTRAN object "pf.o" through **library.dynam("nesi", "pf.o")**.

pf 31

32 pf		Sonto de contrasión do segrecordo d S Funct	ion Documentati	on
SOURCE		and a second second		
	The original F	ORTRAN code is written by J.Takeuchi at Keio Univ.		
EXAMPLE	s			
	pf(1,5,5,0.1)	Cumulative probability of noncentral F-distribution a	.t 1	
	-	#with degree of freedoms 5 and 5 and noncentrality 0.1	•	
	pf(0.4,2,3)	#Cumulative probability of F-distribution at 0.4 with		
	1	adegree of freedoms 2 and 3.		
		##98aas of foreign and the second s		

рһур			See Hypergeometric		phyp
pwil		:	See Wilcoxon		pwil
qbn	1 1		See Binomial		qbn
qhyp	5 9. 9 .	a je v	See Hypergeometric		qhyp
qwil			See Wilcoxon		qwil
······································	n an			and the second sec	rbn

See Binomial rbn

rep.t.test	Repeated t tests	rep.t.test

rep.t.test(data, level, alt, method)

ARGUMENTS

- data data vector. MAs are allowed but ignored at calculation.
- level vector giving the level to which each value of data belongs.
- alt square matrix which has the same number of columns and rows as the number of levels. The lower triangle part of this matrix specifies alternative hypothesis for each combination of levels, 1(greater sided), 0(two sided), -1(less sided) or #A(no testing). Default is 0 matrix. method choice of methods to evaluate p-values of repeated t tests. Currently three methods are
 - implemented, St(Student), Bo(Bonferoni), or Du(Dunn).

- VALUE
 - a list with following components:
 - prob matrix. The [i,j] element of lower triangular of this matrix gives the transformed p-value of t test for the pair mean[i] and mean[j] as specified by the argument alt. Any other elements are all HAS. The transformations are, no transformation, k*(p-value), 1 - (1 - (pvalue))**k respectively for the method, Student, Bonferoni and Dunn, where k is the number of combinations of t tests.

survive 33

survive

- t matrix. The lower triangular element gives the value of t statistic for each t test. Any other clements are all NAS.
- alt the same as the matrix given for alt.
- df common degree of freedom.
- sigma common standard deviation.
- method the name of method applied.
 - alt alternative hypothesis.
 - If method is omitted, the user will be asked to choose one of methods, St, Bo or Du.

EXAMPLES

rep.t.test(Data, Level)

rhyp	See Hypergeometric	rhyp
rwil	See Wilcoxon	rwil
r		

Survival Time Objects

survive

survive(data, status=1, start=0, end=0) is.survive(x) as.survive(x, status=1)

ARGUMENTS

data vector of survival time. If omitted, this is calculated by data = end - start.

- status vector giving the status of each case, 1 is for "death", 2 is for "censored(alive)", and 3 is for "censored(dropout)".
- start vector giving the time at which observation starts.
- end vector giving the time at which observation ends.
 - x any S object.

VALUE

survive returns a survival time object with the same mode as data and with an attribute status.

is.survive returns TRUE if x is a survival time object, FALSE otherwise.

as.survive returns x if x is a survival time object, otherwise returns a survival time object with an attribute status given by the argument status.

EXAMPLES

survive(c(2,4,6,7,3),c(1,3,2,1,2)) #
is.survive(Surv1) #

creates a survival time object

check if survival time object or not

<pre>survive.fun Estimation of survival function survive.fun survive.fun survive.fun(x, breaks) ARGUMENTS x survival time objects, like that returned by the function survive. breaks either a vector of breakpoints or the number of equal-width intervals into which the values of x should be cut. If breaks is 0 or omitted, KpHeier is called, otherwise, Lifetable is called. VALUE a survival function object as described in KpHeier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3, 7) for breaks. EXAMPLES survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x, categories, matrix or array. Has are allowed but ignored at calculation strat vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHs.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to or Mc.test. EXAMPLES</pre>	34 survi	ve.fun	1997 - 1997 -		Function Documentation
ARGUMENTS x survival time objects, like that returned by the function survive. breaks either a vector of breakpoints or the number of equal width intervals into which the values of x should be cut. If breaks is 0 or omitted, KpReier is called, otherwise, Lifetable is called. VALUE a survival function object as described in KpReier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Survi) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array. Mas are allowed but ignored at calculation strate vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. at alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Mc.test, StMu.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHu.test or Mc.test. Otherwise, choices are only StHu.test or Hc.test.	survive.	fun	Estimation of surviv	al function	survive.fun
<pre>x survival time objects, like that returned by the function survive. breaks either a vector of breakpoints or the number of equal-width intervals into which the values of x should be cut. If breaks is 0 or omitted, KpHeier is called, otherwise, Lifetable is called. VALUE a survival function object as described in KpHeier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Survi) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Hc.test, StH#.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StH#.test or Hc.test. Otherwise, choices are only StH#.test or Hc.test.</pre>	$\int A_{2} = \frac{1}{2\pi e^{2/2}}$	survive.fun(x	, breaks)		
breaks either a vector of breakpoints or the number of equal-width intervals into which the values of x should be cut. If breaks is 0 or omitted, KpHeier is called, otherwise, Lifetable is called. VALUE a survival function object as described in KpHeier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array HAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Hc.test, StHw.test, or Fis.test or Hc.test. Otherwise, choices are only StHw.test or Hc.test.	ARGUMENT	rs			
a survival function object as described in KpHeier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array HAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. at alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test.	x breaks	either a vector	of breakpoints or the number	of equal-width interval	is into which the values of wise, Lifetable is called.
a survival function object as described in KpHeier or Lifetable. NOTE If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array HAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. at alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test.	VATTE				
If break points are given to breaks the right end of intervals may be given. The values of x are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Survi) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct gontimity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test.	VALOE	a survival funct	ion object as described in KpH	eier or Lifetable.	
are cut into left open and right closed intervals. For example, if x takes only integers from 0 to 7 and the desired intervals are [0, 3] and [4, 7] then a simplest way is to give c(3,7) for breaks. EXAMPLES survive.fun(Survi) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test.	NOTE	Tel 1	15 15 15 15 15 15 15 15 15 15 15 15 15 1		The values of w
<pre>EXAMPLES survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array. HAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Hc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Hc.test.</pre>		are cut into left to 7 and the de	open and right closed interva	ls. For example, if x	takes only integers from 0
<pre>survive.fun(Surv1) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array #As are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Hc.test, StHu.test, or Fis.test or HaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHu.test or Hc.test. Otherwise, choices are only StHu.test or Hc.test.</pre>		breaks.			
survive.fun(Survi) table.assoc.test Interactive test of association for contingency table table.assoc.test table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHu.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHu.test or Mc.test. Otherwise, choices are only StHu.test or Mc.test.	EXAMPLES		and the second	and the second secon	
<pre>table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array WAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given,</pre>			:v1)		
 table.assoc.test(x, y, strata, correct=T, alt="two") ARGUMENTS x,y categories, matrix or array HAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, HaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Hc.test, StHw.test, or Fis.test or HaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Hc.test. Otherwise, choices are only StHw.test or Hc.test. 					
 ARGUMENTS x, y categories, matrix or array MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, HaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test. 	table.as	soc.test	Interactive test of association f	for contingency table	table.assoc.test
 x,y categories, matrix or array. MAs are allowed but ignored at calculation strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test. 		table.assoc.t	est(x, y, strata, correct=	T, alt="two")	an a
 strata vector giving sequence number of stratum to which each value of x and y belongs. If given, MaHae.test is always called. correct continuity correction is applied if possible. alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaHae.test, Mc.test, StHw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test. 			rix or array IAs are allowed t	out ignored at calculat	ion
alt alternative hypothesis. This argument is required only for Fis.test. VALUE a list representing the result of a test of the association for a contingency table, MaNae.test, Mc.test, StNu.test, or Fis.test or MaNae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StNu.test or Mc.test. Otherwise, choices are only StNu.test or Mc.test.	strata	vector giving se	quence number of stratum to	which each value of :	and y belongs. If given,
a list representing the result of a test of the association for a contingency table, MaNae.test, Mc.test, StMw.test, or Fis.test or MaNae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StMw.test or Mc.test. Otherwise, choices are only StMw.test or Mc.test.		· · ·		red only for Fis.test	•
Mc.test, StMw.test, or Fis.test or MaHae.test. If x and y are dichotomous categories and strata is missing, the user will be asked to choose one from Fis.test, StMw.test or Mc.test. Otherwise, choices are only StMw.test or Mc.test.	VALUE		A Contraction of the second		and the second
choose one from Fis.test, StHw.test or Mc.test. Otherwise, choices are only StHw.test or Mc.test.		•	•		gency table, MaKae.test,
or Mc.test. a second	λ.				
EXAMPLES	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
	EXAMPLES		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	4 	
table.assoc.test(Vision)					

£€ (

en **C** en la compañía de la compañía Transmisión de la compañía de la comp