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Introduction

What we attempt to do in the present article is to
understand certain hyperbolic dynamical systems in the language
of classical differential geometry. To be precise the dynamical
systems that we are going to deal with are geodesic flows and
frame flows of riemannian manifolds of negative curvature, which
have also arisen from differential geometry, while the geometric
structures in terms of which we are going to analyze these

dynamical systems are connections and conformal structures.

To state the results we are going to show, suppose that
M is a closed riemannian manifold of negative curvature. As
is well known, the geodesic flow g% of the manifold M, which
is by definition a smooth dynamical system on the unit tangent
bundle V of M, is an Anosov flow: In other words, the tangent
bundle of the phase space V decomposes into three q&-invariant
continuous subbundles Eo, E- and E¥ in such a way that EC is
spanned by the geodesic spray and that every vector in E~ (resp.
E+) contracts exponentially along an orbit of the geodesic flow
in the positive (resp. negative) direction. We call the

splitting TV = E + E° + E* the Anosov splitting, and in what

follows we are mainly concerned with the case where the Anosov
splitting is C1-differentiable. The riemannian manifolds of
negative curvature whose geodesic flows carry C1-differentiable
Anosov splittings form a reasonably broad class. In fact by
Green [Gre] and Hirsch-Pugh [HP1], [HPZ] there has been obtained
a sufficient condition for the Anosov splitting to be
C1—differentiable. In order to recall their result take two
constants /LL'A >0 so that the following inequalities hold for

the geodesic flow 9% of M:
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c'1e"\t|§'| < ld‘ftg'[ < ce"“‘lf'l for §” € E” and t20,
(PIN)
-1 -Agpg+ + “Atpe+ + +
cTleT Mg < ld?;té l < ce lg l for § 6 E" and t>0.

For example, if —A? and -A? are respectively lower and upper
bounds of the sectional curvature of M then it is easy to verify
the above inequalities by means of a standard comparison theorem
in riemannian geometry. What has been proved by Hirsch, Pugh
and Green is that the Anosov splitting is C1-differentiable
provided that the constants in the inequalities (PIN) satisfy
the pinching condition A/A < 2. As already mentioned, the last
condition is fulfilled e.g. if the sectional curvature K of

M satisfies the pinching condition -4 < K < -1. Our geometric
investigation of geodesic flows begins with constructing an
affine connection on the phase space V of the geodesic flow
under the condition that the Anosov splitting is
C1~differentiab1e. This will be carried out in §1, and the
connection constructed there will be the most fundamental tool

throughout the present article.

The next topic we are going to discuss is relation between
geodesic flows and conformal geometry. In case the manifold
M is a hyperbolic manifold (i.e., a riemannian manifold of
constant curvature -1) then the stable bundle E~ appearing in
the Anosov splitting TV = E~ + E® + E" has a QQ—invariant
conformal structure in a natural way. The most essential part
of the proof of Mostow's rigidity theorem [M1], [MZ] (see also
Sullivan [S1], Thurston [Th]) can be interpreted as a uniqueness
of this conformal structure. Besides, Gromov [Gro] has indicated
that if the stable bundle E~ of the geodesic flow of a negatively
curved manifold admits a ¢ -invariant conformal structure then
the manifold M is homotopic to a hyperbolic manifold. Concerned
with this, Sullivan [SZ] proposed a conjecture that under the
same assumption the manifold M itself is to be of constant

curvature. In §2 we will prove the following theorem, which
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is a slight generalization of Gromov's theorem, and

simultaneously supports Sullivan's conjecture.

Theorem 1. Let dim M > 3. Suppose either that (a) the

stable bundle E~ carries a qt—invariant continuous conformal
structure, or that (b) the constants A and A in (PIN) satisfy
the pinching condition A/A < 2 and E- admits g.?t—invariant

bounded measurable conformal structure. Then the geodesic flow

of M is homothetic to the geodesic flow of a certain closed .

hyperbolic manifold M°.

In the theorem the geodesic flow ?% of M is said to be
homothetic to the geodesic flow 9; of the hyperbolic manifold
M° in the sense that there are a diffeomorphism h of the unit
tangent bundle of M onto that of M° and a constant a>0 such
that hb?t = Q;toh. By virtue of the theorem the conjecture
of Sullivan mentioned earlier amounts to the following one which
has been already put forward in [K1] in a slightly different

context.

Conjecture. If the geodesic flow of a closed riemannian

manifold M of negative curvature is homothetic to that of a

hyperbolic manifold M°, then M is homothetic to M°.

Although the conjecture is already known to be true in
the case of dimension two by Katok [Kt] (see also Hurder-Katok
[HK] for an alternative proof), the higher dimensional case
still remains open. Under the assumption of the conjecture,
M and M° are obviously homotopy equivalent to each other since
they have isomorphic fundamental groups, and therefore Mostow's
rigidity theorem guarantees that what we have really to do is
to show that M is of constant curvature. On the other hand
for flows to be homothetic is a global condition, for any two
nonsingular flows are always locally isomorphic to each other.

Thus the problem is to derive a local consequence from a global
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assumption.

In §3 we proceed to a study of the geodesic flows
in terms of invariant differential forms. As the geodesic flow
is a smooth dynamical system, it induces an action on tensor
fields of the phase space. 1In particular it seems reasonable
to expect that invariant tensor fields, or more specifically,
invariant differential forms contain some information of the
dynamics of the geodesic flow. The purpose of that section
is to show that this is in fact the case at least in the
following sense. Suppose now that M is a closed riemannian
manifold of negative curvature. Since we are mainly interested
in "transverse" dynamics of the geodesic flow, it is natural
to restrict our attention to "transverse'" differential forms.
Here a differential form on the unit tangent bundle V of M is
said to transverse (to the geodesic flow) if the the inner
product of it with the geodesic spray identically vanishes.
Denote by QZ;JV) the graded algebra of qE—invariant transverse
differential forms on V. What we attempt to do in §3 is to
characterize the geodesic flow of a hyperbolic manifold in terms
of 525%(V). More specifically we will prove

Theorem 2. Suppose that M is a closed riemannian manifold

of dimension three, and that its geodesic flow satisfies the

pinching condition A/A < 2. Then the geodesic flow of M is

homothetic to the geodesic flow of a certain hyperbolic manifold

if and only if dim S2&(V) = 2.

Note that if the conjecture mentioned before is true then
the theorem really means that M itself is of constant negative
curvature if and only if dhnﬁﬁgV) = 2. The "only if" part
of the theorem will be seen by computing SZ;JV) explicitly for
a hyperbolic manifold in any dimension. Meanwhile the proof
of the converse will be done by finding éiinvariant conformal
structure of the stable bundle E° and applying the previous
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theorem to it.
by A. Katok,

him.

In the last section we turn
flows. Suppose now that M is an
manifold of negative curvature.

on the space P of the positively

Theorem 2 is an outcome of a suggestion made

and the author would like to express thanks to

to the investigation of frame
oriented closed riemannian
The frame flow of M is defined

oriented orthonormal frames

of M,
the unit tangent bundle V of M (m+1 =

a principal SO(m)-bundle over
dim M),

which is easily seen to be
and is a lift

of the geodesic flow ?t of M through the projection of P onto
V (see §4 for the precise definition of the frame flow). Thus
the frame flow of M, which we denote by yt’ is a so-called
partially hyperbolic dynamical system, or an SO(m)-extension
of the geodesic flowg’t that is Anosov, and it is known that
the tangent space of P carries a splitting

hor -

hor  Jith ¥POF - F

ver

TP = F + F *

+ FO + F
(1) pver

is vertical with respect to the projection of P onto V, while
hor
F

into subbundles satisfying the following conditions:

is horizontal; (ii) F® is 1-dimensional and tangent to

the orbits of the frame flow yt; (iii) any vector in F (resp.
F') contracts exponentially along an orbit of yt in the positive
negative) direction.

(resp. The problem we are going to discuss

in §4 is the differentiability of this splitting. 1In the case
of the geodesic flow, it is believed that the higher-order
differentiability of the Anosov splitting restricts the structure
of the manifold and the geodesic flow to a great degree. 1In
fact in [K1] we have proposed the conjecture that for a closed
riemannian manifold of negative curvature the geodesic flow

of it has a Cz-differentiable Anosov splitting if and only if
the manifold is locally symmetric. The conjecture has already
been verified in the case of dimension two by Ghys [Gh] by using

a result of Hurder-Katok [HK], and in the higher dimensions
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partial results have been obtained by Kanai [K1], Feres-Katok
[FK1], [FKZ]’ Feres [F] (See also Flaminio-Katok [F1K] for the
case of Anosov diffeomorphisms, and Ballmann-Brin-Burns [B3]

and Hasselblatt [Hs] for examples of Anosov systems whose Anosov
splittings have less smoothness). A similar phenomenon seems

to be observed even in the case of frame flows. Actually we
would like to propose the following

Conjecture. For a closed riemannian manifold M of negative
hor

curvature, the horizontal subbundle F of TP associated with

the frame flow of M is c'-differentiable if and only if M is

locally symmetric.

As a matter of fact we will show the following partial

result.

Theorem 3. Take M as in Theorem 2. If the horizontal bundle

Fhor

geodesic flow of M is homothetic to the geodesic flow of a

hyperbolic manifold.

The point in the proof of the theorem is that the horizontal
hor
subbundle F

bundle P over V. Thus if it is smooth, we can speak of the

can be regarded as a connection of the principal

curvature of it. In particular under the assumption of the
theorem we will be able to construct a 9%—invariant differential
2-form of V from the curvature form of F or, and prove the

theorem by virtue of Theorem 2.
1. Affine connections associated with geodesic flows
The purpose of the present section is to construct an affine

connection on the phase space of the geodesic flow. Basically

this has been already done in our previous work [K1], [K2],
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[K3], but we nevertheless repeat it here to explain them in

a unified manner as well as for the convenience of the reader.
In what follows 9t always denotes the geodesic flow of a closed
riemannian manifold M of negative curvature defined on the unit
tangent bundle V of M. Let TV = E  + E® + E* be the Anosov
splitting attached to the geodesic flow: Namely, E° is the
1-dimensional subbundle of TV generated by the geodesic spray,
where the geodesic spray is by definition the nonsingular vector
field on V that generates the flow 9t’ while E~ and Et are
respectively the stable and unstable subbundles each of which
is characterized by the condition that a vector § 6 E  (resp.
§+ €E') contracts exponentially along the orbit of the geodesic
flow in the positive (resp. negative) direction. As is well
known there are foliations &  and af of V, called the
(strongly) stable and unstable foliations, which integrate the
stable and unstable subbundles E~ and joul respectively.

1.1. The ingredients of the affine connection of V which
we are going to construct are symplectic geometry of the unit
tangent bundle and the hyperbolicity of the geodesic flow.
More precisely, the former is a canonically defined 1-form §
on V, called the canonical contact form of V. Its exterior
derivative df is a symplectic structure on the subbundle E =
E” + ET of TV. 1In addition the splitting of E into the two
parts E  and EY is easily seen to be a lagrangian splitting
with respect to the symplectic structure 48 of E; that is,
ag(g ) = ae(gE", M = o for §i,7t €¢E®. Meanwhile the other
ingredient is the Anosov splitting itself, or alternatively,
the tensor field f on V of type (1,1) that is defined by f(f—)
= -§, £(&%) =§+ and £(¢) = 0 for £ &E, §+6E+ and the
geodesic spray é. Then it is clea; that the tensor field

g(f.,m) = dB(E, (D) + B@B(F, ) (£, eTV)

on V of type (0,2) is symmetric and nondegenerate; that is,
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g is a pseudo-riemannian metric of V.

To proceed further we have to assume that the Anosov
splitting TV = E~ + E° + EY is C1—differentiable, or equivalently
that the stable and unstable bundles E~ and E' are
C1—differentiable (Under this assumption we can speak of
C1—differentiability of the sections of E~ and E+). Then the
(1,1)-tensor field f which has been defined in terms of the
Anosov splitting is C1—differentiable, and in consequence so
is the pseudo-riemannian metric g. The differentiability of
g particularly guarantees the unique existence of an affine
connection ¥ on V satisfying the following two conditions: (i)
g is parallel with respect to V; (ii) the torsion tensor of
V is given by dOo‘}. In fact this can be seen basically in the
same way as the unique existence of the riemannian connections,
and it follows that ¥V is represented by g and its first-order
derivative. Hence V should be continuous. In addition V is
invariant under the geodesic flow since so are the canonical
contact form and the Anosov splitting of which the connection
¥ has been made. Moreover it is easy to see that the Anosov
splitting is invariant under the connection V; that is, for
any sectionlgs of Es'(8=0,-,+) the covariant derivative V%fs
in tg? direction of any vector field 7 on V is again a section
of E°.

A connection on V which is slightly different from that
described here has been introduced in [KZ]' Actually it has
been defined to be a unique affine connection on V satisfying
the condition (i) above and the condition that (ii') it is
torsion-free, instead of (ii). Furthermore in [K2] it was
mentioned that this connection would preserve the Anosov
splitting as the connection ¥V introduced above does. However
this statement is indeed false. We have to replace the
connection in [K2], §2 by the connection that has been defined

here. Then the original arguments given in [KZ] work without
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any more change. The author would like to thank Renato Feres

who kindly pointed out this error to the author.

1.2. What to do next is to give another description of
the connection {/ introduced in the previous subsection, which
is essentially based on an idea first employed in [K1]. For
this sake take the universal cover M of M and its geodesic flow
Gi that is defined on the unit tangent bundle V of M. Denote
by P = V/;t the orbit space of the geodesic flow Gi. To get
a topological picture of P, let B be the imaginary boundary
of the universal cover M: It is by definition a topological
space homeomorphic to the sphere of dimension dim M - 1, and
each point of it is a point at infinity of ﬁz or more rigorously,
an asymptotic class of geodesic rays in . By the curvature
assumption the boundary B of ﬁ'possesses the convexity: Namely
for any pair of distinct points of B there is a unique geodesic
line in ﬁ’combining them. But a geodesic line in # can be
clearly identified with an orbit of the geodesic flow g; of
M. Hence there is a natural one-one correspondence of the orbit
space P of the geodesic flow with BxB\(the diagonal set).
Furthermore the orbit space P has a natural differentiable
structure for which the projection of ¥ onto P = V/;; is smooth.
In the meantime it is not hard to see that the two foliations
of P which arise from the product structure of P = BxBs(diagonal)
are indeed the push-forwards of the stable and unstable
foliations of the geodesic flow G; through the projection V—p.
Denote by %~ and %' these foliations of P, and by F~ and rFt
their tangent bundles. It is clear that these subbundles of
TP are as smooth as the stable and unstable bundles E~ and E'.
Next consider the canonical contact form 6 of V and its exterior
derivative ds. The latter is a @;-invariant 2-form on V such
that the restriction of it to the sum E = B~ + E' of the tangent
bundles of the stable and unstable foliations is a symplectic
structure of E; and that the splitting of £ into B and EY is

a lagrangian splitting. Hence we can push it forward to P
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through the projection VP to get a symplectic formw of P

for which the splitting TP = F~ + F' is lagrangian. Finally
consider the fundamental group [T of M. It acts on the universal
cover M by the deck transformations, and the induced action

of it on the unit tangent bundle ¥V of M commutes with the
geodesic flow §£. In consequence [ also acts on the orbit space
P = V/G; differentiably. It is clear that the action preserves
the symplectic form w and the foliations R~ and }+ of P mentioned

above.

Now assume again that the Anosov splitting of the tangent
bundle of V is C1—differentiable so as to consider the connection
¥V on V introduced in the previous subsection, and take the 1lift 65
of it to V'through the covering V—)V. Since e; is ;;—invariant
we can push it forward to the orbit space P = VV@; to get a
connection D of P. It is clear that D is torsion-free since
so is 7 in the transverse direction E™ + E+, that D preserves
the subbundles F~  and F' since the connection ¥V preserves the
subbundles E~ and E+, and that D is invariant under the action

of the group [T on P since so is 6under the action of [Ton V.

Note here that the projection of P onto B that assigns
to each p = (b",b*)e P = BxBx(diagonal) the first factor b~
gives rise to a C1—differentiable structure on the imaginary
boundary B, since the foliation }f which consists of the fibers
of the first-factor projection P-+B has a C1—differentiable
tangent bundle according to the differentiability assumption
on the Anosov splitting. In consequence we can think of
(continuous) vector fields of B, and their horizontal lifts
by the projection of P onto B, which are by definition sections
of the subbundle F~ of TP. Similarly we can consider the
projection of P = BxBx(diagonal) onto the second factor B, the
differentiable structure of B arising from it and the lifts
of vector fields on B to P as sections of F'. Note here that

these two differentiable structures on B coincide since the
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involution of P that assigns (b+,b_) to each (b—,b+)e P =
BxB\(diagonal) interchanges the foliations.j- and Jf smoothly.
The most important properties of the connection D on P can be

stated in the following form:

(1.1) Lemma. (1) The leaves of the foliations J~ and £ of

P are totally geodesic with respect to D. (2) The lift of any

vector field on B to P as a section of F~ (resp. Fh) by the
first-factor (resp. second-factor) projection P-B is parallel

with respect to D along the foliation ;+ (resp.‘}-). (3) The

symplectic form w of P constructed earlier is parallel with

respect to D.

Proof. From the construction of the connections ¥ and
D, it is clear that D is characterized as the Levi-Civita
connection of the pseudo-riemannian metric g =w(.,£f(.)) of
P, where f is the (1,1)-tensor field on P defined by f(gg) =
st for §8‘ F: (§=-,+). Hence we can get an explicit
representation of the connection D in terms of g, and by means

of it we can easily verify the above assertions. |

Here is an immediate application of the lemma. In order
to state it note first that the parallel translation along a
curve with respect to the continuous connection D is well
defined, since it is described by a first-order linear ordinary
differential equation with continuous coefficients, which is
as is well known uniguely solvable under an arbitrary initial
condition. Hence we can consider the parallel translations
with respect to the connection D. Recall now that by the second
part of the lemma any lift of a vector field on B by the
first-factor projection is a section of F~ which is parallel
with respect to D along‘;+. This especially means that the
parallel translation of a vector of F~ along a curve c* contained
in a leaf of }+ does not depend on the choice of the curve ct:
It merely depends on the end points of the curve. Then it
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follows from the last part of the lemma that the parallel
translation of a vector in F* along the curve ¢t is also
independent of the choice of ct. (In fact for a frame {eI}

of F~ at the initial point of the curve c+, extend it to a
parallel flame field along c+, and then take a frame field {ez}
of F' so that w(e;'e;) = 81" Then the last assertion of the
lemma guarantees that {eI} is indeed parallel along c*. Clearly
{e;} at the terminal point of ct is independent of c* since

so is ie;}.) In consequence it is natural to say that the
connection D is flat along the foliation‘}‘.+ even though it is
in general impossible to define the curvature of D (Recall that
D is only known to be continuous). Similarly we can show that

D is flat along'F_ as well. In a summary,

(1.2) Corollary. The connection D of P is flat along the

foliations J~ and }+ (in the sense of parallel translation as

above) .

Because of the construction of D, it also holds that the
connection ¥ on V is flat along the stable and unstable
foliations 8+ and & . The last conclusion is closely related

to our previous work [K3].

2. A conformal structure invariant under the geodesic flow

Suppose again that M is a closed riemannian manifold of
negative sectional curvature, and take its geodesic flow ?t
defined on the unit tangent bundle V of M. Throughout this
section assume further that m+1 = dim M > 3. 1In addition choose
two constants A > A > 0 so that the inequalities (PIN) in the
introduction are fulfilled for these constants. The main purpose

of the present section is to prove

(2.1) Theorem. Suppose either that (a) the stable bundle E~
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has a 9t—invariant continuous conformal structure, or that (b)

E carries a qt—invariant bounded measurable conformal structure

and the constants A and A in (PIN) satisfy the pinching condition
A/A < 2. Then the geodesic flow of M is homothetic to that

of a certain closed hyperbolic manifold.

What is meant by the boundedness of a conformal structure

will be explained soon later in §2.1.

In [52] Sullivan has proposed the conjecture that M is
to be of constant curvature under the second assumption (b)
in our theorem. Thus the theorem reduces his conjecture to

ours that has been put forward in the introduction.

2.1. As one of preliminaries for the proof of the theorem
we first need to discuss the space of conformal structures.
To begin with consider the space Cm of (linear) conformal
structures on the euclidean space K™ of dimension m > 2. Here
each conformal structure on R™ is considered to be represented
by an inner product, and two inner products stand for the same
conformal structure provided that they are proportional, or
equivalently, conformal to each other. Obviously the general
linear group GL(m,R) acts on Cm transitively, and the isotropy
subgroup is isomorphic to CO(m) = R¥.s0(m) with R® = R\{0} being
the product group. As is well known the homogeneous space Cm
= GL(m,R)/CO(m) = SL(m,R)/SO(m) carries a GL(m,R)-invariant
metric for which Cm is a riemannian symmetric space of noncompact

type.

This ‘GL(m,R)-invariant metric on the space of conformal
structures will take a crucial part in the proof of Theorem
(2.1). In addition the metric also has an advantage when
investigating conformal geometry in the viewpoint of ergodic
theory, even though it is not necessary in our present work.

That is the fact that the center of mass can be defined for
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any compactly supported probability measure on Cm. This is
possible because the space Cm equipped with the metric mentioned
above is a simply connected complete riemannian manifold of
nonpositive curvature; actually it is known to be a riemannian
symmetric space of noncompact type. For instance, for any two
points in Cm there always exists a unique geodesic segment in

Cm combining them, and the center of mass of the probability
measure equally supported on these two points is the midpoint

of the geodesic segment combining them. 1In a general case the
center of mass is defined by means of the distance function

of Cm and especially its convexity (See Karcher [Kr] for the
rigorous definition of the center of mass). Furthermore since
the center of mass is canonically defined in terms of the
riemannian structure of Cm only, the correspondence that assigns
the center of mass to each compactly supported probability
measure on Cm is equivariant under the isometric action of
GL(m,R) on Cm. Meanwhile one of the fundamental techniques in
ergodic theory is to take an average or mean in order to obtain
an invariant object, and the above idea makes it possible to
consider the average of conformal structures to get an invariant
conformal structure. This idea has been actually utilized by
Sullivan [S1] to show that a uniformly quasiconformal group
action always has an invariant conformal structure. There is
also an alternative definition of the "average" of conformal

structures introduced by Tukia [Tul.

Now let us return to the study of the geodesic flow. At
each point v in the unit tangent bundle V, take the fiber of
the stable bundle E~, consider the space of conformal structures
on it as before, and denote it by CVE—. In consequence we obtain
a bundle CE over V whose fiber over v is CVE_. The fibers
of this bundle have canonically defined metrics as described
earlier, and these fiber metrics have the property that any
linear isomorphism between two fibers of E~ induces an isometry

between the corresponding fibers of CE . 1In particular the



KSTS/RR/89/002
July 17, 1989

- 15 -

1ift of the geodesic flow ?t to CE  preserves these metrics.
In addition according to the fiber metrics of CE~ we can speak
of the boundedness of a conformal structure of E . To explain
it suppose that o is an arbitrary conformal structure of E7,
or equivalently, a section of the bundle CE~. Then it is said
to be bounded if at each point ve V the distance between o°(v)
and cb(v) in the fiber CVE' is bounded by a constant which is
independent of the point v, where Gb is another continuous
section of CE~. Note that this definition does not depend on
the choice of o, because of the compactness of V and the

continuity of cb.

2.2. We now start the proof of Theorem (2.1). To begin
with we have to notice that the assumption (a) in the theorem
indeed guarantees the C1—differentiability of the Anosov
splitting. (This can be seen as follows. First note that the
conformal structure on the stable bundle E  always induces a
conformal structure on its dual bundle E * in a canonical way.
In addition since the direct sum E = E- + E' of the stable and
unstable bundles carries the symplectic structure d® for which
the splitting of E into E~ and E' is lagrangian (cf. §1.1),
there is a natural linear isomorphism betweén E”* and E¥ that
assigns §+Jd0 6E * to each §+'6E+. Thus under the assumption
(a) we consequently have a gk—invariant continuous conformal
structure on the unstable bundle E' as well. Then making use
of these continuous conformal structures, we can proceed as
if the "strongest" pinching condition A =9 were satisfied in
the proof of the theorem of Hirsch-Pugh, and eventually come
to the conclusion that the Anosov splitting is
C1—differentiable.) In short, under either of the assumptions
(a) and (b) in Theorem (2.1), the stable and unstable foliations
are C1—differentiable, and the unit tangent bundle V carries
the connection ¥ whose construction has been demonstrated in
the previous section. Thus it also follows that the bundle
CE~ of conformal structures possesses the C1—differentiability,
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and that the connection {/ of V gives rise to a connection on
the bundle CE . The connection of CE is also interpreted as
follows. For each differentiable curve c in V, the parallel
translation of vectors in E~ along c with respect to the
connection V is defined as a linear isomorphism between the
fibers of E~ over the end points of the curve c. Hence it
induces an isometry between the corresponding fibers of CE ,
which is called the parallel translation of CE~ along c. Note
here that the parallel translation is equivariant with respect
to the geodesic flow 9t and its lift to the bundle CE~ since
the connection ¥ on V is invariant under the geodesic flow.

In what follows a section of CE , or equivalently, a conformal
structure of E , is said to be parallel if the parallel
translation along any curve in V keeps it invariant. It is
clear that a parallel conformal structure is C1—differentiable
since our connection is known to be continuous. The purpose

of the present subsection is to show

(2.2) Claim. Assume that one of the conditions (a) and (b)

in Theorem (2.1) is satisfied. Then any ?t-invariant bounded

measurable conformal structure of E  is parallel almost

everywhere.

Proof. For any two points v and w sitting in the same
leaf L™ of the stable foliation § , the parallel translation
TT;iw:CwE--)CVE' is defined independently of the choice of a
curve c along which the translation is considered, provided
that ¢ is restricted to be contained in the leaf L~ . Actually
this is a consequence of the flatness of the connection V along
J , which we have established in §1.2. For a conformal structure
T of E- and a subset W of V, we can define the oscillation of

1T restricted to W in the stable direction by

O;'v(t;v,r) = sup dv(-c(V),‘(T;'wc(w)) (vew, r>0),
we WHB;(V)
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where B;(v) denotes the r-ball around v in the leaf of the stable
foliation }_ that contains v, and dv denotes the metric of the
fiber CVE_. Recall that the fiber metrics dv are invariant

under the lift of the geodesic flow ¢ , that the parallel
translation is a y%-equivariant isometry, and that the geodesic
flow contracts the stable manifolds as one of the inequalities

in (PIN) says. In consequence it follows that

OqLcW(?gc;v'r) < O;(t;qtv,ce-Atr) (Veg _ W, r,t>0)

for any conformal structure T and its pull-back ?:t by the

geodesic flow.

Suppose now that @ is a QE—invariant bounded measurable
conformal structure of E-. We can always approximate it by
a continuous conformal structure: Actually for any £>0 we can
take a continuous conformal structure T of E  such that‘u(V\W)
<g for w ={ veV dv(g(v),t(v)) < 8/3}, where/u denotes the
Liouville measure of V. Note here that dv(G(V),(9€t)(V)) <
€/3 for ve P_ W since both dv and ¢ are gt—invariant. Thus
from the definition of the oscillation it follows that

- . o~ *o. 28
l OQ.@W(G'V'r) Oy_tw(?tt,v,r)l_i 3

for ve ?_tw. Combining this with the previous inequality we

get

- 28

- -At
Oq-;W(G;V’r) < if + Ow(t;Q%v,ce A r)

for ve q_tw and r,t>0. Recall here that the compactness of

V implies the absolute continuity of T. Hence the second term
of the right-hand side is less than &/3 if t>0 is large enough.
Take t like this. Then what we have shown so far can be stated

as follows: For any E>0 there is a measurable subset Wg =
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?_tw of V such that yJV\w;) < € and that OQ;(c;v,r) <g for
_ o . s .
veWg. Now put Vk = r\j=kw2‘d for each positive integer k.

Then it immediately follows that‘uxV\Vk) < 21—k and that

- . oo
ka(o-,v,r) = 0 for ve Vk' However this means that Vg 'Uk=1vk
is a conull suset of V such that Oaw(c;v,r) = 0 for all v € Voo,

or equivalently that ¢ is parallel along the stable foliation
}' almost everywhere. In the same way we can also show that

o is parallel along the unstable foliation Jf almost everywhere.
Finally we have to show that ¢ is parallel along the orbit of
the geodesic flow almost everywhere, but this is trivially
satisfied since o is ?t—invariant. Hence ¢ should be parallel
almost everywhere on the entire space V. This completes the
proof of Claim (2.2). 1

As we have seen in the above arguments, our proof of Claim
(2.2) is quite similar to the proof of the ergodicity of the
geodesic flow given by Anosov [A], §19. Actually what we needed
in our proof of (2.2) in addition to those which are utilized
the proof of the ergodicity are the qt-invariant connection
V, or alternatively, the qt-equivariant parallel translation
TT;:W, and the q&-invariant fiber metrics dV of the bundle CE™.

In terms of them we could define the oscillation that has played

the crucial role in our proof.

2.3. The second step of the proof of Theorem (2.1) consists
of studies of the imaginary boundary B of the universal cover
M of M and the orbit space P of the geodesic flow $£ of M.
Also in this subsection we are going to construct the model

space M° appeared in the theorem. To start with we prove

(2.3) Claim. Assume that the condition (a) or (b) in Theorem

(2.1) is satisfied. Then the imaginary boundary B possesses

a c®-differentiable structure for which the first- and

second-factor projections of P = BXxB:(diagonal) onto B are

C2—differentiab1e. Also the action of the fundamental group
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[Tof Mon B is c?_differentiable with respect to this

differentiable structure. Furthermore B carries a

C1-differentiable M-invariant flat conformal structure.

In the last statement the conformal structure of B is said
to be flat in the sense that B is covered by (Cz—differentiable)
charts that transmit the conformal structure of B to the standard

one of the euclidean space.

Proof of (2.3). First we have to construct a conformal
structure of the subbundle F~ of TP. To do this note that

according to the assumption the stable bundle E~ carries a

continuous or bounded measurable ?t—invariant conformal
structure. Then Claim (2.2) tells us that it should be parallel
with respect to the connection {/. Now recall the construction
of the connection D on P from ¥ on V described in §1.2: This
has been done by first taking the lift from V to v through the
covering v-sv, where ¥ denotes the unit tangent bundle of the
universal cover M of M, and then by pushing forward the lift
from V to P through the projection V-+P, where P = V/;t denotes
the orbit space of the geodesic flow @t of M defined on V.
Similarly first take the lift of the conformal structure of

E” ¢ TV to the stable subbundle E ¢ TV of the geodesic flow §1,
which is obviously qt-invariant, and then push it forward to

the orbit space P through the projection V-P. As a consequence
we get a [M-invariant conformal structure of the subbundle F-

of TP that is parallel with respect to the connection D of P.

Recall here that under either of the assumptions (a) and
(b) in Theorem (2.1) the Anosov splitting of the geodesic flow
of M is C1—differentiable, and consequently the imaginary
boundary B has a C1-differentiable structure for which the
projections of P onto B as well as the ["-action on B are
C1—differentiable (cf. §1.2). 1In particular we can speak of

a conformal structure on B. Now the description of the
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connection D on P mentioned in the second part of Lemma (1.1)
impiies that the D-parallel conformal structure of F~ should
be a lift of a certain conformal structure on B by the first
factor projection‘ﬂ_:P-7B. Clearly this conformal structure
on B is continuous and P-invafiant, and therefore we have
obtained a weaker version of the claim we are going to prove.
In order to explain how to improve the result, take two leaves
L; and LT of the foliation k™. Since F~ is the tangent bundle
of the foliation J~, the conformal structure of F~ gives rise
1. Meanwhile
restrict the first-factor projection T :P->B to these leaves
to get two maps'ﬂ—lL;:L;-iB and W~ (LT:L] +B. Then the
1-(n_\Lg) is a C' conformal

to conformal structures of the leaves L; and L7

composition h = (ﬂ-\L;)—
diffeomorphism defined on an open subset of L;. To see the
existence of a Cz—differentiable structure of B, it is sufficient
to show that the partially defined diffeomorphism h:L;-)LT is
indeed Cz—differentiable for any L; and LT. Then a
C2-differentiable structure of B is introduced by regarding

the restrictions of the first-factor projection P=+B to the

2 charts of B.

leaves of &~ as C
For this purpose we need affine structures of the leaves

of the foliation %~. Now take a leaf L™ of F . It is already

known that L~ is totally geodesic with respect to the

torsion-free affine connection D on P (Lemma (1.1)), and the

restriction of D to L~ is flat (Corollary (1.2)). By means

of the restriction of the connection D to L~ we can construct

“affine" coordinates on L~ as follows. First pick up a frame

of L~ at a point, and extend it as a parallel frame field:

This is possible because of the flatness of the restriction

of D to L. Then integrate the parallel vector fields on L-

of which the frame field consists to obtain a system of flows.

These flows commute pairwise since D is torsion-free, and

consequently they define a C2—differentiable (local) coordinate

system of L”. The conformal structure of 1L~ seems "constant”
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in terms of this coordinate system, for the conformal structure
is parallel with respect to the connection D. Thus the leaf

L~ can be (at least locally) identified with the euclidean space
equipped with the standard conformal structure via a C2
diffeomorphism. In consequence, if two leaves L; and LT of

the foliation }— are identified with the euclidean space Rm

in this way, then the map h = (v’lL?)-(ﬂ_‘L;):L;-vL; introduced
earlier is regarded as a C1 conformal transformation h' defined
between open subsets of Rm. However it is known that a conformal
transformation partially defined on R" is real-analytic: 1In

fact it is always a restriction of a MSbiﬁhs transformation
whenever m>3 (Hartman [Hr]; cf. [M1], [L]), while in the case

of m=2 it must be holomorphic or anti-holomorphic as is well
known. Thus it follows that the conformal transformation h'

on R™ obtained from h is real-analytic, and consequently that

h itself is Cz—differentiable, since the coordinates of L; and

L

-—

1
the existence of a C2—differentiable structure on B.

we have adapted to get h' are Cz—differentiable. This shows

Next we have to prove the Cz—differentiability of the
projections of P onto B. To observe the C2—differentiability
of the first-factor projection P-»B, it is sufficient to show
that the derivatives of h:L;-+L—, or equivalently of h':R™=R"™
up to the second order depend on the leaves L; and L7 of.}‘

1
continuously. Of course h' itself depends on L; and LT

continuously. On the other hand it is known that the éz—norm

of any conformal transformation of r™ (m>2) is uniformly bounded
by the c®-norm of it. Applying this statement especially to

h', we can conclude the continuous dependence of the derivatives
of h'. Finally to see the Cz—differentiability of the second-
factor projection of P onto B, consider the involution
J:(b"'b* ) (b*,b”) of P = BaBs(diagonal), which is clearly
smooth. Then it satisfies the identity‘n’+ =1t »J, where I

and ' denote the first and second factor projections

2

respectively. Hence the C“-differentiability of w' is reduced
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to that of T, which has been already known. In consequence
the first- and second-factor projections of P onto B are both
Cz—differentiable. From this fact it also follows that the

action of [T on B is c?_gifferentiable.

Finally we have to check that the conformal structure of
B is flat. As we have already seen above, each leaf L- of.;_
is conformally identified with the euclidean space. On the
other hand the conformal structure on B has been introduced
so that the projection 1 |L” :L” =B is conformal. Thus these
projections1T—IL_ indicate the flatness of the conformal

structure of B. |
The result we have just proved immediately implies the
following corollary which has first suggested by Gromov [Grol

without a detailed proof.

{(2.4) Corollary. Under the assumptions of Theorem (2.1), M

is homotopy equivalent to a certain closed hyperbolic manifold
M°.

Proof. Since the conformal structure of B obtained in
the previous claim is flat, B is covered by C2 charts that send
the conformal structure of B to the canonical one of the
euclidean space Rm. Thus any two charts relate to each other

2 conformal diffeomorphism

(on their intersection) through a C
that are defined between domains in the euclidean space. However
as we have already seen in the proof of Claim (2.3), a conformal
transformation on the euclidean space is always real-analytic.

In consequence we can apply a standard developing argument to
show that the imaginary boundary B of # is conformally eqguivalent
to the standard sphere s™. Hence the conformal action of the
fundamental group [T of M on B = s™ yields a discrete faithful
representation of [T into the conformal transformation group

of the standard sphere Sm, which is known to be canonically
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m+1), the isometric transformation group

of the hyperbolic space Hm+1. Thus [™ turned out to be isomorphic

isomorphic to Iso(H

to a discrete subgroup [° of Iso(Hm+1). The group [*° is clearly
torsion-free since so is [, and therefore we can form a
hyperbolic manifold M° = Hm+1/P°. Then M is homotopy equivalent
to M° since they are both aspherical manifolds with isomorphic
fundamental groups. Finally to see the compactness of M° note
first that the manifold M°® is compact if and only if Hm+1(M°;22)
¥ 7,.
assumption compact. Finally we derive an isomorphism Hm+1(M;72)

~

In the meantime Hm+1(M;72) = 2, holds since M is by

= Hm+1(M°;22) from a homotopy equivalence between M and M°.

This shows the compactness of M°. |

To finish the proof of Theorem (2.1) we must find a closed
hyperbolic manifold M° whose geodesic flow is homothetic to
that of M in the theorem. However we already have a candidate
of the model M° that has constructed in the previous corollary.
What we really have to do in the rest is therefore to find a
homothety between the geodesic flow of M and that of M°, and

as a preliminary, we study the symplectic structure of P here.

As to the hyperbolic manifold M° instead of M, we can speak
of all things such as the geodesic flow, the universal cover
etc. corresponding to those of M. Denote them by attaching
° at the upper right corner of the symbols representing those
constructed from M; For example ?E denotes the geodesic flow
of M°. Obviously the universal cover M° of M° is the hyperbolic
space Hm+1, and its imaginary boundary B° is naturally identified
with the standard sphere s™. Then the Cz-differentiable
conformal diffeomorphism of B onto s™ that we have constructed
in the proof of Corollary (2.4) by means of the flat conformal
structure of B can be regarded as a 1-1 correspondence between
the imaginary boundaries B and B°. Furthermore it is equivariant
with respect to the actions of the fundamental groups {* of M
on B and ["° of M° on B°. Let 2 be the natural isomorphism of
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Monto (™. Then it is reasonable to say that the correspondence
between B and B° is t-equivariant. By taking the "product"

of the correspondence B +B° we also have a Cz-diffeomorphism

f of P = BxBn(diagonal) onto P° = B°xB°s(diagonal). It is
obvious that f is t-equivariant with respect to the actions

of Mon P and [?° on P°, and that f maps the foliations } and

Jf of P to those of P°. 1In addition f preserves the symplectic

structures up to a constant: Namely

(2.5) Claim. The push-forward of the symplectic form w of P

by f is proportional to the symplectic form w® of P°.

Proof. Recall that the symplectic form w of P is
[?-invariant. Hence the push-forward f w of w by f is a
C1—differentiable(“°-invariant 2-form on P°. Now a computation
which will be given in §3.2 tells us that f W is proportional
to w° provided that m = dim M - 1 > 3. On the other hand, in
the case of m=2 we need the exactness. Actually in this case
it will be shown in §3.2 that the [*°-invariant 2-forms on P°
constitute a 2-dimensional linear space. However it is easy
to see that (° and its constant multiples are the only exact
2-forms on P° that are invariant under the action of [°.
Meanwhile we can easily show that the canonical symplectic form
wof P and its push-forward f w are exact. Hence f,w should

be a constant multiple of w®. 1|

2.4. Here is the last step of the proof of Theorem (2.1)
in which we have to construct a homothety between the geodesic
flow of M and that of the model space M°. The arguments
developed here are modifications and simplifications of our
previous work [K1], §§4.4-4.5. First of all notice that the
unit tangent bundle ¥ of the universal cover M of M can be
regarded as a principal R-bundle over the orbit space P=VV§t
of the geodesic flow 9% of M: 1In fact, the action of the
structure group R on V is given by the geodesic flow gi itself.
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In addition the canonical contact form i of V can be considered
to be a connection form of the principal bundle V-+P. Then

the curvature of it is the symplectic form w on P (Note here
that by the one-dimensionality of the fibers of V4P it is
possible to introduce a curvature as a 2-form on the base space
P). In the same way G°->P° is thought as a principal R-bundle
equipped with a connection 5°. In the meantime, a homothetic
change of the metric of the hyperbolic manifold M° always changes
§°, §°, and W’ homothetically. For the convenience, from now
on replace the metric of M° with a homothetic one so that the
diffeomorphism f£:P<+P° introduced in the previous subsection
preserves the curvature 2-forms w on P and w° on P°: Note that
this is possible because of (2.5). Then in order to finish

the proof of Theorem (2.1) it is sufficient to show that the
diffeormorphism f between the base spaces P and P° is lifted

to an g-equivariant diffeomorphism F:V-V° such that F'9t =
9toF (i.e., F is an g-equivariant bundle isomorphism), where

¢ is as before the natural isomorphism between the fundamental
groups [* of M and [*° of M° which act on V and V° respectively:
Then F must descend to a homothety V=V/[® +V°=V°/[® of the
geodesic flows of M and M°. To begin with we prove

(2.6) Claim. The diffeomorphism f:P-P°® is lifted to a bundle

isomorphism F:V-+V° that preserves the connection forms 0 of

V and §° of V°. Moreover such a lift is unique in the sense
that if both F,and F
T such that F

; are such lifts then there is a constant

70 ©
1 = ProFo-

Proof. Denote by W the submanifold of the product Txve
we(ve),

where v (resp. 1w °) denotes the projection of v (resp. V°) onto

consisting of all pairs (v,v°)e GkG? such that fem(v)

Yo

P (resp. P°). Then W naturally carries a structure of principal
bundle over P with structure group Rz. Let -Z be the quotient
of W by the restricted action of the diagonal subgroup R =

}(t,t)aRZ:tem} of Rz. Then it is clear that Z is a principal
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R-bundle over P. We can identify a section of Z 4P with a lift
of £ to a bundle isomorphism T+7° as follows. Suppose that
F:Y+V° is a bundle isomorphism that is a lift of f:P =P°.

Then at each point p of P it induces a map Fp:$g-+$?(g) between
the fibers of V and V°. Now take the graph of Fp in Vp“vgnp)'
Here the product Vpx?/'f"(p) is by definition the fiber of W-P

over p. In addition the graph of Fp in wp = V;:V;(B)
orbit of the action of the diagonal subgroup R in R® on W, and

is an

therefore is regarded as a point of the fiber of Z = W/R over
p. The bundle isomorphism F:V+V°an be always considered

as a section of Z-P in this manner.

Next we want to introduce a connection on Z as follows.
Let P (resp. p°) be the pull-back of the connection form 5 (resp.
§°) of V (resp. V°) by the projection of Yx7° onto V (resp.
V°), and g be the pull-back of (P-P°)/2 by the inclusion of
W into VxV°. Then ¢ is an Rz—invariant 1-form on W, and
therefore induces a 1-form € on the quotient 2z = W/R, which
is easily seen to be a connection form of the principal bundle
7 over P. Now it is not hard to see that a section of Z is
parallel with respect to the connection T if and only if the
corresponding. bundle isomorphism of ¥ onto ¥° preserves the
connections 8 of ¥V and @° of V°. Recall now that the
diffeomorphism f:P- P° between the base spaces keeps the
curvature forms w of 6 and w® of 6° invariant, and this
especially implies that the connection T on 2z is flat. 1In
addition P is simply connected since it is homeomorphic to
Smxsm\(diagonal) (m>2). Thus for each poeP and a point zg in
the fiber of Z over Py there is a unique section F of Z-=P
that is parallel with respect to the connection € and satisfies

F(po)=zo. This proves (2.6). 1

Now we can improve the previous result into the following
form, which immediately implies Theorem (2.1) as we have already

observed.
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(2.7) Claim. There exists an g-equivariant 1lift F:V+9° of

f:P+P° as a bundle isomorphism preserving the connections §
of 7 and §° of V°.

proof. Denote by I the involution of the unit tangent
bundle V that assigns -v to each unit tangent vector v of M.
Similarly let I° be the involution of V°. First we want to
show that a 1lift F:Y+V°® of f:P+P° as a connection-preserving

bundle isomorphism is 2-equivariant provided that it satisfies
(2.8) FeI = I°eF.

It is known that for each nontrivial element Y of " there is
a unique geodesic line 2 in the universal cover M that is kept
invariant under the action of ¥ on ¥ as a deck transformation

(see [EO]). If veV is a vector tangent to l it satisfies
(2.9) Y(v) =";5a(V), YeI(V) =5_aoI(V)

with a suitable constant a, where in the left-hand sides ¥
denotes the action of ¥ on Y obtained by differentiating the
deck transformation ¥ of M. Meanwhile as in §1.2 every geodesic
line in the universal cover M is canonically identified with

a point of P = BxB\(diagonal), where B denotes the sphere at
infinity of M. Moreover Ye¢ T’ keeps a geodesic line in M
invariant if and only if the corresponding point of P is a fixed
point of the action of ¥ on P. Thus it follows that v°=F(v) € V°®
is tangent to a geodesic line in M° that is invariant

under the deck action of ¥° = £(¥)e["° on M°. In consequence

as before we have
(2.10) TOve) = Bo.(v°), ¥°eI®(V®) = G2 ooI°(V°)

with a certain constant a°. On the other hand, note that the
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uniqueness part of the previous claim implies that for each
y6éT’ and ¥°=0(¥)e O° there is a constant T=T(¥) depending only
on ¥ such that

Fe¥ = @';.Y"-F.

Thus to show that F is f&-equivariant it is enough to indicate

T=T(¥)=0 for any ¥& T'. To see this take veV and v°=F(v) & V°

so that they satisfy (2.9) and (2.10) as before. By the

choice of T we have Foe¥(v) = &%.Y“(v°). With regard to the
left-hand side we have Fe¥(v) = F-?é(v) =:§;}v°) because of

the first identify in (2.9) and the fact that F commutes with
the geodesic flows Qt and ?E. Meanwhile by means of the first
identity of (2.10) the right hand side is deformed like @;-V°(v°)
= G;;ao(v°). Thus it follows that ?;(Vo) = §;+ao(v°). However
this holds only if a = T + a®. Next we want to show that -a

= T - a° which immediately implies that T=0. First again by
the choice of T we get FeoeYoI(V) = @;-Y°-Fol(v). The left-hand
side is rewritten into §ta‘F'I(V) as before by means of the
latter of the two identities in (2.9). Then the assumption
(2.8) says that ?:a-F-I(v) = §:aoI°(v°). On the other hand

because of (2.8) and (2.10) we have §;°Y°oFaI(v) = §;_aool°(v°).
In consequence we obtain ngoz°(v°) = ?;_a901°(v°) and -a =

T - a®. This shows that T=T(¥)=0 for each ¥e¢’, and eventually
that F is £-equivariant whenever it fulfills the conditiogéZ.B).

what we have seen so for reduces the proof of Claim (2.7)
to lifting f:P+$P° to a connection-preserving bundle isomorphism
F:V-+%7° which simultaneously satisfies the condition (2.8).

To do this, take a lift F of f as in Claim (2.6). Then it
is easy to see that I°% FeI:V—V° is a connection-preserving
bundle isomorphism. On the other hand, if J denotes the
involution of P that assigns (b*,b”) to each (b",b ) &P =
BxB\(diagonal) then I is a 1lift of J via the projection of V

onto P. Similarly I°® is a lift of the involution J° of P°,
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and the diffeomorphism f:P-P° obviously satisfies feJ = J%f.
Hence it follows that I° FeI is also a lift of f£f. Now by the
uniqueness part of (2.6) we can find a constant T such that
I°Fel = §;0F. Now replace F with the composite 5572°F' Then
it is clear that the new isomorphism F indeed satisfies (2.8)
since the involution I° of V° satisfies I°o§€ = §:t=1° for any

t. 1

3. Invariant differential forms and conformal structures

As the geodesic flow is a smooth dynamical system, it is
meaningful to consider tensor fields which are invariant under
the geodesic flow. In particular what we intend to investigate
in this section is relation between invariant differential forms
and conformal geometry. As before let ?t denote the geodesic
flow of a closed riemannian manifold M of negative curvature
defined on the unit tangent bundle V of M. Moreover take two
constants A_l A > 0 so that the geodesic flow q% satisfies the
inequalities (PIN) given in the introduction. On the other
hand denote by 52§4V) the space of C1—differentiable transverse
k-forms of V which are invariant under the geodesic flow Qt:
Here a differential form & on the unit tangent bundle V is said
to be transverse (relative to the geodesic flow) if the inner
product QJG of 4 with the geodesic spray @ identically vanishes.
If 0 denotes the canonical contact form of V as before, then
it is clear that w = d0 is a nonzero element of SZ%JV). Hence
the dimension of SE%AM) is at least one. Now the main result

of the present section can be stated in the following form.

(3.1) Theorem. Let M be a 3-dimensional closed riemannian

manifold of negative curvature whose geodesic flow Py satisfies

the pinching condition A/A < 2. Then the geodesic flow of M

is homothetic to the geodesic flow of a closed hyperbolic
manifold provided that dim Q%éV) > 2.
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To begin with we should make a couple of remarks. First
of all, we do not know whether the C1—differentiability of
invariant forms or the pinching condition A/A < 2 is really
necessary in the theorem. It might be possible that the theorem
remains valid even under the weaker assumptions of negativity
of curvature and of continuity of invariant differential forms.
Secondarily the computation of SZ%}V) for hyperbolic manifolds
which will be done later in §3.2 suggests a generalization of
the theorem for higher dimensional manifolds. In fact it seems
reasonable to expect that the same conclusion holds if the
manifold M under consideration is (2n+1)-dimensional and if
dimEE%%(V) > 2. However our proof of the theorem is based upon
two-dimensional conformal geometry (actually it will be proved
by means of Theorem (2.1) that has been obtained in the previous
section), and as is well known two-dimensional conformal geometry
is very peculiar compared with the higher dimensional cases.
So our proof given here can not be at least directly generalized

to higher-dimensional manifolds.

The construction of the present section is as follows.
First we want to compute 52§JV) especially for hyperbolic
manifolds, since it supports the plausibility of Theorem (3.1),
and in addition, suggests the possibility of the generalization
of it to higher dimensional manifolds. Furthermore the
computation of S2;év) for hyperbolic manifolds clarifies the
relation between Sﬁé(v) and conformal geometry. As a preliminary
for doing this, we will show a lemma in §3.1 which indicates
a quite strong restriction on SZﬁ;V) for "almost" hyperbolic
manifolds. Applying it especially for hyperbolic manifolds,
we will compute the dimension of SL%(V) in §3.2. The proof
of Theorem (3.1) will be given in the last subsection §3.3.

3.1. First of all we must study an effect brought by a

pinching condition on invariant differential forms, or more
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generally invariant tensor fields. To state the result we first
have to generalize the transversality of differential forms

to that of tensor fields. Suppose that € is a tensor filed

on V of type (r,s); i.e., T is a section of (GDrTV)@(QDST*V).
Notice here that the Anosov splitting TV = E- + Eo + E+ yields
the splitting T*V = E * + EC* + EY* of the cotangent bundle

as well. Hence the bundle of (r,s)-tensors also splits according
to them. Then T is said to be transverse provided that it has
neither E°- nor EO*—component. Obviously this definition is

a generalization of that for differential forms. The following
result has been first utilized in [KT] implicitly, and stated
and proved in [KZ] (Also some generalizations have been given

by Feres and Katok in [FK1], [FKZ]’ [F1). Note below that the
pinching condition A/A ¢ 2 is always satisfied, and in
consequence that the unit tangent bundle V carries the

qk-invariant connection ¥ that has been constructed in §1.

(3.2) Lemma. Assume that the constants A and A in (PIN) satisfy

the pinching condition A/A < (n+1)/n with a positive integer

n. Then (i) any qt—invariant continuous transverse tensor field

on V of degree 2k+1 < 2n+1 identically vanishes. On the other

hand, (ii) VT = 0 for any(yt—invariant C1—differentiable

transverse tensor field € of degree 2k < 2n.

Actually the first part is an immediate consequence of
the fact that the induced action of the geodesic flow on the
bundle (® iB—)Q(®jE+)®(®j*E'*)®(®i*E+*) (i+§+i*+3% = 2k+1)
is fiberwise uniformly contracting or expanding according to
whether i+i* > j+j* or i+i* < j+j*. This implies the
non-existence of 9t-invariant continuous sections of the bundle
other than the zero section. The second assertion of the lemma
is obtained just by applying the first to the covariant

derivative VT. See [KZ] for more details.

Here is a slight different formulation of Lemma (3.2)
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together with an implication of Theorem (3.1). As in §1.2,
denote by P the orbit space of the geodesic flow of the universal
cover of M on which the fundamental group " of M acts
differentiably. What we want to see first is tensor fields
on P that are ["-invariant. For each I'-invariant tensor field
on P, first take the 1lift of it to the unit tangent bundle V
of the universal cover of M through the projection V-+P. The
1ift is obviously invariant under the deck transformations of
the covering v-bV, and therefore descends to a tensor field
on V which is easily seen to be g%-invariant and transverse.
Thus Lemma (3.2) implies the following conclusion under the

same assumption as in the lemma: (i) A [-invariant continuous

tensor field on P of degree 2k+1 < 2n+1 vanishes on P; (ii)
if © is a ["-invariant C1—differentiable tensor field on P of

degree 2k < 2n then DT = 0 for the connection D on P defined
in §1.2.

Now let SZ;(P) be the graded algebra consisting of
Minvariant smooth differential forms on P. Note that SZ;(P)
is a subcomplex of the de Rham cochain complex of P. Hence
we can think of the cohomology H*(SZ;(P)) of it. Suppose now
that M is "almost hyperbolic", or equivalently that A/a is

sufficiently close to 1. Then as we have just seen, SZ?gd(P)
= 0, and consequently H*(SZ;(P)) = 52§4P). In addition there

is a natural correspondence between SZF(P) and 5?§éV) as we
already know. Hence the condition in Theorem (3.1) on 52§év)

can be interpreted as a condition on the cohomology H*(QZ;(P)).
In fact if the conjecture mentioned in the introduction is valid,
the theorem says that the hyperbolic manifolds can be
characterized by the condition that HZ(QZF(P)) = 2 among the
almost hyperbolic 3-manifolds. More or less the theorem tells

us that HZ(QZ;(P)) is a geometric invariant for negatively curved
manifolds. On the other hand it is well known that the action

of the fundamental group [T of M on the orbit space P of the

geodesic flow of the universal cover of M is uniquely determined
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by " up to topological conjugacy. In other words the [T-action
on P is a topological invariant of M up to topological conjugacy.
Hence Theorem (3.1) suggests that the cohomology H*(‘EE{.‘.(P))

of invariant differential forms is neither an invariant of
topological conjugacy of the [M-action on P nor a topological
invariant of M.

3.2. What we are going to do next is to compute the
dimension of GE‘;‘:(V) particularly for hyperbolic manifolds.
Throughout this subsection let M be a closed orientable
hyperbolic manifold of dimension m+1, and consider the geodesic
flow sot of M defined on the unit tangent bundle V of M. Then

we have

(3.3) Claim. In the case of dim M = 2n+2,

[
~
e
Q
a
i

" 0
dim Qg (V) ={
v 1 if k is even and < 4n+2.

On the other hand in the case of dim M = 2n+1,

0 if k is odd;
dim%B(V) =41 if k is even, < 4n and # 2n;
2 if k = 2n.

To see this we first want to find generators of Q‘];G(V).
Notice that the exterior products wk (k = 0,...,m) of W= 46,
where § denotes the canonical contact form as before, are
respectively generators of RZ(;L((V). Hence what we have to do
is to find another generator of S‘&}{;(V) in the case of dim M
= 2n+1 so as to explain the 2-dimensionality of 5?.2(;:’(V). For
this sake note first that cX(E1,...,§2n) vanishes for « € Q%,Q(V)
and ~fieEi unless exactly n of §i's are vectors of E° and the
others are of E': Actually this can be seen as in the proof
of Lemma (3.2). Thus in order to determine déEZ?Pré(V) it is
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sufficient to specify the coupling <X, f-/\ )7+> of g'_é A"E™,
7+6/\HE+ and . Now recall that the stable bundle E~ has a
natural conformal structure which is invariant under the geodesic
flow ?t’ since M is of constant curvature. On the other hand

it is known that Hodge's ¥ -operator of the middle-dimensional
exterior algebra of the even-dimensional euclidean space RZn
is a conformal invariant (More precisely % is a linear operator
of AﬁRzn onto itself which assigns (sgntr).en%.‘A...Aeﬂan to
each eq,A...Aeq,, where {e1,...,e2n} denotes the standard

orthonormal basis of mZn

and ¢ﬂ1,...,ﬂén) is an arbitrary
permutation of (1,...,2n)). Hence by means of the g%—invariant
conformal structure of the stable subbundle E- we can define
Hodge's operator # as a ?t-invariant smooth section of
(A"E7)*® (A"E”). Now define an element & of Q%i(v) by

<o, f-A’]+> = <, ¥(ET)A ’)+>. Then ¢ is actually linearly
independent of w".

To complete the proof of Claim (3.3) it is sufficient to
show that the invariant differential forms exhibited above indeed

span SZ;AV). For this purpose first note that the universal

m+1_ Form the orbit space

P of the geodesic flow of the universal cover Hm+1 as before.

cover of M is the hyperbolic space H

Then as we have seen in the previous subsection S;;}v) is
naturally isomorphic to SZF(P), the space of [-invariant

differential forms on P. Furthermore in the present case the

isometry group Iso(Hm+1) of Hm+1 acts on P in a natural way,
and the restricted action of the identity component G of

m+1
Iso(H

) on P is transitive. Since G containsg [ as a subgroup
of it gag(P) is embedded in SZF(P), where the[%%gg;;rdenotes

the graded algebra of G-invariant differential forms on P.

To see the opposite inculusion note first that Lemma (3.2)
especially applied to the hyperbolic manifold M implies that

each element of SZF(P) is parallel with respect to the connection
D on P constructed in §1.2. In addition in this case the

connection D has another characterization as follows (cf. [K2]):
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A differential form on P is parallel with respect to D if and
only if it is G-invariant. Hence by Lemma (3.2) each element
of Q,’:,(P) is also G-invariant; namely GQX(P)C Q;_(P). Thus

i i i ~4 = *
we have obtained isomorphisms SZ;éV) = ng(P) = &(P). To

proceed further recall now that the Lie group G = Soo(m+1,1)

acts on P transitively; i.e., P is a homogeneous G-space G/H,

I

where H COO(m) #r'.s0(m) (the direct product) is a closed
subgroup of G. Moreover in this case P is a reductive
homogeneous space: Namely the Lie algebra g of G has an
Ad(H)-invariant linear subspace p such that g = h + p (direct
sum), where h is the Lie algebra of H. Clearly QZgiP) is
isomorphic to A;Z(H
forms on p. In a summary we have an isomorphism

(p*), the space of Ad(H)-invariant exterior
)

- A
2401 Ny (0)-

To compute the right hand side, we have to exhibit the adjoint
representation of H on p explicitly. Actually it is given by
ad(h)(§7,7*) = (§Th7',nl") for heH = CO_(m) and €, 0" eRNRT
= p, where f— and 7+ are regarded as row and column vectors
respectively. Now by looking at this representation carefully,
we can show that the elements of A:;(H)(p*) that correspond

to the generators wk (k=0,...,m) and & of QZ;éV) described
earlier indeed generate AKA(H)(p*) linearly. This proves Claim
(3.3).

3.3. What we have observed in the last subsection is that
it is the conformal structure on the stable bundle E  that causes
the multiplicity in QZ%%(V) in the case of a hyperbolic manifold
of dimension 2n+1. Conversely at least if M is 3-dimensional
and if the geodesic flow satisfies the pinching condition A/a
< 2, then we can recover the conformal structure of the stable
bundle from the multiplicity in!Q%b(V) as we will see soon later,
and this leads us to Theorem (3.1) via Theorem (2.1) obtained

in the last section. In the proof we will make use of the
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specialty of two-dimensional conformal geometry. Roughly
speaking in dimension two, (conformal structure) + (orientation)
= (almost complex structure) = (Hodge's # -operator). 1In the
case of dim M = 3 the stable bundle E” is 2-dimensional, and
therefore it is enough to find a qt-invariant almost complex

structure on it.

In what follows suppose that M is a 3-dimensional closed
riemannian manifold of negative curvature whose geodesic flow
@, satisfies the pinching condition A/A < 2, and assume
especially that the condition dimgﬁav) > 2 is satisfied. Of
course the exterior derivative W = 48 of the canonical contact
form 8 is a nonzero element of SZ%éV). Take an another element
* of SZ%JV) that is linearly independent of w. Then we can
define a section J of E *®@E by

(7§,7") =« (§7,)") for §eE” and n*eE".

Note here that the above equation actually defines the operator
J, since w restricted to the direct sum E = E + Et is a
symplectic structure of E, and the splitting of E into E- and
E' is a lagrangian splitting. what we are going to show in

the rest is that J is an almost complex structure of E- (i.e.,
J2 = -1) if o is chosen suitably. First of all note that the
pinching condition A/A < 2 implies that V has a canonical
qt—invariant connection ¥V, and that J is parallel with respect

to it since so are w and X by Lemma (3.2). Let

be Jordan's normal form of J. Since J is parallel, the
eigenvalue K1 of J is constant on V. Now by replacing o with
® - (Re K1)u)we may assume that K1 is purely imaginary, and
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consequently J2 has a nonpositive real eigenvalue ju? = m%.

If L” CE- denotes the eigenspace of the eigenvalue 1#? of J2,
then L~ has the same dimension at each point of V since J is
parallel: 1In other words L~ is a subbundle of E . However

it is clear that the Euler class of E  is nontrivial (In fact

the restriction of E- to a fiber of the unit tangent bundle

VM is isomorphic to the tangent bundle of the 2-sphere).

Hence E~ never contains a nontrivial proper subbundle. This
especially implies that L~ = E, and eventually that g2 - —)@.
Moreover the constant u® should be different from zero: Otherwise
there would occur a contradiction to the choice of &. Finally
replace X by déu. Then we get J2 = -1; i.e., J is an almost
complex structure of the stable bundle E- . Together with Theorem

(2.1) this proves Theorem (3.1).

4. Smoothness of the stable bundle of the frame flow

The aim of the present section is to indicate an obstruction
to the smoothness of the stable and unstable bundles of the
frame flow on a certain negatively curved manifold as an
application of results obtained so far. Let us begin it with
recalling the definition of the frame flow (cf. [Grel, [BP],
[B1], [B2], [BG], [BK]). Suppose that M is an oriented complete
riemannian manifold of dimension m+1. Hereafter denote by P
the space of positively oriented orthonormal frames of M: Each
point of it is by definition an ordered (m+1)-tuple (vo,...,vm)
of orthonormal tangent vectors of M of positive orientation.

As is well known, P is a principal fiber bundle over M with
structure group SO{(m+1). In addition by assigning the first
entry Vo to each p = (vo,...,vm)é P we can define a projection
of P onto the unit tangent bundle V of M, which provides P with
a structure of principal SO(m)-bundle over V. Furthermore the
geodesic flow ?t of M defined on V can be lifted to a smooth
flow yt of P, called the frame flow of M, in the following way.
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For each p = (vo,...,vm)e P, first take the geodesic in M whose
initial velocity is the first entry vy of p, and next take the
parallel translation of the frame p along the geodesic: Then
yt(p)e P is defined to be the parallel translation of p at the
time t. Assume now that M is closed and of negative curvature.
Then the geodesic flow q& of M is known to be Anosov. Moreover
it is known (cf. [BP]) that in this case the hyperbolicity of
the geodesic flow also gives rise to a splitting of the tangent
bundle of P;

P = FUeT 4 FPOT  itn FPOT - pm o4 FO 4 FY,

and the subbundles appearing in this splitting satisfy the
following conditions: (i) FY®T is vertical with respect to
Ver _ Xer am;

is horizontal with respect to Tr; (ii) F° is

the fibering-Tr:P -V, and hence is characterized by F
. hor
meanwhile F
1-dimensional and tangent to the orbits of the frame flow yt;
(iii) for ® €F  and q+éF+, dytq— and dyt7+ contract exponentially
as t+ +00and t» -0 respectively. Note that this splitting is
continuous and unique, and especially the latter property also
implies that the splitting is invariant under both the frame

flow yt and the action of the structure group SO(m) on P.

Our purpose here is to show the following partial result
which supports the plausibility of the conjecture on the
differentiability of the horizontal bundle phor

proposed in the introduction.

which we have

(4.1) Theorem. Suppose that M is a closed 3-dimensional

riemannian manifold of negative curvature whose geodesic flow

satisfies the pinching condition A/A ¢ 2. If the horizontal
bundle phoT
C2—differentiable, then the geodesic flow of M is homothetic

associated with the frame flow of M is

to that of a certain closed hyperbolic manifold.
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Our starting point is the simple observation that the

horizontal bundle Fhor

C TP can be regarded as a connection of
the principal fiber bundle P over V. 1In fact the existence
of the splitting of TP mentioned earlier will be proved in §4.1

hor is smooth then

based on this geometric idea. Moreover if F
its curvature is defined, and will play the central role in
the proof of Theorem (4.1). 1In fact the proof will be done
in §4.2 by projecting down the curvature to a differential form
on the unit tangent bundle which is invariant under the geodesic

flow and by applying the previous theorem (3.1).

4.1. First we want to show the existence of the horizontal
subbundle Fhor associated with the frame flow, which has been
first established by Brin and Pesin [BP], however our approach
adapted here is much more geometric than theirs. The proof
given here as well as that of Brin-Pesin works even for a broader
class of dynamical systems, called the extensions of Anosov
systems by compact Lie groups, so we will prove the existence
of the horizontal bundles for such systemé. Let us begin it
with reviewing the definition of those dynamical systems. Let
P be a principal fiber bundle over a differentiable manifold
V whose structure group is a Lie group G. Then a smooth flow
yt on P is called a G-extension of a flow(yt on the base manifold
V if the following two conditions are satisfied: (i)TTn‘yt =
Qt;n,‘where'n is the projection of P onto V; (ii) yt'Rg = Rg-yt,
where Rg (g € G) denotes the action of the structure group G
on P (from right). Apparently the frame flow of an
(m+1)-dimensional riemannian manifold M is a SO(m)-extension
of the geodesic flow of M. Now we can state what we are going

to see in the present subsection.

(4.2) Proposition. Suppose that P is a principal fiber bundle

over a closed differentiable manifold V with a compact structure

group G, and assume especially that a flow yt on P is a

G-extension of an Anosov flow ?t on V. Then there always exists
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r of P which is adapted for

; . : ho
a unique continuous connection F

¥e-

Here as usual by a continuous connection of the principal

bundle P is meant a continuous subbundle Fhor of the tangent

bundle TP such that (i) TP is the direct sum of F'°F and the

ver hor

vertical subbundle F = Ker @i, and that (ii) F is invariant

under the action of the structure group G on P. Furthermore

a connection Fhor of P is said to be adapted for the G-extension
¥, if (iii) Fhor is invariant under yt and if (iv) the vector

field‘y on P that generates the flow yt is a section of Fhor.

Hence in the proposition the derivative dmw of the projection

T:P-+V gives rise to a linear isomorphism between a fiber of
hor

F and a tangent space of V, and the Anosov splitting TV =
E- + E° + E* associated with the Anosov flow ?t on the base
manifold V yields a splitting FI'®T = F~ 4+ F° 4+ F* upstairs which

satisfies the following conditions: (v) F® is 1-dimensional

and spanned by the vector field ﬁ generating the flow‘yt; (vi)
each tangent vector in F~ (resp. F*) contracts exponentially
along the orbit of yt in the positive (resp. negative) direction.

The connection Fhor

adapted for yt' whose unique existence is
guaranteed in the above proposition, will be called the

Brin-Pesin connection here.

Proof of Proposition (4.2). It is well known that a

connection of the principal bundle P is equivalent to a g-valued
1-form @ on P such that R¥@- Ad(g” )»®, and that @(X*) =
X for any X€ g, where g denotes the Lie algebra of the structure
group G, and for each X€& g, X* denotes the vertical vector field
on P, called a fundamental vector field, that is defined by
X*(p) = (d/dt) R (p) at peP. Actually if @ is such

t=oexp tX
a g-valued 1-form, which is usually called a connection 1-form,

then at each point p of P Ker ®ch P defines the fiber of the

p
connection Fhor at p. Conversely if Fhor is a connection, then

the projection of the tangent bundle TP to the vertical
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subbundle F'EF along ic'r is a connection 1-form provided the

fiber of F'®T at each point of P is identified with the Lie
algebra g by means of the fundamental vector fields. See for
detail [KN], [St].

Now let TV = E- + E° + E* be the Anosov splitting of the
Anosov flow "ot on the base manifold V, and E‘{s = d‘n'_1 (Es) (§=0,=
be the ‘)lt-lnvarlant continuous subbundles of TP obtained by
‘taking the preimages of the subbundles E® of TV by the derivative
dw:TP + TV of the projectionm:P »V. Clearly each ¥8 contains
the vertical bundle F'SY. Furthermore if a connection Fhor
on P is given, then it induces the splitting Ev,g = FYeF Fs
of each F , where Fs (8:0,1) are the components of the splitting
Fhor = F~ + FC + F' which comes out of the Anosov splitting
Tv = E- + E° + E* as before. Conversely the splittings 58 =
F'eT . F"s clearly determine the connection Fhor. Finally note
that each splitting ES = F'eL FS is also equivalent to a
g-valued 1-form ®8 on i:'-S (or equivalently, a map i"‘s-bg which
is linear on each fiber of F®) such that R*@s Ad(g'1 )e 98
and that ®8(X*) = X for X¢g. Actually thls identification
can be seen in the same way as before. We call such ®5 a

e
connection 1-form of F€. What we have to prove to conclude

the proposition is consequently that there are unique
yt—lnvarlant continuous connection forms ®BP of F§ (§=0,%)
with @3, (¥) = 0.

In the case of &=0, this is trivial since ®BP is
characterized by the condition that @ (}L) = 0. So consider
the case of §=- (The other case §=+ can be dealt with in the
same way, and will be omitted). Let ®; and 81' be arbitrary
continuous connection forms of F . Then their difference FA

o
®1 - ‘; is a g-valued 1-form on F which vanishes on F'eT

CF . Hence A can be regarded as a g-valued 1-form on F /Fver
=TL*E", where t*E~ denotes the pull-back of the stable bundle

E~ through the projection Tr. Thus in Y:@; - )lt@o = ‘y't’:"A



KSTS/RR/89/002
July 17, 1989

- 41 -

subbundle F'EF along ic'r is a connection 1-form provided the

fiber of F'®T at each point of P is identified with the Lie
algebra g by means of the fundamental vector fields. See for
detail [KN], [St].

Now let TV = E- + E° + E* be the Anosov splitting of the
Anosov flow "ot on the base manifold V, and E‘{s = d‘n'_1 (Es) (§=0,=
be the ‘)lt-lnvarlant continuous subbundles of TP obtained by
‘taking the preimages of the subbundles E® of TV by the derivative
dw:TP + TV of the projectionm:P »V. Clearly each ¥8 contains
the vertical bundle F'SY. Furthermore if a connection Fhor
on P is given, then it induces the splitting Ev,g = FYeF Fs
of each F , where Fs (8:0,1) are the components of the splitting
Fhor = F~ + FC + F' which comes out of the Anosov splitting
Tv = E- + E° + E* as before. Conversely the splittings 58 =
F'eT . F"s clearly determine the connection Fhor. Finally note
that each splitting ES = F'eL FS is also equivalent to a
g-valued 1-form ®8 on i:'-S (or equivalently, a map i"‘s-bg which
is linear on each fiber of F®) such that R*@s Ad(g'1 )e 98
and that ®8(X*) = X for X¢g. Actually thls identification
can be seen in the same way as before. We call such ®5 a

e
connection 1-form of F€. What we have to prove to conclude

the proposition is consequently that there are unique
yt—lnvarlant continuous connection forms ®BP of F§ (§=0,%)
with @3, (¥) = 0.

In the case of &=0, this is trivial since ®BP is
characterized by the condition that @ (}L) = 0. So consider
the case of §=- (The other case §=+ can be dealt with in the
same way, and will be omitted). Let ®; and 81' be arbitrary
continuous connection forms of F . Then their difference FA

o
®1 - ‘; is a g-valued 1-form on F which vanishes on F'eT

CF . Hence A can be regarded as a g-valued 1-form on F /Fver
=TL*E", where t*E~ denotes the pull-back of the stable bundle

E~ through the projection Tr. Thus in Y:@; - )lt@o = ‘y't’:"A



KSTS/RR/89/002
July 17, 1989

- 43 -

= dGDBPoh with h:TPa.Fhor being the horizontal projection, or
more precisely SZBP(”,f) = dG;BP(hy,hg) for 7,§ ¢ TP. However
especially in our case the 1-dimensionality of the fibers of
P4V implies that déﬁBP.h = dGDBP. Thus it follows that dGDBP
= g?BP = W*wy,. Now assume in contrary to the lemma thatwBP
is proportional to w; i.e., that there is a constant K such
thattdBP = XW . Then the identities obtained above imply that
dGDBP =X d®. On the other hand let c1 be a fiber of P-V,
which is of course homeomorphic to the circle SO(2). Obviously
c1 is contained in a certain fiber of P+ M which is homeomorphic
to SO(3). However H1(SO(3);R), the 1-dimensional homology of
SO(3) with real coefficients, is trivial, and this particularly
means that c1 is homologous to zero. In other words we can

find a (smooth) 2-chain c2 (lying in a fiber of P+ M)} that is
bounded by c1. Now according to Stokes' theorem and the fact

that ®F'®F = 0 we have

0 = gzd@m, -x@ = j:@Bp -+@) - J1®BP # 0
(o]

[o] c

that is clearly a contradiction. |
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