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Abstract

A harmonic map of a compact Riemann surface into the unit 2-sphere S?
is necessarily holomorphic or anti-holomorphic if its degree is sufficiently laxge.
In particular, a harmonic map of a torus into S? is neither holomorphic nor
anti-holomorphic if and ounly if its degree is 0. In this paper, such harmonic
maps of tori with arbitrary conformal structures are constructed. To construct
these, the relationship between Gauss maps of surfaces with constant mean
curvature and harmonic maps of surfaces into S? is applied.

0 Introduction.

The purpose of this paper is to investigate harmonic maps of Riemann surfaces of
genus 1 into the unit sphere S?. Holomerphic or anti-holomorphic maps of a Riemann
surface ¥ into S? are trivial harmonic maps.

Consider a Riemann surface £ of genus v. In [2], Eells and Wood proved that a
harmonic map of 2~ into S? with degree d must be holomorphic or anti-holomorphic if
|d| > v—1. Hence the homotopy classes of harmonic maps which are neither holomor-
phic nor anti-holomorphic are restricted. So, it is meaningful to find harmonic maps
of Riemann surfaces into S? which are neither holomorphic nor anti-liolomorphic.

There are some examples of such surfaces. For a surface of genus y > 2, Lemaire {5]
showed that there exisis a Riemann surface which admits a harmonic non-holomorphic
and non anti-holomorphic map into S? with given degree d < v — 1. In the case of
genus one, that is torus, a harmonic map into S? is neither holomorphic nor anti-
holomorphic if and only if its degree is 0. In this case, there exists a Riemann surface
which admits surjective harmonic map into S? of degree 0 [6].

The notion of harmonic map of a Riemann surface X’ depends only on its conformal
structure. In this paper, harmonic maps of tori with arbitrary conformal structure
into S? is constructed. More precisely, the rain theorem is the following.
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Theorem. There exist countably many “equivalent” classes of surjective harmonic
maps of an arbitrary torus into S* which are neither holomorphic nor anti-holomor-
phic.

The meaning of equivalent is described in Section 1.

Related to this problem, Eells and Wood [3] showed that there exist harmonic
non-holomorphic, non anti-holomorphic maps with arbitrary degree of any conformal
structure of torus into the complex projective space CP™ provided n > 2. Our main
result is the case of n = 1 of their theorem. :

A Gauss map of a conformal immersion of a Riemann surface into E* with constant
mean curvature is a harmonic map of the surface into S?. Immersions of certain tori
with constant mean curvature are constructed by Wente [8,9] and Abresch [1]. To
prove our theorem, we apply their results and construct conformal immersions of the
universal cover C of torus into E® with constant mean curvature whose Gauss maps
are invariant under the deck transformations. These immersions may not induce tori

with constant mean curvature.

1 Harmonic maps of tori inte the 2-sphere.

Let 2 be a compact Riemann surface and g its riemannian metric associated with the
conformal structure of it. The energy of a smooth map f of ¥ into the unit 2-sphere
S? is defined as

B =5 [ 1P dvg (L1)
where | - | and dv, are the norm and the volume element of g respectively. Note that
the definition of Z(-) depends only on the conformal siructure of 2, not on the choice
of a riemannian metric g.

A critical point of the functional E(-) is called a harmonic map. Amap f: X — 2
is harmonic if and only if it satisfies the Buler-Lagrange equation

2l 2f _orof (1.2)

0202 1+|f|20202
with respect to the complex coordinate z of L. Here we identify S? with C U {oo}

by the stereographic projection at the north pole.
The automorphisms of = and the isometries of S act on the set of harmonic maps
of X into 5%

Lemma 1.1 Let ¢ : X — X be ¢ holomorphic or anti-holomorphic map and 7 :
52 — 5% an isometry. Then if f : X — S2% is harmonic, so is 7o f o .

From now on, we call 70 f o p in the above lemma an associated harmonic mdp of f.
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DEFINITION.  Two harmonic maps fi, fo : £ — 5% are called eguivalent if there
exists a harmonic map f : £ — S? such that both f; and f, are associated harmonic
maps of f.

In particular, if X' is a torus, covering maps are holomorphic, and composing these
with given harmonic map f, one can construct infinitely many associated harmonic
maps of f. In this case, there are infinitely many equivalent harmonic maps with
different energy value.

It is well-known that the Gauss map of a surface with constant mean curvature
in the euclidean 3-space E® is harmonic. In the rest of this section, we assume that
X' is a torus and study the relationships between harmonic maps and immersions of
constant mean curvature.

Let ' =T be a torus. Then T is represented as a quotient C/I', where I' is a
lattice of C.

Consider a conformal immersion x : C — E®. In the complex coordinate z =
4+ +v/—1v of C, the normal vector &(p) of x at p € C is written as

£lp) = olP) X xu(p) -

xu(p) % xu(p)}

The immersion x is called orientation preserving (resp. reversing) if the orientation
of E® determined by the frame (x,, x,, £) coincides (resp. does not coincide) with the
canonical orientation of E3.

The Gauss map ik of X is a map of C to S? which maps p € C to the unit normal
vector £(p) at p. If Uy is invariant under the action of the lattice I', it induces a map
ve : T=C/I' — S The following lemma is a criterion for the equivalence of such
harmonic maps.

Lemma 1.2 Lei x; : C — E* (i = 1,2) be orientation preserving (resp. reversing)
conformal immersions with constant mean curvature H = 1/2 whose Gauss maps are
invariant under the aciion of a lattice I'. Assume that the harmonic maps vy, : T =
C/I' - 5% (i = 1,2) are equivalent. Then the image cf X, is congruent lo that of x,
under the motions of B3,

PRroor. Suppose Gauss maps vy, and vy, are equivalent. Then we can assume that
there exist a holomorphic map ¢ : T — T and an isometry 7 : 52 — 52 which satisfy

Vg, = T O by, 0.
Lifting this to the universal cover C of 1", we have
Uy, = T 0 Ux; 0,

where @ is the lift of . Since x; and x; preserve (resp. reverse) the orientation, 7 is
extended to the motion 7 of E® as an element of SO(3). Then,

Vxs = Viex, O Q.

3
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On the other hand, the immersions x; and x; are determined by their Gauss maps
and mean curvatures up to a translation [4]. Hence

Xa=7o0Xx;0¢+c,
where ¢ is a vector in E®. m]

REMARK. For a given harmonic non-holomorphic map f : T — S2, one can construct
a conformal branched immersion x of the universal cover of T' to E® with constant
mean curvature whose Gauss map vy = f [4].

Moreover, if f is not anti-holomorphic, the degree of f is 0. In this case, f; have
no zeroes because of the index formula of Eells-Wood [2], and then, the immersion x
have no branched points.

In particular, the set of harmonic maps of 7' to S? with degree 0 corresponds
bijectively to the set of conformal immersions of C to E® with non-zero constant
mean curvature whose Gauss map is I'-invariant.

2 Construction of harmonic maps.

In this section, we construct harmonic maps of tori into S? using the construction
of twisted tori with constant mean curvature by Wente [9]. More precisely, we shall
prove the following theorem mentioned in Section 0.

Theorem 2.1 Let T be a torus with arbitrary conformal structure. Then there exist
countably many equivalent classes of surjective harmonic maps of T into S? which
are neither holomorphic nor anti-holomorphic.

To begin with, we review the relationship between sinh-Gerdon equation and
surface theory. :

Let 2,54, = (—ao, 6o) X (—bo, bp) be a rectangular domain of R?. Then the Dirichlet
problem of the sinh-Gordon equation

Aw+ coshw sinhw =0 (2.1)

on 2,4, has the unique positive solution wy when ag™ + b2 > 472 [8,1,7]. This
solution can be extended to the doubly periodic solution @ of (2.1) by the odd
reflections about 842,,4,. The fundamental domain of &, is a rectangle. '

To construct harmonic maps, doubly periodic solutions of (2.1) with “skew” lat-
tices which are constructed by Wente [9] are used.

Lemma 2.2 ([9], Theorem 1) For suﬁ‘icientlg./ small positive ey and by, there exist
a neighborhood U of (ag, bo, 0) € R® and a smooth function w(u,v; a,b,c) on R? x U
which satisfy the following conditions.

(1) For each (a,b,c) € U, w(u,v; a,b,c) is a solution of (2.1) on R2.

4
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(2) Let py = (24,0) and py = (2¢,2b). Then
w(u + p1; a) = w(u + pz; &) = w(—u; a) = —w(y; a).
(3) w(u,v; ag,bo,0) = wp{u, v).
Here u (resp. a) means (u,v) (resp. (a,b,c)).

The solution w(u, v) = w(u,v; a,b,c) of (2.1) determines a surface with constant
mean curvature. That is, the Frenet equation

Kun = WXy — WyX, + Lf
Xuo = WyXy + WeXy + ME
Kyy = WXy — WyX, + NE (2.2)

b = —e"2(Lx, + Mx,)
& =—e"*(Mx,+ Nx,)
is integrable and its solution x : R? = C — E? determines an immersion with

constant mean curvature 1/2. Here, L, M and N are the coefficients of thc second
fundamental form of x:
L = L(B) ¢“(sinh w cos? B + cosh wsin® ),

M = M(B) = —sinf cosp, (2.3)
N =N(f) = e“(coshwcos?f+ sinhwsin®p).

1l

The fundamental forms of the immersion x with respect to the unit normal vector 13
are
l[dz]* = e (du? + dv?),
—dz - df = Ldu?®+2M dudv + N dv?.
The principal curvatures of x are \; = coshw and A\, = sinh w. The lines of curvature
with respect to A; and ); are straight lines and S is the angle between Aj-curvature
lines and the u-axis.

(2.4)

Since the immersion x is determined by a, b, ¢, # up to a motion of E3, we write
x(u, v) = x(u,v; a,b, ¢, B).

The Gauss map 7 of x determines a harmonic map of R? = C into 5%. Using
this, we construct harmonic maps of the torus of given conformal structure into S2.

To construct harmonic maps of tori into S?, it is enough to find {a,b,¢c, B) such
that the normal vector € of x(u; a, B) is doubly periodic with respect to u. ‘

By (2) in Lemma 2.2 and (2.4), there exist motions E; (t = 1,2) of E® which
satisfies

x(u+2p,; a,b,¢, ) = E; o x{u; a, b, ¢, f).

Decompose E; to their linear parts and parallel translations as

Ei=A+¢ (i:1:2)a
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where A; € SO(3) and ¢; € R® (cf. [9]). Then A; (i = 1,2) are normalized by
orthogonal matrices P; as

1 0 0

'P,A;P.=| 0 cosf; —sin6; (i=1,2).
0 sinf; cosb;

The rotational angles §; (i = 1,2) depend on q, b, c and . If both 6; € 27Q (i = 1, 2),

then the Gauss map ¥y is invariani under a certain lattice.

Fix (a,b,c) € U, where U is the neighborhood in Lemma 2.2. For this triplet, we
define a map from a neighborhood of (1,0) to R? as

¢abc : (t, ﬁ) s (91 (at: bt: Ct) ﬁ): 02(at) bt; Ct; ﬁ))
Then the following lemma holds.

Lemma 2.3 For a certain (ag, bo), the following assertions hold.

(1) The derivative d®,q0 does not degenerate at (¢, 8) = (1,0).

(2) The image of the regular points of the Gauss map i : C — S2 of x(ao, bo, 0,0)
is 52,

We prove this in the next section.
The proof of Theorem 2.1 follows this fact.

PROOF OF THEOREM 2.i. Take ap and by as in Lemma 2.3. Then there exist a
neighborhood V of (ag, by, 0) in R? and a positive number e which satisfy:

(3) I (a,b,¢) € V, then d®,,. does not degenerate at (¢, 8) = (1,0).

(2) if (a,b,c) € V and |B] < ¢, the Gauss map of the immersion x(u, v; a, b, c, B) is
surjective,

We denote the lattice generated by the periods 2p; = 4(a, 0) and 2p; = 4(b, ¢) of
@(a,b,c) as I'(2ps, 2p2) and define T'(a, b, ¢) = C/I'(2py, 2p;).

Not that for a given torus 7', the set of (a, b, ¢) for which there exists a conformal
map of T' to T'(a, b, ¢) is dense in V (see Appendix). Take (a,b,c) from this set and
consider a holomorphic map :

¢: T — T(a,b,c). ~(2.5)

Let poi = 6i(a,b,¢,0) (i = 1,2). Then by (1), P.s. gives a diffeomorphism from a

neighborhood of (1,0) € R? to that of (po1, po2) € R2. Take a pair (41, 43) in the
neighborhood of (o1, ig2) as

po=Ttom (i=1,2), (2.6)

my
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where n;/m; (i = 1, 2) are irreducible fractions. Then there exists a pair (¢, §) in the
neighborhood of (1, 0) such that

bi(at,bt,ct,f) = u; (i =1,2). (2.7)

The Gauss map &(u, v; at, b, ct, B) of the immersion x(x, v; at, bt, ct, B} is invariant
under the action of I'(2m;p1, 2mep2) at (¢, §) in (2.7). Then this induces a harmonic
map

v =v(u,v; at,bt,ct, B) : C/I'(2mp;, 2myp;) — S2.

Composing 1 and ihe natural covering projection
. _, 2 2
p:T(a,bc) = C/I{2p;,2p;) — C/I'(—p1, —Pp3),
m2 my

we have a harmonic map
vopop: T — 52 (2.8)
This map is surjective because of (2).

The Gauss map of a surface is holomorphic if and only if the surface is minimal,
and anti-holomorphic if and only if the surface is totally umbilic. Hence the harmonic
map (2.8) is neither holomorphic nor anti-holomorphic.

Since the set of (a,b, c) admitting a conformal map (2.5) is dense in V, one can
construct countably many harmonic maps of T to 52,

Now it is sufficient to show that there exist countably many equivalent classes of
such harmonic maps.

Let (a1,01,¢1) and (az,b2,¢;) be two points of V admitting conformal maps as
(2.5) which are sufficiently close in V. Then v; = v(u, vy aity, biti, cit, B;) (1 = 1,2)
determine harmonic maps of T" into S? for some (¢, 5;). If t; # t,, the functions
wi = wlu, v; aity, bity, city) (i = 1,2) are distinct each other because their fundamental
periods are independent. Hence (C, ¢**'[dz|?) is not isometric to (C, e*?|dz|?). Then
by Lemma 1.2, v; and 1, are not equivalent. 0

3 Proof of Lemma 2.3.

Proor oF THE FirsT PART oF LiMMA 2.3.

In the case of ¢ = f = 0, w and x are the solutions explained by Abresch (1). By
his calculation, 6;(tag,1bo,0,0) = 0. Then 86,/8t = 0 at t = 1 and B = 0. Take
(@0,b0) such that ay = by. Observing the calculation in [1, Lemma 4.5], we have
062/0t < Gati=1and f=0.

Now it is sufficient to prove 86,/88 # 0. To prove this, we shall prepare some
terminology. Let ey = e7“Xx,, €5 = ¢7¥X,, e3 = £ be the Frenet frame of the immersion
x(u, v; ag, bo, 0, B) and

X(u,ﬂ): €3
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for fixed v = 0. We normalize X(0,8) = I. So, X(u, ) is expanded with respect to
B as

X(u, B) = Xo(u) + BY (u) + o(B),
where Xo(u) = X(u,0) and Y(u) = 8X/8f|p=0. Note that X(4ap,0) = I because of
[1]. So we have the following lemma by direct calculations.

Lemma 3.1
86, . .
—_ =0 if and only if Y{4as) = 0.

8}9 t=1
B=0
PROOF. Since X € 50(3), there exists an orthogonal matrix P = P(u, 8) € SO(3)

which normalize X

X(u, f) = 'PDP, (3.1)

1 0 0
D=1 0 cosf@ —sinf 1.

0 sinf cosé

where

Here, 6 is a function of u such that 6(4ac) = 6;. Expand P and D with respect to g

as

P = P+ BT+ o(B),
D = I+ BH+op),

where 0
0 0

=2 ( ; )
v =1

fmo 01 0

Since 'PP = I, we have
PPy =1, ‘Pl — TP = 0.
Then, by (3.1) and keeping in mind that X,(4a,0) = I,
X(400,8) = I+ pB'PDP+o(p)
= I+ B'PHPy+ o(B).
Hence the conclusion holds. a

To complete the proof, it is enough to shew Y{4a,) # 0.
The Frenet equation (2.2) shows that e; = (0,1,0) along the curve v(u) = x(u,0;
ao, bo, 0, f). Then the curve y(u) = (x, 9, z) lies in zz-plane. Using this, we have
0 —z(4ao) + z(0) 0 )
0

/
Y {(4ap) = Xol4ao) L z(4ag) — 2(0) —z(4ao) + z(0)
0 z(4ae) — z(0) c
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by Wente’s calculation [9, equation (3.6)].

Now we assume aq = by. In this case, the curve 4, the \-curvature line of
z(ag, bo, 0, 0) never closes up [1]. Then z(4ao) — z(0) or z(4ag) — 2(0) does not vanish.
Hence Y {4ag) # 0, and then 86,/08 # 0 at t = 1 and B = 0. a

PROOF OF THE SECOND PART OF LEMMA 2.3.
Here, we shall prove the surjectivity of the Gauss map v when ¢ = 8 = 0. In this
case, the solutions w and x are those of Abresch [1]. Consider the curves

Yi(u) = x(u,bo; ao,bo, 0,0)
’)/Z(U) = X(ag, ) aO:bO) 0) 0))

which are the curvature lines of the immersion x = x(u, v; ao, b5,0,0). Both v and
Y, are plane curve in E?. Moreover the first normal vector of +; coincides with the
normal vector £ of x along . The behavior of normal vectors along v; and 7, is
analyzed by Abresch [1]. First, the Gauss image of -y, is a great circle in 52, We
assume this circle is the equator.

Then the Gauss image of v, contains a meridian as a regular set of the Gauss map
[1, page 185]. Hence, there exists an open strip F containing this meridian in the
regular set of the Gauss image of the surface.

In case §; = (n/m)2m, the equator intersects m-times with copies of the Gauss
image of ;.

Now we perturb ao and by such that the denominator m of 6,/{2x) is sufficiently
large. Then mcopies of the strip F' cover whole S?. Hence the image of the regulax
points of the Gauss map is S o

A Appendix.

The purpose of this section is to prove the following proposition referred in Section
2.
Throughout this section, we denote a lattice of C = R? generated by p; and p,

by F(pl)p2)‘

Propostion A.1 Let Ty = C/I'(p1,p2) be a given torus. Then for any torus T,
the set of lattices I' which admit holomorphic maps from T to C/I' is dense in the
neighborhood of I'(p1, Pa)-

In the proof of this proposition, the following lemma is essential.

Lemma A.2 Let I'(p1,p2) be a lattice of C. Then for any rational numbers A and
(1 # 0), there exists a holomorphic map from a torus I'(p1, p2) to C/I'(p1, Ap1+ups).
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PRrooOF. First, we claim that there exists a holomorphic map
n
©: C/I(p1,p3) = C/T'(p1, —pa),

where m and n are integers. In fact, composing the natural projection

' 11
¢1: C/I(p1,p2) = C/T(=py, —p2)
n m

and the homothety
C '1’“(1 ! ) — C/I( - )
. . —=Trg) — =
p2:C/ P —Pa) Py —P2),

we have a desired holomorphic map.
If A = 0, the conclusion follows the above fact immediately.
Assume A # 0. Since I'(py, pi + (11/A)p2) = I'(p1, (4/X)p2), we have a holomor-
phic map
%1 : C/I(p1,p2) = C/I'(p1,p1 + %P:a)

using the above fact. Moreover, there exists a holomorphic map

Y2 : C/I'(p1,p2) = C/I'(p1, Mp1 + gpz))

Then a holomorphic map 1, 04; from C/I'(py, pa) to C/I'(py, Ap1+up3) is obtained.
a0

PROOF OF PROPOSITION A.1. We can assume one of the generator of the lattice
of T' coincides with that of 7o without any loss of generality. That is, we assume

T =C/I(pyr)
Then, to prove thc proposition, it is enough to shew that the following claim.

For any € > 0, there exists a vector q such that

(1) |p2— 4] <e, and
(2) the lattice I'(p1,q) admits a holomorphic map from C/I'(py,r) to

C/I'(p1,q).
Since p; and r are lineatly independent, there exist numbers o and (B #0)
such that
P2 = ap; + fr.
Take rational numbers A and u which satisfy
: € €

A—a)<=—— and |u-pg < —.

Wl < gy ot A< g
Then g = Ap; + pr satisfies the conditions (1) and (2). ]

10
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