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Abstract

Let = be an immersion of a compact surface X into E3 with constant mean
curvature. Then the Gauss map ¥ of z is a harmonic map from X into the
unit sphere S2. Identifying $2 with C U {oo}, the conjugation ¥ is also a har-
monic map. Moreover, this map is shown to be realized as a Gauss map of a
branched immersion Z of ¥ with constant mean curvature. In particular, # have
no branched points if X is a torus. In this case, the relationship between = and
Z is also discussed.

0 Introduction.

Recently, the study of compact surfaces with constant mean curvature has been
developed remarkably. In 1984, H. C. Wente [13] discovered conformal immersions
of rectangular tori in E® with constant mean curvature. Later, U. Abresh [1] and
R. Walter [12] explained such tori in terms of elliptic functions. Moreover, immersions
of non-rectangular tori with constant mean curvature were constructed by Wente [14].
More recently, N. Kapouleas [7] [8] constructed compact surfaces with constant mean
curvature of higher genus.

It is well-known that the Gauss maps of such surfaces are harmonic. Conversely,
K. Kenmotsu [9] established the fundamental tools for reverse construction of an
immersion from prescribed Gauss map and mean curvature. As a special case of his
results, a harmonic map ¥ of a simply connected Riemann surface X into the unit
sphere $? determines a conformal branched immersion of ¥ into E? whose Gauss
map is ¥. These results are reviewed in Section 1. Through these facts, it seems that
the theory of harmonic maps between Riemann surfaces is very useful for the study
of surfaces with constant mean curvature.

Unfortunately, Kenmotsu’s result cannot apply for a compact surface unless it is
simply connected. In fact, even if ¥ is a harmonic map of a compact Riemann surface
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X into the sphere, it does not determine a branched immersion of X but that of the
universal cover of 3 in general.

The purpose of this paper is to study the Gauss maps of compact surfaces with
constant mean curvature in E3.

Let ¥ : ¥ —» S? and H : ¥ — R' be mappings defined on a compact Rie-
mann surface . In Section 2, a necessary and sufficient condition for an immersion
determined by ¥ and H to give an immersion X itself is given.

The Gauss map ¥ of an immersion z : X — E3 is considered as a map from ¥
into C U {oo} with the stereographic projection from the north pole. Assume the
mean curvature of z is constant. Then under the above identification, the Gauss map
¥ of the immersion z satisfies

20
14|22
Evidently, the conjugation ¥ also satisfies (0.1). In Sections 3 and 4, properties of
the immersion # determined by ¥, namely U-immersion are discussed. It should be

(01) J’zi Qiz!pg = 0

remarked that the definition of  is independent of the stereographic projection, that
is, by composing an isometry 7 of E*, the Gauss maps of z and 7 o # are mutually
antipodal.

In Section 3, we shall prove that if 2 is an immersion of compact surface ¥, ¥ also
determines a branched immersion # of X' not of the universal cover of it. Moreover,
Z has no branched points if X' is torus. This implies that for each immersion of a
torus with constant mean curvature, there exists a corresponding immersion with
such properties.

Immersions admitting immersions with the conjugate Gauss maps are not neces-
sarily with constant mean curvature. A sufficient condition that such an immersion
admits an immersion with the conjugate Gauss map will be given in Section 4.

In the last Section, the relationship between the immersions of tori constructed
by Wente [13] [14] and the corresponding immersions with the conjugate Gauss maps
of them is discussed.

The authors are grateful to Professor Katsuei (enmotsu for his valuable sugges-
tions and discussions. They also wish to express their gratitude to Professor Mitsuhiro
Ito for his helps and encouragements.

1 Weierstrass formula for surfaces of prescribed mean curvature.

In this section, we observe the representation formula and some related formulas
for surfaces in the euclidean 3-space with prescribed mean curvature established by
K. Kenmotsu [9]. )

First, we shall review the classical theory of surfaces. Let z : U — E2 be an
conformal immersion of a simply connected domain U in C into the euclidean 3-space.

2
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Here, conformality of = says that the canonical coordinate system z = u! + /=1 u?
of C is isothermal, i.e. the first fundamental form ¢ of z is written as

g = e {(dul)? + ()} = e dzl?,

where ¢ is a smooth function defined on U.
Denote n by the unit normal vector field of z:

n o 2 Oz 9 Oz
- oul T ou?/)’
where X is the vector product of E3.

Let h = Y7, hij du'du’ be the second fundamental form of z with respect to n.
The mean curvature H is defined by

1
H= §e—a(h11 + ha2).

Let ¢ be the (2,0)-component of 2k in the coordinate system z:

(1.1) ¢= %(h11 — ha2) = V=1hya.

Using these functions, the Gauss and the Codazzi equations are written as
(1.2) |62 = €e*(H?-K),

(1.3) -gg = % 661‘:7,

where K is the Gaussian curvature of the surface, i.e. the half of the scalar curvature
of (U, g). In particular, ¢ is a holomorphic function of z if H is constant.

Note that the definition of ¢ depends on the choice of a coordinate system. Ken-
motsu used e~2°¢ instead of our ¢ in [9], which is invariant under the change of a
coordinate system.

The unit normal vector field n determines the Gauss map

v:U— S*={z€E?% |z| =1}.

Let ¥ be the composition of v and the stereographic projection of S? from the north

pole

1 7.2
(1.4) pe) =TTV Vwal”” . §% = C U {oo}.
We also call

U =pov:U — CU{oco} = Riemann sphere,

the Gauss map of the immersion .
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Before establishing the representation formula, we observe some relationships be-
tween H, ¢ and ¥. The absolute values of H and ¢ are represented by ¥ as

w 1
- 1
(1.6) lo| = 2e TT0F 2.1,
where ¥, = 0¥/0z and ¥; = 0¥/Jz. And we have a Beltrami equation [9, Theorem
1]:
(1.7) HY, = ¢ °0;.
By these equation, ¢ is represented as
49,7,
1.8 =
(8) * = [HIG + 1Py

Using these equations, Kenmotsu showed that the coordinate functions of the immer-
sion z = (z', 2%, 2%) satisfy the following equations, namely a generalized Weierstrass

formula,
Ha_wl = —— _1.._.___§2 .
oz (1+|wppp”
Oz? 1+9°
1.9 = =/ 1=
(1.9) H Vv 1(1 TTOE 7,
9z 20
H— =w—" 0o,
oz (1+ |w2)?

As a system of partial differential equations of !, z? and z3, an integrability condition
of (1.9) is given by _
20
(1.10) H(P,; — W%%) = H, ;.
Conversely, for given H : U — R* = (0,00) and ¥ : U — C U {co} satisfying
(1.10), there exists a conformal immersion z : U — E® with the Gauss map ¥ and
the mean curvature H. That is,

Propostion 1.1 [9, Theorem 4] Let U be a simply connected domain in C. Assume
H:U - Rt and ¥ : U — CU {0} are smooth maps satisfying (1.10). Then
there ezists a conformal immersion z : U — E2 with degenerate points in general,
whose mean curvature and Gauss map are H and W respectively. Moreover, such
an immersion is determined uniquely up to translation of E®. More precisely, the
immersion ¢ = (z',2%,2°) is represented by

z 1 1-—-@?

(111(2) = (] ” ‘I—I-“—"“"-"'—(l + |W12)2

Usdz + ¢4,

4
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s —y/—1 14972
w H 1+ 972
z —1 20

o H (1+|@]?)?

z%(z) = Re U;dz + co,

z3(z) = Re s dz + c3,
where 2o 13 a base point and c; (i = 1,2,3) are integral constants. The immersion
degenerates at points where ¥; = 0.

Note that the integrability condition (1.10) is invariant under the change of a
coordinate system. We call the function ¥ of a surface into the Riemann sphere
satisfying (1.10) H-harmonic.

If H is non-zero constant, H-harmonicity means harmonicity. In this case, the
immersion z with degenerate points becomes a branched immersion of U into E? [6,
Proposition 2.4].

Rewrite the integrability condition (1.10) as

d 20 0

11 9 (log ) — —22 i, = 2 (log H).
(1) 508 ) = 7 B = 5-(log H)
By considering (1.11) as a differential equation of log H, we have the integrability
condition

& 20° 20

1.12 I T D)t s U — ——— Wz | =0.
( ) m(@z@f(bgw)_%(l-l—l!—/lz)’ww (1+|W|2)2W ) 0

Note that ¥, # 0 is equivalent to H # 0.

By (1.11), H is determined up to homothety for given ¥. Moreover, since the
immersion z is determined by H and ¥, z is completely determined only by ¥ if
H # 0. This fact was pointed out by A. Hoffmann and R. Osserman [4] for surfaces
in higher dimensional euclidean space.

From this observation, we call the immersion z : ¥ — E® determined by ¥ : ¥ —
C U {o0} ¥-immersion.

2 Gauss maps of compact surfaces.

Consider a compact Riemann surface X, and let H : ¥ — R* and @ : ¥ — CU{oo}
be smooth maps satisfying the integrability condition (1.10). Applying Proposi-
tion 1.1 to a local isothermal coordinate system of X, we can construct locally an
immersion with degenerate points of the surface into E® whose mean curvature and
Gauss map are H and ¥ respectively. In fact, the constructed immersion gives only
an immersion of the universal cover % of ¥ in general.

In this section, we shall give a condition for the immersion constructed like above
to induce an immersion of the compact surface X' itself.



KSTS/RR-88/007
May 16, 1988

For given maps H : ¥ — Rt and ¥ : £ — C U {00}, we define
-1 1-0
= —— W, dZ
w1 Re FRCENIDE Z
=2
21 _ —-v=1 147 e
(2.1) wr = Re—p— s e 42
—20 _
w3 = RGWWECL&

Assume w;(z) = 0 at the points ¥(2) = co. Then w;, wy and ws are smooth 1-forms
on X. Using these forms, we rewrite the integrability condition (1.10).

Propostion 2.1 Let X be ¢ Riemann surface and X the universal cover of 1t. Then
for given smooth maps H: X — R* and ¥ : ¥ — CU {00}, the following assertions
are equivalent, where H and ¥ are the lifts of H and ¥ to X respectively.

(1) There exists a conformal immersion with degenerate points afET into E3 whose
mean curveture end Gauss map are H and 0 respectively.

(2) The map ¥ satisfies (1.10), i.e. it i3 H-harmonic.

(3) The forms wy, wy and ws defined in (2.1) are closed 1-forms.

PROOF. The equivalency between (1) and (2) is the conclusion of Proposition 1.1.
It is easy to observe that (3) is equivalent to

( o (-1 1-7°
Im‘é;(fmrz%) =9,

o (—v/=1 147
Im&( H (1+[2[) W) =0

0 20
Ima(*m“”f) =0

This is an integrability condition of (1.9). Hence (2) and (3) are equivalent to each
other. O

The immersion = = (z!, 2%, 23) is written as the following:

Z z z
1 2 3
(2.2) T =/ wi, T :/ wo, T =/ wa,
2g 20 Z0

where z is a base point. Thus, we have a condition for z : ¥ — E2 to give an
immersion of X
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Theorem 2.2 Let X, H and ¥ be as in Proposition 2.1. Then the itmmersion with
degenerate points z : X — E3 constructed by Proposition 1.1 gives an immersion of
Y — E3? if and only if the forms w;, wy and w3 are ezact.

Assume that the mean curvature H 1s non-zero constant. In this case, ¥ satisfies
(1.10) if and only if it is a harmonic map from ¥ into S%. Then, the degenerate
points of z (points where ¥; = 0) are isolated unless X is the sphere. The following
existence theorem holds if H is constant.

Theorem 2.3 Let X' be a compact Riemann surface and ¥ : X — S§* = CU {0} @
smooth mapping. Then the following assertions are equivalent:

(1) There ezists a conformal immersion x : ¥ — E3 with constant mean curvature
whose Gauss map s ¥.

(2) The degree of ¥ is —x(X)/2 and 1-forms w; (z = 1,2,3) in (2.1) are ezact.

PrROOF. It is well-known that if a harmonic map ¥ : ¥ — S$? is the Gauss map of
some surface, then the degree of ¥ is —x(X)/2, where x(X) is the Euler number of
X [5]. Hence (1) implies (2).

Conversely, by Theorem 2.2, (2.2) gives an immersion z of ¥ into E* with degen-
erate points. So, it is sufficient to show that = has no degenerate points.

By Eells-Wood [3], the following index formula holds:
Index 0¥ = —x(X) — 2deg 0.
Thus, if deg? = —x(X)/2, Indexd% = 0. On the other hand, the winding

number of 8% around its zero must be positive [3]. Thus there is no zeros of ¥,
which are degenerate points of 2. Hence (2) implies (1). O

REMARK. Even if deg¥ = —x(X)/2, the forms w; are not necessarily exact. For
example, a Gauss map of a cylinder in E® gives a harmonic map from rectangular
torus into S? with degree 0.

Recently, some examples of compact surfaces with constant mean curvature in
E?® are constructed by H. C. Wente [13] [14], U. Abresh [1], R. Walter [12] and
N. Kapouleas [7] [8]. The authors wish that such examples could be constructed

from Gauss maps.

3 Conjugate of Gauss maps of surfaces with constant mean curvature.

If H is constant, the integrability condition (1.10) is invariant under the conjugation
of ¥. Then ¥ determines another immersion of the surface X based on the origi-
nal immersion of ¥. In this section, we investigate such surfaces of constant mean
curvature. Throughout this section, we assume H = 1.
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Let X be a compact Riemann surface and ¥ a harmonic map from X' into CU{c0},
i.e. , ¥ satisfies _
20
3.1 U,; - ———=U,0; = 0.
( ) z 1+ |5p|2 z*z
Clearly, if ¥ satisfies (3.1), so does ¥. Then ¥ is the Gauss map of some immersion
of X with non-zero constant mean curvature. Consider the following 1-forms:

e o O
@1 = Re T Mlz)z!"z dz,
1492 _
2 Dy = —1l——— Y _dz
(3.2) @2 = Rey/ 1(1+|LT/|2)2 zdz,
. -2
w3z = Remwgdz

It is clear that &; (1 = 1,2,3) are closed if (3.1) holds. Moreover, exactness of w;

implies that of @;.

Lemma 3.1 Ifw; (1 =1,2,3) are ezact, so are @; (¢ = 1,2,3).

PrOOF. The forms w; and &; are related as
d(_i_>=w3+g,3’ d<_—___Reg_):w1+a)l’ d(_Ix_n__W____)zw2_&2.
1+ |o? 14 |2 14 |P)?
The conclusion is immediate from these identities. 0O

Hence, if there exists an immersion with constant mean curvature, we can con-
struct another immersion of ¥ whose Gauss map is conjugate to that of the first

one.

Theorem 3.2 Let z : X — E? be a conformal immersion of a compact Riemann
surface with non-zero constant mean curvature H whose Gauss map is ¥. Then,
there exists another branched immersion & : ¥ — E® with constant mean curvature
whose Gauss map is ¥. Moreover, each branched point of & corresponds with an

umbilic point of x.

PrOOF. Integrate @&; in (3.2), we have an immersion .
At a branched point of #, ¥; = ¥, = 0 by Proposition 1.1. This shows that a
branched point of # is an umbilic point of z, and vice-versa. 0

REMARK. As a consequence of this, the immersion # must have branched points
if the genus of X is grater than 2.

Assume that X is of genus 1, i.e. a torus. In this case, the immersion # in
Theorem 3.2 have no degenerate points. Thus, for each immersion of a torus with
constant mean curvature, there exists another immersion by Theorem 3.2.



KSTS/RR-88/007
May 16, 1988

4 Surfaces admitting the immersions with the conjugate Gauss maps.

In the previous section, we observed that for each immersion of a compact surface
with constant mean curvature, there exists an immersion of the surface whose Gauss
map is conjugate to the original one.

In this section, the condition of constant mean curvature is not necessarily as-
sumed. Even though the mean curvature is not constant, some immersions may admit
immersions whose Gauss maps are conjugate to those of the original ones. Hereafter,
we call the immersion determined by the Gauss map ¥ the ¥-immersion.

The notion of ¥-immersion seems to depend on a choice of a stereographic pro-
jection p : S — C U {oco}. However, this concept is independent of the coordinate
system by means of the following proposition.

Propostion 4.1 Let¥ = pov: ¥ — E3 be the Gauss map of a conformal immersion
z for which both ¥, and ¥; never vanish. Assume ¢ admits the U-immersion #. Then
there exists an isometry 7 of E® such that the Gauss map of T o & is antipodal to ¥
n S2,

PROOF. Let v =plo¥ and # = p~! o ¥ be the “spherical” Gauss maps of =
and & respectively, where p is the stereographic projection defined in (1.4). Then
v =(v',v%v®) and ¥ = (3, 2, 7°) are related by

(Vla _Vza VB) = (Dla 1727 173)'
Let 7 : E3 — E3 be the isometry defined as

(2!, 2%, 2%) = (2!, —2?%, 2%).
Then,

T(z xy) = —1(z) X 7(y).
Hence, the Gauss map of 7 o 7 equals to —v. O

In the rest of this section, we introduce a necessary and sufficient condition for

an immersion with the Gauss map ¥ to admit the ¥-immersion.

Using (1.12), we give a condition that X admits an immersion with the conjugate
Gauss map.

Propostion 4.2 Let T bea simply connected Riemann surface, and 7 : & — E3
a conformal immersion. Assume that the derivatives ¥, and Wy of the Gauss map
U : XY — CU{oo} of z never vanish. Then, x admits the T-immersion if and only if

o2
Im 020z

where ¢ is the function defined on each local isothermal coordinate system in (1.1).

(4.1) log ¢ =0,

9
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Note that (4.1) is invariant under the changes of coordinate system.

PROOF.  Since the Gauss map ¥ satisfies (1.12),

32 _ 202 29
) 2 z¥zZ — sz =
(4.2) Im (————azaz(logsp )+ 1+ |2?) 7., RENZDE ) 0

And there exists the ¥-immersion if and only if ¥ also satisfies (1.12):

o — 202 20
(4.3) Im (6262(1% T+ ey Y T G Ry sP) =0.
Combining (4.2) and (4.3), we have
0? —
(4.4) Im <5;5_§(108’ v, + log %)) =0.
Thus (1.8) is equivalent to (1.11). |

A criterion for admitting the ¥-immersion is related to a concept of H-deform-
ability.
DEFINITION. Let z : ¥ — E2® be an immersion. Then z is H-deformable if and

only if any point of ¥ has a neighbourhood on which there exists a non-congruent
deformation of = preserving its first fundamental form and mean curvature.

Note that constant mean curvature surfaces are H-deformable [10]. Recently,
A. G. Corales and K. Kenmotsu [2] classified H-deformable surfaces with constant
curvature.

As shown in [11], an immersion ¢ : ¥ — E3? without umbilic points is H-
deformable if and only if

(45) 2 18 = [(log ).
' 10207 8¢ T INoeP)l -
As a corollary of this, we have the following.

Propostion 4.3 Under the assumptions of Proposition 4.2, if x is H-deformable,
then it admits the immersion with the conjugate Gauss map.

This gives examples of immersions admitting the W-immersions even if H is not
constant. Moreover, the following example shows that there exists an immersion of
a surface admitting the ¥-immersion which is not H-deformable.

EXAMPLE. We use the notation in Section 1. Assume that ¢ is positive and real,
and that the Gaussian curvature is identically 0. Then the Gauss and the Codazzi

10
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equations (1.2) (1.3) imply

¢= €“H,
OH
o 2098
& a9z’
K= 0

These are equivalent to

pickl G

oz 9z~ 8z’
o0
08207
For example, if we put
oc=u?=1Im z, H =72,

then these satisfy above conditions. Hence there exists a corresponding surface with
o, H and ¢ by the fundamental theorem of surfaces. Evidently, such an immersion
admits the ¥-immersion. Nevertheless,

0? O?
5:97 08¢ = 5,55 o8 H =0

shows that this surface is not H-deformable.

By Proposition 4.2, the function (log ¢),: is real valued if 2 admits the U-immer-
sion. Moreover, its value has the following property.

Propostion 4.4 Let z : ¥ — E? be a conformal immersion of a Riemann surface
with non-vanishing mean curvature and ¥ the Gauss map of it. Assume that there
exists the U-immersion & of . Then the function ¢/E s holomorphic, where ¢ 1s
the function defined in (1.1) and H is the mean curvature of . In particular,

g i

5205 8% = 5,55 o8 H

holds.

PROOF. Let ¥ be the Gauss map of z. Then ¥ is that of 7. By (1.10),

(log H).8s = Wos = 1o Bl
— 20 _
(46) = Wzi - 1+ |!p|25pz z

I
5
ae

Ll
=
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(log ¢); = %HZ by (1.3)
7z
= Z(log H), by (L)
= (log H): by (4.6).

5 'Tori with constant mean curvature.

Let T be a Riemann surface of genus 1, ¢.e. a torus. Then T is identified with R?/I",
where I is a lattice of R?. Consider a conformal immersion z : T — E°. Then the
coordinate system (u!,u?) of R? is an isothermal coordinate system of z under the
above identification.

Assume that the mean curvature H of the immersion x is constant. In this case,
the holomorphic function ¢ in (1.1) on R?/I" should be constant. Hence the lines of
curvature of z are two families of straight lines foliating R?2.

Since H is a non-zero constant, we can assume H = 1 without any loss of gen-
erality. And by a homothetic change of R?/I", we can also assume |¢| = 1. From
now on, immersions of tori are assumed to be constant mean curvature H = 1 and
l¢| = 1.

Let 2 : T — E?® be a conformal immersion with constant mean curvature 1 and
Gauss map ¥. As we observed in Section 3, the conjugation ¥ determines a regular
immersion # : T' — E3 with constant mean curvature 1.

Let g = €% |dz|? and § = €% |dz|? be the first fundamental forms of z and
respectively. Then by (1.5),

2

o __ 12
¢ = 1rpptl
& _ 2 2
¢ = 1rpptl
Moreover,
(5.1) o=—5
because of (1.6). And by (1.8),
(5.2) p=2¢

holds. In particular,
Propostion 5.1 Let 7: T — T be a smooth mapping. Then

(1) 7™*g=g tf and only ifsoT =0.

12
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(2) g =g ifand only if c o7 = —0.

We call a map 7 : T — T an odd isometry of (T, g) when 7*g = §. Isometries and
odd isometries are conformal transformations of (T, g). Then they are represented as
isometries of the flat torus R?/I". Hence such transformations are compositions of
the following mappings on R?/I".

(1) Parallel displacements by constant vectors of R2.
(2) Reflections by lines keeping the lattice I" invariant.
(3) Rotations of angle 0, +7/3, +7/2 or 7 keeping I" invariant.

Note that only special lattices admit the transformations (2) and (3).
Before considering explicit examples, we observe the rigidity of tori with constant
mean curvature.

Propostion 5.2 Let 7 be an odd isometry (resp. isometry) of (T,g). Then & =
ZorT (resp. xo7) and = have the same first fundamental form and mean curvature.
Moreover, the following assertions holds.

(1) If 7 is a parallel displacement, z and & are congruent.

(2) If 7 is a reflection by a line £, then = and # are congruent if and only if one of
the families of lines of curvature of = are parallel to £.

(8) If T 1s a rotation of angle 8, x and & are not congruent unless 6 = 0 or «

(mod 27).

PROOF. The assertion (1) is trivial.

We now prove (2). Assume T is a reflection with respect to the real axis of C = R2.
Then the components of the second fundamental form % of £ are related with those
of ¥ as

ilu = iln oT, ilu = —ilu oT, i122 = 7122 oT,

and the (2,0)-component ¢ of 2/ satisfies
$=2¢.

Hence z and & are congruent if and only if ¢ is real since the induced metrics are
coincide. This condition is equivalent with that a family of lines of curvature of z
are parallel to the real axis.

The rest of Proposition is proved in the same way. ]

Unfortunately, we have no examples for which = and # are not congruent.

13
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As examples of conformal immersions of tori with constant mean curvature,
H. C. Wente [13] constructed immersions of rectangular tori into E3. Successively,
U. Abresh [1] explained examples of Wente in terms of elliptic functions. We observe
a relationship between these immersions and immersions with conjugate Gauss maps
of them.

First, we review the construction in [13].

Assume a function o on R? satisfies the equation

(5.3) Ao = —4sinho cosho,

where A is the coordinate laplacian A = 8?/(9ul)? + §%/(0u?)?. Then there exists
an immersion z : R? — E® with constant mean curvature 1 whose first and second
fundamental form g and h are written as

o g = () + (),
h = (e + 1)(du)? + (&2 — 1)(du?)%.

Clearly, ¢, the (2,0)-component of 2k is equal to 1.
To construct an immersion z of R? invariant under an action of a lattice I" from
solutions of (5.3), we assume o is a solution of the following Dirichlet problem:

Ao = —4sinhocosho in 245,
(5.5) o >0 in {24p,
o =0 on 024,

where 245 is a rectangle (0, 4) x (0, B) on R? with positive numbers A and B. If A
and B are sufficiently large, there exists the unique solution of (5.5) [14]. Moreover,
the solution ¢ is extended to the solution of (5.3) on R? by odd reflections by 9245.
Such a solution o is endowed with the symmetry properties:

o(u! + 24,u?) = o(ul,u?),
o(ut,u? +2B) = o(ul,u?),

o(—u,u?) = —o(ul,u?),
o(ul, —u?) = —o(ul,u?),
(56) a(A(— ul, u2; = U(u(l, uz),)
o(ul, B —u?) =o(ul,u?),
o(Af2 —uhu?) =o(A/2+ ul u?),
o(u!,B/2 —u?) =o(ul,B/2 +u?),
and so on.

The lines of curvature of the immersion = determined by (5.4) and (5.3) are lines
parallel to the axes on R%. One can choose A and B for which the lines of curvature
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close up in the interval [0,mA] and [0,nB] with some integers m and n. Thus the
immersion of the torus R?/I" is constructed, where I" is the lattice generated by
(mA,0) and (0,nB).

Let z : R?/I" — E2 be an immersion of a torus constructed above with the Gauss
map ¥. Assume that # is the P-immersion of = with the first fundamental form

g = €°|dz|?. Take a map 7 : R?/I" —» R?/I" defined as
r(ut,u?) = (—ut,u?).

Since 7 is an odd isometry of R?/I", the immersion # = % o T is congruent to z by
Proposition 5.2. Hence, on the examples in [13] and explicit examples by Abresh [1],
the immersion of a torus and the ¥-immersion of it are congruent with each other.
Later, Wente constructed immersions of tori of skew lattice with constant mean
curvature [14]. Though his new examples have less symmetry than previous ones,
they admits a parallel displacement 7 as an odd isometry. Thus, such an immersion
z is congruent to o 7. Then, the ¥-immersions of these examples also congruent to

the original immersions. _
Although these examples show that z and the W-immersion ¥ are congruent to
each other, the authors wish to construct an immersion of tori which give an example

that the U-immersion of it is really distinguished from the original one.
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