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Introduction

Given a one-dimensional random walk S, with So = 0, we consider the time
reversal
(1) 0,871 — Sr, Sr—2 — Sry..., 51— Sr,—Sr)

where 7 denotes the time of first entry into the open negative half line (—o0, 0) for the
random walk Sn. We then take independent copies wi,ws,... of the (finite length)
path-valued random variable (1) and define a new process {W,,n > 0} by (1.2) (see
§ 1). The purpose of this paper is to prove that, under the assumption that 7 < oo
a.s., {Wn,n > 0} is a Markov process on [0, 00) with transition function (1.3) which is
of a form of a superharmonic transform of the dual random walk. Golsov obtained a
similar result in the study of random walks in random environment ([2]); however, it
was assumed in [2] that the random walk has zero expectation and finite variance, and
the transition function of the process W,, whose Markovian property is our concern
was given in a form which is somewhat different from ours (see the final remark in §5).
Our only assumption is that the random walk enters the open half line (—o0,0) almost
surely.®)

This work was motivated by the study of the probability law of a valley which ap-
peared in the investigation of limiting behavior of random walks and diffusion processes

in one-dimensional random environment (cf. [2] [4] [7]).

*)After the completion of this paper the author began to realize, through the conversation with
M.Nagasawa, that it might be possible to apply (to the present problem) general theory of time
reversal of Markov processes([3]{5]).
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1. Main theorem

Given real valued i.i.d. random variables X,k > 1, we consider the random walk
So=0, Spn=X1+---+X, (nZl)

and denote by 7 the time of first entry of the random walk into the open half line

(—o0,0). We assume throughout the paper that
(1.1) P{r < oo} =1.
Let wy,wq,--- be independent copies of
(0,8r—1 = Sz, Sr—2 — Sr,-++ , 81 — 57, —S5r)

which is regarded as a random variable with values in

w(0) =0
W= {w = (w(0), w(1), - ,w(l)): } .

0<w(l)= 1211:{1<_zw(k)’l >1

Writing wi = (i (0), we(1), we(2), -~ , wi(lx)), & = 1, we define a process { W, n > 0}

as follows:
wy(n) for 0<n<,

w1(11)+w2(n—11) for h<n<l+1,,

(1.2) Wa

E—1 k=1 k=1 k
ij(lj)-i—wk n—le for le<n§le,
j=1 j=1 J Jj=1

-1

We also define pg(z,dy) by
~ 1
(1.3) Pe(z,dy) = mp{m = X1 € dy}{(y)1(0,00)(¥),

where
1 for z=0,

(1.4) ‘ €(z) = E {il[o,z)(sn)} for z>0

wherein 14 denotes the indicator function of a set A. It will be proved that Dg(z, dy)

is a transition function on [0, c0) (see Lemma 1). Now we can state our main theorem.

THEOREM. Under the assumption (1.1) {Wy,,n > 0} is a Markov process on [0, c0)

with transition function pg(z, dy).



KSTS/RR-88/005

April 10, 1988
2. Transition function
For z € R we write S = = + S,. Let
T =min{rn >1:5; <0}, =20,
and put
-
(2.1) G@#ﬁ:E{E:uwm},zzm A € B([0, 00)),
n=0
(2.2) p(z,dy) = P{z + X1 € dy}, p(z,dy)=P{z—-X; € dy}.

Then &(z) = G(0,[0,z)) for z > 0. In this section we prove the following lemma.
LEMMA 1. pg(z,dy) is a Markov transition function on [0, o).

PrOOF: We are going to prove
Pe(z,[0,00)) = pe(z,(0,00)) =1, z>0.

For this it is enough to prove that
J, o dew =&, =20
The proof is divided into two steps.
Step 1. ‘f[o’m) G(0,dz)P{—X; € (z,00)} = 1.
In fact, we have

1= P{r < oo}

=P{r=1}+§:P{T=n+l}

n=1

:/ p(oidy)

(—00,0)

+ / P(O,dwl)/ P(-’Chdxz)“'/
7; [0,00) [01°°) [0

- [ ©od z,d

/[0'00) ©.d5) [ ooy
=A GO0,d2)P(=Xi € (2,00))

Step 2. [(g,00) (%, d)E(Y) =¢(2), 220

3

p(xn—l,dxn)/ p(zn,dy)
o) (—00,0)

)
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In fact, the left hand side of the above is equal to

/ P{e—Xiedy) [ G@©,d2)
(0,00)

[0,9)

= / G(O,dz)/ P{z — X; € dy}
[0,00) (z,00)

= /[0 )G(O,dz)[P{——Xl € (2,00)} + P{—X; € (z — z,2]}]

=1 +/ )G(O, dz)P{—X; € (z — z, 2]},

where we used the result of step 1; also notice that the second term vanishes if z = 0.

The last line of the above equalities can be written as

1+ G(0,dz)P{z + X1 € [0,2)}

[0,00)

=14 / p(O, da:l)
[O,I)

oo
+ Z/ p(O,dh)/ p(wl,dwz)“'/
n=1 /[0,00) [0,00) [o
= G(0,[0,2)) = £(=).
The proof of the lemma is finished.

p(zn—lydmn)/ p(mnady)
o) [0,2)

3. Proof of the theorem in a special case

In this section we give a proof of the theorem in the special case where
(3.1) P{X,eZ}=1.
In this case the space W consists of the paths of the form w = (w(0),w(1),
- ,w(l)) where w(k) € Z (0 < k < I),w(0) = 0,0 < w(l) = lrggr(llw(k) and [ > 1.
We denote by u the probability law of (0, Sr—; — Sy, Sr—z — Sr,- -+ ,S1 — Sr, —Sr); of
course, ¢ is a probability measure on W. Put
p(z,y) = P{z + X1 =y}, P=,y) = p(y,2), ®,y €Z

and let us prepare a simple lemma.

LEMMA 2. Ifaj,az,--- ,ai €Z (1> 1) satisfy

(3.2) lréléxélak =a; >0,
then
(33) H{w = (0’a17 MY (11)} = 5(0) al)ﬂ‘h)“?) . 'i)\(al—l, al)-

4
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PROOF: Since the event
F={r=LSx—-Si=a (1<k <)}
is the same as the event {Si—x — S = ax (1 < k < 1)}, the left hand side of (3.3) equals
P{T} = p(0,a;-1 — ar)p(ai—1 — ar,a1—2 — ar) - - - plas — ay, —ay)
= p(ar, ai-1)p(ai-1, ai-2) - - - p(a1,0)
= the right hand side of (3.3).

In what follows z,zj,y, a are always assumed to be integers. For z,y > a we put

ga(z,4) =8ey+ . D p(zo,@1)p(e1,72) - p(n,y),
n=0

To=x
T1,,Tn 26

Ga(z,y) =6y + >, >, Bloo,2)B(@1,22) - H(@n,y)-

n=0 To=2%

Z1,,Zn2a
Then it is clear that
(3'43‘) : ga(a:, y) = ’g\u(yv .’I)), z,y 2 a,
(3.4b) da(2,y) = gats(z + b,y +0), z,y>a,VbEZ,
(3.4¢) () =G(0,[0,2)) = > galaz), =21
0<a<lz
For w = (w(0),w(1),--- ,w(l)) € W we define I(w) by
(3.5) I(w) = 1.
Given positive integers aj, -+ ,am (m = 1) we put
(3.6) o' = min a

and for an integer a with 0 < a < a* we consider the events

w(0)=0

wk)=ar (1<k<m)
An(ar, - yamja) =SweEW: , n>0,

l{(w)y=m+n

wim+n)=a

Aar,- - ,am;a) = U An(ai,---am;a).
n=0

LEMMA 3. For positive integers a,a1, -+ ,am(m > 1) with 0 < a < a* where a” is

5
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defined by (3.6) we have

m

(3.7 p{A(a1, - ,am;a)} = {H;’f(aj_l,aj)} da(@,am), ag=0.

i=1

PROOF: The identity (3.7) is a consequence of the following (3.8),(3.9) and (3.10):

(58)  wlholas, amial} = {

[Tie, Plak—1,ar) if a = @ and hence = a*)
0

otherwise.
(3.9)
I'L{An(alj cet y0my a)}
= Z p{w = (0,a1,"* ,am, Gm+1,"** , mtn-1,0)}
am+ham+2,"',ﬂm+n_12a
= Z ﬂo’ ai )ﬂal ] a2) e ﬁ(am-l-n—l ) a) (by (33))
Am41,8m+2," y8mpn—1206
m
= Hﬁ(ai-lsaj) “gn, n 21,
j=1
where
plam,a) if n=1,
gn = > Pam, @m4+1)D(@m+1,am+2) -+ - P@m+n-1,0)
Cm41,8m42," 1 80min-126
if n>2.
o0
(310) 50,.,,0. + Zgn = 'g\a(am,a) B ga(a’ am)-

n=1
We now proceed to the proof of the theorem assuming (1.1) and (3.1). Let
wy,ws, - be ii.d. random variables with values in W and with common probability

distribution p and define a process {W,,n > 0} by (1.2). Given integers
ap=0,a1 >0, ,am >0 (m2>1),
we consider the events
A={Wi=ar (1<k<m)},
Ae={Wer=ar (QAZk<m),W,, =a},

where Wi = II;iIan. Then A = U Aq (the case a = 0 is excluded because W, > 1
n’m
= 0<a<lam
for all n > 1). Let 0 < a < a,, and define m(0) > m(1) > m(2) > --- > m(a) =0 as

6
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follows:
m(0) =m,
m(1l) =max{n <m:an < a},

m(2) =max{n <m(1) : an < am(1)},

m(a) =max{n < m(a—1): an < am(a—1)}-
Then it is clear that
(07 A1,02,° ", am(a—l)) € Wa

(0’ Cm(a—1)+1 — Cm(a—1)s Cm(a—1)+2 ~ Cm(a—-1)y """ »Cm(a—2) — am(a—l)) € W,

(0, Bm(2)+1 — Gm(2)s Em(2)42 — Em(2)r" " » Gm(1) — Gm(2)) € W.

Therefore, the event A, can be expressed as

a—1
Ao = [ ﬂ {wk = (Oa Am(a—k+1)+1 — Cm(a—k+1)y """ s Cm(a—k) — am(a-—k+1))}
k=1

N {wa € A(a'm(1)+1 —Qm(1)) """ s8m T Am(1), 4 — am(l))} )

and consequently an application of Lemma 2 and Lemma 3 yields

P{Aa} = {07 D50 e (@ = Gm(1)s m — Gimr))
= {31 aj-1,4;)} - gal(a, am),
where
- Pkj = Plam(a—k+1)+i—1 — Gm(a—k+1)s Em(a—k+1)+j — Fm(a—k+1))-
Thus we have

P{A}

ﬁ(ak—lyak)} * Z ga(aa am)

0<a<am

Il

il
—N— —

T=TRT=t

ﬁ(ak—nak)} “{(am)  (by (3.40))

I
s

Pe(ar—1,a),

x~
Il
—

which proves the theorem in the special case.

REMARK: From what we have proved it follows that the theorem holds for AZ-valued

random walks satisfying the condition (1.1) where A > 0 is a constant.

7
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4. Proof of the theorem in general case

To prove the theorem in a general situation we approximate {S,,n > 0} by a

sequence of random walks {Sn,»,n > 0} with values in 2-NZ N >1.
For integers N,k > 1 we put
AN = {| Xkl < N}

To define Sy,» we need another sequence of events By ;. Enlarging the basic proba-
bility space if necessary, we choose a sequence of events By, N,k = 1,2,---, such

that
(i) for each integer N > 1 the random variables 1p, .,k > 1, are i.i.d.,
~  (ii) P{Bn,} < 1 for each N and limpy—.co P{Bn i} =1,
(iii) {Bn,k; N,k > 1} is independent of {Xi,k > 1}.
For an integer N > 1 we define a function ¢ by
en(@) =G +1)27V forj2 N <e<(G+1)27V, j=0,41,---.
Then ¢n(z) | £ as N T co. Now we are in position to define Syn. Put 'y =
AN,k N By x and define Xy by

Xnp(w) = {

where ¢y is a constant of the form j2~V which is chosen so that E{Xn } < 0 holds.
Such a constant ¢y exists because P{T'} ;} > 0 by (ii). Let

<pN(Xk(w)) ifwe FN,k s

—cN otherwise,

SN,0=0) SN,n:XN,1+"'+XN,n1 n21,

7~ =min{n >1: Sn,. < 0}.
Then {SN,n,n > 0} is a random walk on 2N Z satisfying the condition P{ry < 0o} =1
which is a consequence of E{X N} < 0. Therefore the result in the special case can

be applied for {Sn,n,n > 0}.

LEMMA 4. én(z) converges to £(z) boundedly on any bounded subset of [0,00) as
N — oo, where £(z) is defined by (1.4) and

1 forz =0,
— TN
én(z) = E {leo,z)(SN,n)} for z > 0.
n=0
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PROOF: From the definition of Xy i it is clear that
XNk =¢n(Xk) for 1 <VEk <n,

(4.1) 0 < Snyn—Sn<n2™V,
TN 2T,
holds on the set f‘N,n ={r=n}n {ﬂ:zl I'n,k}. Therefore
XNk = on(Xk) for 1 < Vk <7,
(4.2) 0<SNn—Sn<n2™V forl1<Vn<r,
TN =T,

holds on the set 'y = {2, I'nn} N {Sr < =727V}, Since P{T'nx} — 1las N — oo

for each fixed k and 7 < oo a.s., it is easy to see that
(4.3) lim P{Cn}=1.
’ N—oo

The assumption (1.1) implies that there exists § > 0 such that P{X; < -6} > 6.
Then from the definition of X it follows that

é 6
P{XN,I: < ~§} >P{(X1<—-6NTNa} > 5

for all sufficiently large N, say for N > Ny. Let z > 0 be given and put

(3]

oy =min{n>1:a+Snn¢[0,2)}, 0<a <.
Then for N > Ny we have
(4.4) P{o} >v}<1—P{oy <v}

51—P{XN,ks—§, 1sv1c3u}

6 v
51—(§> <l 0La<z.
Note that (4.4) implies that there exist constants ¢ > 0 and 6 € [0,1) (which depend
on x) such that
P{o% >n} <™ forVn2>1,0<Va<z,VN = Ny,

from which it follows that
M,

M

sup E{oy} < oo,
0<a<lz
N>No

1
My = sup [E{(c})*}]* < oo.
0<a<z
N>N,

(4.5)

For typographical convenience we often write S ~N(n) instead of Sy, .. We define

9
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ON,k> kAZ 0, as follows:
1) ON,0 = 0, ON,1 = O'?V.
i) f on,;,0 < j <k (k> 1), are defined, we define on,k+1 by
{ o' Nk+1+ 0" N k1 if Snv(onk) 2 =,
ON,k+1 =

™ otherwise,

where

0" Nk+1 = min{n > onk 1 Snn < 7},

min{n >1: SN(O"N,I:+1 +n)¢[0,x) if SN(O”le+1) € [0,z),
ON,k+1 = . ,
0 if SN(o'wk+1) <0

Then we have

(4.6) {

2

&=

1[0,1)(51\1,);); ™ > n}

E
1l

0

E{ > 1j0,5)(Sn,j); TN > 1, ONg-1 < TN}

ONk-15J<oNk

(e 10

Il

~
[
-

o'NeLI<oNk

E > 1po(Sni) TN >, ong-1 < TN}

(we put o' N1 = 0)

IA
NgE
=

Z l[O,z)(SN,j); TN >N, ONk-1<TN

o' N x<J<ON,k

x~
Il
-

o0
+ ) E > Yom(Sni) onk-1 < TN
‘ k=m+1 o' Nk <ILKONk
2 3
1
<> E > Loo(Swi)| 5 ong-1<7n ¢ P{tn >n}=
k=1 o' NeSISONk
oo
+ Z Myp*? (m > 1 being arbitrary)
k=m+1

M m
< mMyP{ry > n}® + % (N > No),

10
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where
p = sup P{a+ Sy, hits (z,00) before hitting (—oc,0)}

0<a<z
N2>Ng

=1— inf P{z + SN, hits (—o0,0) before hitting (z,00)}
N>No

<1 inf P<X < § 1<Vk< <1 § ’ 1

< _ngNo N,k_—-z, < Svep<sl-— 5 < 1.

For z > 0 we put

E(n)(z) =F {Zl[u,z)(sk);T < n} ,
k=0

g(n)(x) =F {zllo,z)(sk);’r > n} ,
k=0

55\;‘)(‘1‘) =E {Zl[o,z)(SN,k);TN < n} ,

k=0

M) =E {}:1[0,,.,,(SN,,¢);TN > n} )

k=1
Then we have £(z) = £(")(z) + £(™(z) and a similar formula for én(z). Since the
probability that (4.2) holds tends to 1 as N — co by virtue of (4.3), we have
lim {5\’;)(:1:) = ¢(™(z) for each fixed n,
N—oo
while (4.6) implies
: “n 1 Mp™
§@) <mMy{P(rv > m)}E+ T2, N2 o
for any m > 1. Therefore
and consequently we have
Jim Jen(a) - 6@ < Jim 167(2) - €7(@)]
+ Im 67 (2) +€7(2)
= Jim E0(2) +E7()
—0 as n — oo.

(4.6) also implies that {n(z), N > 1, are bounded for each fixed z > 0. We have

therefore proved the lemma.

Now we are in the final stage of the proof of the theorem. Let fx, 1 < k < m,

(m > 1 being arbitrary) be continuous functions on [0, 00) with compact supports and

11
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vanishing at £ = 0 and put

1-5{

IN=E { 11 fk(WN,k)} )
k=1

where {Wn,n,n > 0} is defined from {Syn,n > 0} in a way similar to (1.2). For

simplicity we also put

fk(Wk)} s

2 s

5(:”) dy) = ﬁ((m)dy): ’ﬁN(IB,dy) :ﬁfn(x)dy))
where P, (z,dy) is defined in a way similar to (1.3). Then by the result in the special

case we can write

(47) | IN =/(.olw)ﬁN(O’dwl)fl(wl)/(o'oo)ﬁN(ml’dmZ)fZ(wz).“

. / PN (@met, dom) i (2m)
(0,00)

= E{fl(_SN.l)f2(_SN,2) e fm(_SN,m)£N(_SN,m)}:
where we put, for ¢ < 0, én(z) = fr(z) = 0 (1 £ k < m). Since €n(2)1(0,00)(z) and

€(2)1(0,00)() are left continuous nondecreasing functions, (4.2),(4.3) and Lemma 4 im-
ply that {N(—SnN,m) converges to {(—Sm) in probability as N — oo, and consequently
the second expression of (4.7) tends, as N — oo, to

(4.8)
E{fi(=51)f2(=S52) - fin(—Sm)&(—Sm)}

:/(O,oo)ﬁ(o’dxl)fl(xl)/(o’oo)ﬁ(xl,dmz)fz(zz)---/ H(@me1,dTm) fm(Tm).

(0,00)
Therefore I = Nlim Iy = the right hand side of (4.8). This completes the proof of the

theorem in the general case.

5. Examples

EXAMPLE 1: Simple random walk. We consider the case where X, X3,--- are i.id.
with

P{Xy=1}=p, P{Xy=-1}=1-p=gq.
1

We assume that 0 < p < 3, so that the condition (1.1) is satisfied. An easy calculation
shows that

z

90(073:) = %7 z 20,

12
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where r = p/q, and consequently for z > 1

z ifp=_]l,
q 2
{(e) = e
11z if 0< <1
—_ i =,
qg l1l—r P=3
Therefore, if p=1/2, then
-1
z for 22, y=2—-1,
2z
2y = 1
Pl = 52 for 222, y=2 41,
z
0 for z>2, y#z+1;
if 0 < p<1/2, then
1—pe—1
P forz>2, y=2-1,
o —_ 1— z+1
p€($$y) —I_TT forz>2, y=z+1,
0 forz >2, y#a+1;

in either case
Pe(0,1) =1, pe(0,y) =0 for0<y#1,
Pe(1,2) =1, Pe(l,y) =0 for0<y#2.
Let 5(\1,22, .-+ be iid. random variables with )?ké — X, where 2 means the

equality in distribution, and consider the random walk S, = X; +--- + )?n(go = 0).
Let {Wn,n > 0} be the Markov chain (1.2) and let {V,,n > 0} be defined by

~ 0 forn=0
Vn= ~
14+Up-1 forn>1,

where fjn = §n — o?xig §k, n > 0. Then by virtue of Lemma 1 it is not hard to see
SkSn
that

{Wa,n >0} i{vn,n > 0},

from which one can obtain the following Pitman’s theorem for the random walk §n

([6}): {ﬁn,n > 0} is a Markov chain on {0,1,- -} with transition function

1 fore =0, y=1,
1—7r*
" p"l—:——ﬁ_ﬁ for:ch,y::c—l,
D (fﬂ,y)= 1 — pz+2
Q‘m fOl’(IIZl,y=$+1,
0 otherwise.

(Note that, in the case p = %, p 11_:::1 and ¢ i::::: in the above must be replaced by

13
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2(:_|_1) and 2(’;121), respectively.)
The above Pitman’s theorem for U, holds also for % < p < 1 as can be proved
directly. Now suppose a constant b is given and, for each £ > 0 which is assumed to be

small, consider the random walk §£5) with

1+ be N
5 , P{Xp =—-1} = 7

Taking the weak limit of scaled 5§[(t€;sz] and ea{(f/)c,] as € | 0, we can obtain the following

1—be

P{Xi=1}=

result: If B(t) is a Brownian motion with constant drift, i.e., a diffusion process with

generator %'E‘% + b starting from 0, then B(t) — 20121ir<1tB(s) is a diffusion process
—3_

on [0,00) with generator %dd—; + bcoth(ba:)ad; starting from 0. This result was also

obtained by Pitman (private communication).

EXAMPLE 2: Let f be the common probability density of the i.i.d. random variables
defining the random walk S,. We consider the following two cases.

Case (i) (Bilateral exponential distribution):

ab e for z < 0,
(5.1) fay=1{ %0
{ ai be_bz for z > 0.
Case (ii) (Modified bilateral exponential distribution):
2
q o= for z < 0,
(5:2) HORR
oY bc_b” for z > 0.

Here a and b are positive constants. If a = b, the two cases coincide. It is assumed
that a < b in the case (i), so that E{Xx} = b~! —a~! < 0. In the case (ii) E{Xi} =0
holds always. Therefore, the condition (1.1) is satisfied in either case. Let G(0,dz) be
defined by (2.1) and, for an interval [r1,r2] containing 0, put

T =min{n >1:S, ¢ [r1,72]}.

We apply the Fourier method as explained in Feller [1:p.600]. After somewhat

messy computation we obtain the following result.

Case (i):
(5.3) G(0, dz) = 8o(dz) + ae™ = "dz.
ar albe T2 — 72
(5.4) P{St <n} =" e Cgp e Gamrb

ary __ b—l bry
__—brs . e a €
P{ST > 7‘2} =e a—1lbe—{(r2—m)a _ gp—1 e—(ra—r1)b’
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Case (ii):
(5.5) G(0,dz) = bo(dz) + bdz.
T2 + b_l
P{ST < = ,
(5.6) {5 <) rg—ry+al 4071
: _ -1
P{ST > 12} = rita

rg —r1+at b1
REMARK: In the case (ii) we have for z > 0
(5.7) £(z) = G(0,[0,2))
= const. Alin;o AP{S, hits I before it hits I}
where Iy = (—oco,—)] and I = [z,00). Comparing our theorem with Lemma 6 of

Golosov [2], we see that (5.7) holds in general if the random walk has zero expectation

and finite variance; naturally this fact itself can be verified by a more direct method.

Acknowledgment. The author wishes to thank I.Aredon and Y. Morita for beautiful
job in typing the manuscript.
References

[1] W. Feller, An Introduction to Probability Theory and Its Applications, vol.Il, 2nd
ed., John Wiley, New York, 1971.

[2] A. O. Golosov, Localization of random walks in one-dimensional random environ-
ments, Commun. Math. Phys., 92(1984), 491-506.

[3] N. Ikeda, M. Nagasawa and K. Sato, A time reversion of Markov processes with
killing, Kodai Math. Sem. Rep., 16(1964), 88-97.

[4] K. Kawazu, Y. Tamura and H. Tanaka, One-dimensional diffusions and random
walks in random environments, to appear in Proceedings of the 5th Japan-USSR
Symposium on Probability Theory( Springer Lecture Notes in Math.).

[5] M. Nagasawa, Time reversions of Markov processes, Nagoya Math. J., 24(1964),
177-204.

[6] J. W. Pitman, One-dimensional Brownian motion and the three-dimensional
Bessel process, Adv. Appl. Probab., 7(1975), 511-526.

[7) H. Tanaka, Limit theorem for one-dimensional diffusion process in Brownian en-
vironment, to appear in Proceedings of French-Japanese Seminar on Stochastic

Analysis (Springer-Verlag).

15



