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A Stable Manifold Theorem for the Yang-Mills Gradient Flow

Hideo K0ZoNO, Yoshiaki MAEDA and Hisashi NAITO

1. Introduction

The purpose of this paper is to study an asymptotic behavior for the gradient flow
of the Yang-Mills functional near a stable or unstable Yang-Mills connection.

In differential geometry, many subjects are defined by variational problems on
Riemannian manifolds. Most of them, however, do not satisfy the Palais-Smale condition.
For the Palais-Smale condition, see R. Palais [P], R. Palais and S. Smale [PS], or J. Eells
and J. H. Sampson [ES2]. If the variational problem defined by the functional J(-) on a
function space X satisfies this condition, the equation of the gradient flow of J with initial
value v:

% = —grad J(u(t))
u(0)=v

must have a unique time-global solution. If J does not satisfy this condition, we do not
know, in general, whether the gradient flow exists globally in time or not.

There are some results on global existence of gradint flow. In 1964, J. Eells and
J. H. Sampson proved the existence theorem of harmonic maps by means of the asymptotic
behavior of the gradient flow when the target manifold had non-positive curvature [ES1].

In studying the existence of a time-global solution for the gradient flow, we need
pay attention to the relation between the Morse theoretic stablity of a critical point and
the asymptotic behavior of the solution of the gradient flow around the critical point. For
harmonic maps, the third author studied the above relation in case of a stable harmonic
map [N1]. Concerning more general variational problems, we can refer to L. Simon [S] and
the third author [N2]. Recently, the third author proved the stable manifold theorem for
quasi-linear parabolic equations, and showed, as an application, the asymptotic behavior
of gradient flow even around an unsteble critical point assuming the ellipticity of the
Euler-Lagrange operator [N3].

Since the Yang-Mills functional is invariant under the gauge transformation group,
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the equation governing the gradient flow of the Yang-Mills functional is not parabolic.
To avoid this difficulty, the first and second authors consider a gauge condition and solve
the gradient flow under the condition that the second variation is strictly positive [MK].
Similar idea is found in M. Yokotani [Y] and K. Kono and T. Nagasawa [KN]. These
results, however, assume the Yang-Mills connection is strictly stable.

In this paper, we prove that the global existence of the grdient flow for the Yang-
Mills functional with the initial value near a Yang-Mills connection at which the second
variation is positive or not. QOur basic set-up is the following. (This set-up is introduce
by J. -P. Bourguignon and H. B. Lawson [BL].) Let (3, k) be a compact Riemannian
manifold without boundary and P be a principal G-bundle over M where G is a compact
Lie group.

We consider a G-vector bundle E := P x RV, associated to P by a faithful orthog-
onal representation p : G — O(N). The grou;) of all inner automorphisms is called the
gauge group of P and will be denoted by Gp. It can be easily identified with the group of
smooth sections of the bundle of groups Gp := P;dG, ie, Gp =T (M;Gp). Related to Gp

is the infinitesimal gauge group (gauge algebra) which will be denoted Gp. It is the Lie
algebra of smooth sections of the bundle of Lie algebras gp := P X g, i,e, Gp := I'(M;gp),
Ad

where g expresses the Lie algebra of the Lie group G.

The gauge group can be easily re-expressed in terms of E. Let Op be the orthog-
onal frame bundle of E over M, i,e, whose fiber at # € M is the group of orthogonal
transformations in E,. Let sog be the bundle over M whose fiber at + € M is the Lie
algebra of skew-symmetric transformations of E,. Then the representation p gives em-
bedding Gp «— Opg and gp < sog. We denote the images by Gg and gg respectively.
Clearly, GE =2 Gp and gg = gp.

We express the gauge group as the space Gg of smooth sections of GE, ie, Gg :=
I'(M;Gg) and the gauge algebra as the space Gg of smooth sections of gg, i,e, Gg :=

~ T(M;gg).

Subsequently we introduce some notations. Given a smooth vector bundle F' over
M, let QP(F) := T(A\? T*M @ F) be the space of exterior differential p-forms on M with
values F. Note that Q°(F) is just the space of smooth sections of F' and Gg = Q°(gEg).
Now, we study the space Cp of connection on P, or equivalently Cg on E. (For the
relation between a connection on P and a connection on E, we can refer to [BL].) It is
easily shown that, for two connections V and V' € Cg, the difference A =V — V' is an
element of Q!(gg). In particular, if we fix V € Cg then there is a canonocal identification

(1.1) Tv(Ce) = Q'(gp)-
To each connection V € Cg, there is associated a curvature 2-form RY in Q*(gg)

given by
R%y =[Vx,Vy] - Rixy]

2



KSTS/RR-88/004
March 22, 1998

for tangent vectors X and Y.
The Yang-Mills functional Y M on Cg is defined by

(12) yME) =3 [ 18R,

where the norm is defined in terms of the Riemannian metric on M and a fixed Adg-
invariant scalar product on Lie algebra g of G. Section 2 contains the precise definition of
this norm.

Critical points of the smooth functional YM : Cg — R are called Yang-Mills
connections and their associated curvature tensors are called Yang-Mills fields. Clearly, a
connection V € Cg is a Yang-Mills connection if and only if V € Cg satisfies the Euler-
Lagrange equation of the Yang-Mills functional YM. The Euler-Lagrange equation of
YM: grad(YM(V)) = 0 is expressed by

(1.3) §YRY =0

where 6§V is the formal adjoint operator of exterior derivative dV associated with V € Cg
with respect to the inner product induced by | - ||. In particular, we want to mention that
the equation §V RV = 0 is the second ordered partial differential equation with respect to
V.

We remark that the Yang-Mills functional is invariant under the gauge group Gg
action on Cg. Therefore if V € Cg is a Yang-Mills connection, then V9 := go Vo g~1
is also a Yang-Mills connection, and in terms of the Euler-Lagrange equation, this fact
implies (6vRv)g =6V RV,

On the other hand, since d¥ RV = 0 (Bianchi identity), V € Cg is a Yang-Mills

connection if and only if
(1.4) ARV =0

where A = dV§V 4 §VdV is the Hodge Laplacian on Q(gg).

Concerning the above-mentioned, we want to construct a solution of the Yang-Mills
gradient flow with initial value closed to a Yang-Mills connection. The Yang-Mills gradient
flow with initial value V; on Cg is governed by the following equation:

av _ vV pV
(YMGF) =R
V(0) = V3.

Unfortunately, the above (YMGF) is not a parabolic equation, since (YMGF) is invariant
under the gauge group action on Cg. In order to avoid this difficulty, we consider (YMGF)
under a suitable gauge condition in [MK].
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This idea is stated briefly as follows. Take a Yang-Mills connection Vo € Cg and
fix it. There is a natural splitting of the tangent space:

(1.5) To,(Cr) = Q' (gr) = Z'(gr) P U(gx),

where Zl(gp) := {V = dV°¢; ¢ € Q%(gE), ¢(z) = 0} = Im(dV°) and Ql(gr) := {4 €
Ql(gg); 6V° A = 0} = ker(§V°), and there exists the exponential map

exp : g5 — OF

induced form the exponential map of the Lie group: exp : g — G. For smooth curves
dVoS(t) and A(t) in Z'(gg) and QL(gEk), respectively, we define the map o : Z'(gg) x
0.(gr) — (gE) by

(1.6) a(dV°8(t), A(t)) := g(t) o (Vo + A(t)) 0 g(t)™! — Vo,

where ¢(t) := exp S(2).

Since ¢(0,0) = 0 and the Fréchet derivative Do (0,0) = Identity on Q'(gg), o is
a local diffeomorphism near 0 in Q!(gg). Then, by (1.5), we may consider that o gives a
coordinate around Vg in Cg. Now, taking V(t) = Vo + o(dV°S(t), A(t)) in (YMGF), we
have the following equation (*) equivalent to (YMGF):

220 — —g7e (1) - QA - [4(), S(B)] — 7S (0
* 6V°A(t) =0
A(0) = Ao.
For precise notation, see Section 2. Here we mention that the linear differential operator

JVo is the Jacobi operator (denoted in Section 2) of the Yang-Mills connection V.
For the evolution equation (*), our main result, briefly stated, is:

THEOREM. Let m > —],L;dirnM + 2. For the Yang-Mills connection Vg, there ezists a
finite codimensional stable manifold and a finite dimensional unstable manifold of (*) in
H™(Ql(gg)): the m-th ordered Sobolev space on QL(gg).

Remark In [MK], they have shown an asymptotic stability of the Yang-Mills gradient
flow near a strictly stable Yang-Mills connection. Qur theorem asserts that we can get such
behavior without assuming the stability of the critical point: the Yang-Mills connection.

In above theorem, a stable manifold is the submanifold in infinite dimensional
manifold H™(Q1(gg)) containing zero such that the equation (*) with initial value in it
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has a unique time-global solution in some Banach space. Moreover the solution tends to
the Yang-Mills connection in H™-topology as ¢ — co. An unstable manifold implies a
stable manifold with respect to the backward evolution equation.

COROLLARY. Let Vo € Cg be a Yang-Mills connection and Vi = Vo + Ao, where Ao €
QY (gg). If Ao belongs to the stable manifold as in Theorem, there ezists a unique solu-
tion V() of (YMGF) with initial value Vy. Moreover the solution tends to a Yang-Mills

connection up to the gauge group action as t — oo.

Here is an outline of the contains. In Section 2 we recall the set-up of the Yang-
Mills theory and introduce the evolution equation (*). Section 3 discusses the evolution
equation (*) and reduces it to an abstruct evolution equation. Section 4 is devoted to
gives proofs of the existence of a solution for the abstruct evolution equation and the main

result.

2. Preliminalies

As we mentioned in Section 1, we consider the Yang-Mills functional on Cg.

Let (M, k) be a close Riemannian manifold and P be a principal G-bundle over M
where G is a compact Lie group. Taking a faithful representation p : G — O(N), we can
define a G-vector bundle E := P >; RY associated to P. The Yang-Mills functional on the

set of connections on E: Cg is
1
1) ymE) =3 [ IR
M

The norm || - || is, in local coordinates, defined as follows. In a chart U of M, w € Q*(gE)
is expressed by

(2.2) W = W, g oda?t A A dzE ® Ey

where {E} is a basis of the fiber of gg at z € M and (z',--- ,2") is a local coordinate
on U (n = dim M).
In local coordinates neighborhooods, the norm of w is defined by

(2.3) ”(41”2 = piti... hjki"wjl...jk zw;l.,.,‘kz.
That is to say, the fiber metric on E is defined by

(2.4) (A, B) := -tracedB

o [
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for A,B € E,.
Now let us calculate the first and the second variation formulas. For a one-
parameter family V: € Cg of connections with Vo at ¢ = 0 and A := ! Vi, the
t=0

first variation formula is

d
(2.5) 4 ymv,) = / (8V°RY0, A).
dt|,_o M
For a one-parameter family V; € Cg of connections, with V as a Yang-Mills connection
and A := % V:, the second variation formula is
t=0
d2
(2.6) —| IM(V,) = / (6VedVe A + [RV°, 4] , A).
dt? |, M

In particular, if A satisfies 6V°A = 0 then

d2
(2.7) =

YM(Vo) = / (479670 + 67°d7%) A+ [R™°, 4], A).
t=0 M

Therefore, the Euler-Lagrange equation of YM is §YRY = 0. For A € Q!(gg) and
a Yang-Mills connection Vi, the operator JV°A := (dVo6Vo +6VodVe) A + [RV",A] =
AV°A + [RY0, A] is called the Jacobi operator of V.

Since there is a natural G action on Cg, it is easily shown that YM(V) = YM(V9)
and V'RV’ = (6VRv)g, where V9 :=goVogl.

Here we define the stability of a Yang-Mills connection. Since the restriction of the
Jacobi operator JV° to QL(gg) has the discrete spectrum: {A\; < A2 < -+ / +o0}, we
can define the indez: Index(Vy) of a Yang-Mills connection Vg and the nullity: Null(Vy)
of Vo as

Index(Vy) := f{negative eigenvalues}
Null(V,) := §{zero eigenvalues}.

A Yang-Mills connection Vy is called weakly stable whenever Index(Vo) = 0. This defini-
tion is equivalent to

(2.8)

d2

(2.9) p7v]

YM(Ve) 20
t=0

for any one-parameter family V; of connections with Vg as a Yang-Mills connection.
Furthermore, we define a strictly stable Yang-Mills connection. A Yang-Mills con-
nection V) is called strictly stable whenever for any one-parameter family V, of connections

d
with Vg as the Yang-Mills connection and EZ’ V. € QigE),
=0

d?

(2.10) | YM(V) > 0.

t=0
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(c.f. [MK], [BL].) In terms of the Jacobi operator, a Yang-Mills connection Vj is strictly
stable if and only if ker JV° C Z!(gg).

In this situation, let us avoid the difficulty that the Euler-Lagrange equation of
YM is not elliptic.

In what follows, a Yang-Mills connection Vj is fixed. As we mentioned in Section
1, there are a canonical identification of the tangent space T%,(Cg) and Q!(gg), and the
splitting of Q'(gg):

(2.11) Ty, = Q' (gr) = Z'(gr) P % (gn)-
Concerning (2.11), we define the map o : Z(gg) x QL(ge) — Q'(gg) as follows:
(2.12) o(dV°S,A) :=go(Vo+A)og ! -V,

where g :=exp S and S € Q°(gg). It is easily shown that there exist three neighborhoods
Ui, Uz and U in Z'(gg), QL(ge) and Q'(gg), respectively, such that the map o induces
a diffeomorphsim U; x U, 2 U. In particular, taking A = 0 in (2.12), we get

a(d¥°8,0)=goVoog™ — V.

Therefore the tangent space at Vg of orbits of the action of the gauge group coincides with
Z'(gE).

In the above formulation, the Yang-Mills gradient flow is rewritten to the evolution
equation (*) (in Section 1).

For a smooth curve V(¢) in Cg with V(0) = V,: the Yang-Mills connection, we
can find smooth curves S(¢) and A(¢) in Q°%(gg) and QL(gg), respectively, such that

(2.13) V(t) — V(0) = o(dV° S(t), A(t))

using diffeomorphsim Uy x Uy & = U. These U, Uy and U, give local coordinates neighbor-
hoods around zero, respectively, therefore we call the system (o;U,Uy,Usz) an addmisible
coordinates system. For the sake of simplicity, o(t) denotes a(dV°S(t), A(?)).

The differential of o in t gives:

ProPosITION 2.1 ([MK] (3.8)). For the map o defined by (2.12), we obtain

do(t)

at)o (dA() [vo+A(t),S<t)1)og(t)-1
(2.14)
= g(t)o (d"‘(t) +dVo8(t) + [A(t),sa)l) 0 g(t)~".

7
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On the other hand, the Euler-Lagrange operator at V(t) = Vg + o(t) is
§Vote(M RVota(t) For g € G and V € Cg, the formulas

(2.15) R¥ =goRVog™?,

and

(2.16) 6V'RY" = (8VR") = goé "RV 0g™?
guarantee

5Vo+a(t)RVg+ﬂ(t) RVo+a(t)

(2.17) =g(t) o (67HAWRTOHAD) o g(1) 2

=g(t)o (6V° RV +§V°dVo A(t) + [RV°, A(t)] + Q(A(t)) o g(t) !,
where
(2.18) Q(A) =670 [A, Al + [dV° 4, A] + 4, 4], 4].

(cf. [MK], Section 3.)
Therefore we obtain:

PROPOSITION 2.2. Let Vy be a Yang-Mills connection, and (o;U,Uy,Uz) be an addmisible
coordinates system. If a smooth curve V(t) in U i3 the solution of

a_v____V v
= —6"R
v(0) = V,

then a pair {S(t), A(t)} of smooth curve in Uy x Uy satisfying V(t)— Vo = a(dV°oS(t), A(t))

18 the solution of

A0 _ _ ((d¥s% +670d%) At) + [R™, A1)

(2.19) FQUA() + [A®), S(B) + d°5(1))
Vo A(t) =0
A(0) = A4,
where Ay = V1 — Vy (note that 0(0,4,) = V,).
The convese is also true.
The first equation of (2.19) is parabolic since JV°A = (dVo§Vo + §VodVo) A +
[RVe, A] is an elliptic operator on Q,(gr). These ideas are introduced by [MK]. In this

8
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section, we showed that the Yang-Mills gradient flow yields the evolution equation (2.19)
by taking a gauge condition into account. Hence, our main purpose is to solve the evolution
equation (2.19) when 4; is small. If the Yang-Mills connection Vy is strictly stable, J Vo
is a strictly positive operator in Ql(gg). In this case, [MK] has shown an asymptotic
stability of the solution of (2.19) using the method in Sections 2 and 3. We want to show
such a result of (2.19), without assuming the (strictry) stability of Vo. In our case, JV°
restricted Q1(gg) may have finite dimensional non-positive eigenspaces. To solve (2.19) in
such case, we need introduce a new evolution equation which is equivalent to (2.19), and
some preliminaries of analysis: definitions of Banach spaces, some basic inequalities.

3. Reduction of (*) to a new evolution equation and some analysis.

In this section, the equation (*) will be reduced to a new evolution equation.
Let P be a projection from Q!(gg) to Ql(gr):

(3.1) P:Q'(gr) — Qu(ger).

The operator GV° denotes the Green operator of the Hodge Laplacian AV° = §VedVe
acting on Q%(gg). See [MK, Section 3.3].
Our main purpose of this section is to prove the following theorem.

THEOREM 3.1 ([MK] 3.3). Let be Vo a Yang-Mills connection. A pair {S(%), A(t)} of
smooth curve in Q°(gr) x QL(gr) is a solution of (2.19) with A(0) = A; if and only if
{5(t), A@?)} is the solution of

040) | P aw) + P(QUA) + [A®), S)]) = 0
32 S(t) = G767 (QUA()) + [A(1), @) + GV RA()
A(0) = At

where RA := 70 [R¥0, A] + (67°)? d¥° A.

(Proof ) The evolution equation (2.19) consists of

(3.3) %A =—(A°A+ [RY°, A] + Q(A) +[4, 8] +d7°S)
and
(3.4) §V°4 =0.

9
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Applying the projection P to both sides of (3.3), we get

(35) O = P (&7 4+ [RT, 4]) - P(Q(4) +[4,5]),

since PdV°S = 0. Note that PA = A since §V°A = 0. Furthermore applying §7° to both
sides of (3.3), we have

(3.6) (6%°)*d¥° A + 6% ([R¥°, A] + Q(A) +[4,8]) + 67°d"°S = 0.
Since §V0dVo§ = A0S, we can rewrite (3.6) by using the Green operator GV° as
(3.7) §=—-G"6% ([RY°, A] + Q(A) +[4,5]) + (67°)* d™° A.
Therefore the assertion of this theorem follows form (3.5) and (3.7). I

The following proposition shows that the first equation of (3.2) is a parabolic

equation.

PROPOSITION 3.1. The operator LY° = PJV° is elliptic as an operator on QL(gE).

(Proof ) It is sufficient to show that
(38) lullzmsz < CUIFllzm + llullam)

for LVou = f and u € ker§V°.
We express the projection P as follows:

(3.9) Pu=u—dV°GVo§Vou,
where GV° is the Green operator. Form (3.9), the operator LY° = PJV° is denoted by
(3.10) LYoy = JVou — dveGVesVeogVouy,

Here note that dV°GVo§Ve is a bounded operator from H™(gg) to H™(gg) (by Ricci
formula). Since JV° is an elliptic operator, we get the desired result. il

As we mentioned in Section2 —LY° has discrete spectra: {A; > Az > ---\, —c0}.
Now we re-number these spectra, and denote by {Axy > An—1 > --- > A1}: positive
spectra and {A_; > A_2 > ---\, —00}: negative spectra. Moreover, 7, Ty and 7_ denote
projection operators onto positive, zero and negative eigenspaces of —LV° in L?(Q1(gg)),

10
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respectively. The space L?(QL(gg)) is naturally defined by the norm on QL(gg). We
remark that the operator LV° is self adjoint on L2(Ql(gg)).

Now we want to define some function spaces on Ql(gg) and Q°%gg). For m >
1 dim M + 2, we define m-th ordered Sobolev spaces on Q}(gr) and Q°(gr).

The Sobolev space H™(Q2°(gg)) with the norm || - || gm(ao(gs)) is defined by

1S 3m(20(gmy) = Z Z / (Di, -+ Dy, 83(2)Ds, - Dy, S ()
k=0 |I|=k’M
Al
~ Bzyy - Oz,
The Sobolev space H™(QL(gE)) with the norm || - || gm(q1(gg))) is defined by

where I = (i1,--- ,1x) is a multi-index and D;, --- D;, :

Al %m0 gayy = LYY - All72 + [0 AllZ: + |7+ AlZ-.

Since LY° can be considered as a positive definite self adjoint operator on w_(L?
(L(gg))), the first term of the right hand side is well-defined.

Banach spaces L2(R4; H™(L(gr)) and L2(R4; H™(Q% gg)) with norms |||+ |||m,1
and ||| - [||m,0, respectively, are defined by

oo
NAR,, = / A2 a1 gy

1S = [ 1Sl ancenn

Furthermore for ¢ > 0, the Banach space Bn, C L*(Ry; H™t1(Ql(gg))) N
L>e(R;; H™(L(gE))) with the norm |- |,,mm is defined by

AL m = 11401 + 5P [ LAO) m oz gy -

For the sake of simplicity, we abbreviate |||S|||m,0, [|Alllm,1, |S||am(0o(gs)) and
|4l m(@3(gs t 1Slms [14lllm, 1Sllsm and |4l for § € Q(gz) and A € L(gp),
respectively.

For the proof of the existence of a solution of (3.2), we prepare some inequalities.

PROPOSITION 3.2. Let m > ;dimM + 2. For Ay, A; € Q.(gr) and S, S2 € Q°gE)
satisfying |Ailym < 1, end [Silm < 1, (i = 1,2), the non-linear term N(A,S) :=
—P(Q(A) + [A,S5]) of (3.2) 1s estimated by
[N(A1, S1)—N(Az, S2)ll m-
(3.11) <C (|41 = Az|lgmai||Arllm + || A1 — Azl [ Az] =t
+[|A1 — Az[|am||S1llam + | Azl ]Sy — S2llm) -

11
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with C > 0 independent of A; and S; (i = 1,2).

(Proof ) In local coordinate neighborhoods, brackets [A, A] and [A, S] are expressed by
(4, A];; 5 = AicAj} — AjeAij
and
[4,5];8 = Aic Sy — AigSe.
The g-valued 1-form Q(A) = 6V° [A, A] + [dV° A, A] + [[4, A], 4] is estimated by

1Q(A1) — Q(Az)||gm-1

(3.12)
< C (|41 = Aol gm+i | ALl am + (| Ar — Azl || A2l mrm+1) -

Note that ||A:||gm+: <1 (i =1,2). Similarly, we have

” [A1,51] - [A2, Sz] ”Hm—l

(3.13)
< C (141 = Azllam-1||S1llzm-1 + | A2||gm-1]|S1 — Sa2l|zrm-2) .

Therefore (3.12) and (3.13) guarantee (3.11). I

Here note that assumptions |A;|,m < 1 and |Si|m < 1 in Proposition 3.2 is used
the proof in (3.12).

Since (6V°)2 d¥° is a differential operator of the first order by Ricci formula, we
see R in (3.2) is the first ordered differential one. Therefore using a property of the Green
operator, we obtain

(3.14) IGV°RA||gm < C||Allgm-1
and
(3.15) IGV 67 Al gm < C||Allgm-1,

for all A € H™"1(Q2!(gg)) with C > 0 independent of A.
These estimates (3.11)—(3.15) play very important role in the proof of the main result.
The following lemma is a basic inequality for linear partial differential equations.

LEMMA 3.1. Foru € L}(R4; H™ 1 (Q(gEe)) and v € LX(R4; H™ 1 (Ql(gE)), we assume

that 5
ou 1%
% LY°u+m_v
u(0) € Im(w_).

12
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Then we obtain

(3.16) / ()l gmss dt < [u(O)]Em + / o) 2y dt

and

G17) Ol < (O +C [ NoOlmerdt, for all t>0,
0

where 0 < g < min{[A1],|A-11}.

For the proof see [N3].
In the next section, we will prove the main result and explain the meaning of stable

manifolds and unstable manifolds clearly.

4. Proof of the main result.

In this section, we show our main result by solving (3.2), which is reduced to solve

the following equation:

t
BAE) _ _py¥oa) + P(N(AW), 5(1)
(4.1) S(t) = G¥067° (N(A(t), S(1))) + GV RA(Y)
A(0) = Al.
For this purpose, we adopt the following iteration scheme:
O o L%Au 4 PN(4ss,50) (2 D)
(4.2) Sn=G7%6% (N(An1,50-1)) + GY°RA, (n>1)
AQ = 7!'...1‘11 )

where A! is in H™(Q2L(gg)) for m > 1 dim M +2. For the sake of simplicity, we abbreviate
N(A(t),S(t)) to N(A, S)(t). This iteration scheme is re-expressed by the following integral

equation system:
t
An(2) =e L n_Ag + / e‘(t_’)Lvoﬂ'_PN(An_l, Sn—1)(s)ds
0

- / 0P N(An1, Sn_1)(s)ds
t

(4.3) . = v
_ / e—(t-—s)L °7r+PN(An—17 Sﬂ_l)(s) ds
t

5,(t) =GV°8VON(Apn—1,Sn-1)(t) + GVORAL(t), for t>0.
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If this iteration scheme converges, the initial value of a solution is expressed by
oo oo
(4.4) A(0) = m_ Ao — / o PN(A, S)(s) ds — / 7 PN(A, S)(s) ds.
0 0

Therefore the initial value A! of (4.1) is expressed as (4.4). This implies that for a Yang-
Mills connection Vg, if A! is expressed as (4.4) and satisfies a suitable condition (this
condition will be mentioned in the proof of the result), then there exists a solution of (4.1)
with the initial value A! which tends to zero as t — oo.

We assume m > 1 dim M +2. Then Sobolev spaces H™(Q(gg)) and H™(2°(gE))
is compactly embedded in C?(Q1(gg)) and C%(Q2°(gE)), respectively. Moreover we choose
a positive number p satisfying 0 < g < min{|A1],|A-1]}. We want to prove that the
iteration scheme (4.3) converges in B, and L?(R4; H™(Q%(gE))). Put M, := |A.]2 ,
and K, := |S,[%,.

Now we read:

THEOREM 4.1. For the iteration scheme (4.3), there ezist positive constants Cp, Cy and
Cs depending only pp and m such that if M, <1 and K, <1 then

(45) Mot < ||m- Ao|}m + C1 (M + Mo Ky)
’ K1 < Co (lm—Aollam + MZ + M.K,),

and

(4.6) |Antr — e m_Ag|% 0 < Ca (M2 + M, K,).

(Proof ) We will construct B, » and L?(R4; H™(Q°(gE))-estimate of (4.5-6) by sepa-
rating (4.3) freely.

Step 1 The H™(Ql(gr))-estimate.

(i) To estimate m_-part of the first equation, we apply (3.17) in Lemma 3.1 to

t
=) := et n_ A, +/ e~ (=L PN(An—1,Sn_1)(s)ds.
0

This function f_(2) = n_A,(t) satisfies

{ ng =—LV°f_+7_PN(An-1,5n-1)
F-(0) = =_4o.

14
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Lemma 3.1 and Proposition 3.2 imply that
P lm— An(®) | < llm-AollFm + C/ 7~ PN(An-1, Sn-1)(s)l[}m-1 ds
0
< ll7-Aollfym + C'/ (l4n—1()Nzmsr | A2 (N Frm + [ An—1()NFrm | Sn-1(s)lIFrm) ds
0
< lln—Aolfgn + € [s0p [ Ana OlFn | [ € LAna(6)gm ds
>0 0
+C [Sup ez“tﬂAn—l(t)ll%m] / 2| Sn_1(5)|[Fgm ds.
>0 0
By definitions of norms |- |4,m and |- |m, we obtain
(4.7) e[l An®)lfrm < llm—Aolfm + C (|An-1llm + [An1lh mlSn-1l7) -
(il) We will estimate 7y A, in H™-norm. Put
NN RS TRNIAL
f+(t) = —/ [ 7T+PN(An_1,Sn_1)(S) ds.
t

this function fi(t) = 74 An(t) satisfies

ot
f+(0) =0.

Since fi(t) = w4 An(t), Lemma 3.1 garantees as above the inequality:

0
{ L = —Lv°f+ + 74+ PN(An-1,8n-1)

(4.8) |7 An()llFm < C (|An-1lim + [An-al} mlSu-1l2) -

(iii) Concerning the estimate of mo-part, one should note that all norms defined on Im(7g)

are equivalent, since dim(Im(#4)) < oo. Hence we obtain
(4.9) || moAn(®)im < C (JAn-1lim + [An1]s m|Sn-1]7) -

Combining (4.7)-(4.9), we conclude that

(4.10) | A |om < Nlm—Aollfm + C (|An—1lf m + [An-1[2 1 |Sn-1lZ) ,
and
(4.11) )| An(t) — e w_Ao|3m < C (|An—allm + 1Ano1f2 mlSnoal2,) .

Step 2 The L2(R4; H™1(Ql(gE)))-estimate.

15
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As is remarked in Step 1, since the dimension of Im(m4 + o) is finite, there exists

a constant C such that
(4.12) 7+ Aa(@lFrmar + [0 An()imsr < C (Ilm Al + 1m0 An(D|rm ) -
Integrating (4.12) in t, and then applying (4.8-9), we get
(4.13) 74 Anlloots + Ml70AnllZss < C (J4n-alim + [An-1lim|Sa1l7) -
For w_A,(t), we apply (3.16) in Lemma 3.1 and Proposition 3.2
Fo(t) = e n_ Ao + /0 t e~ =L PN(An_1,Sn_1)(s)ds,

and get (note that m_A,(t) = f-(1))

7= Anll s < = Aol + [ 1N (Ane, Snca)(6) s ds

< - Aollfm + /Ooo (lAn-1()zgmer | An1($)Frm + 1 An—1()lFrm 1 Sn-1(s)[I %) ds

< lln-Aolfm +C [sup @ Yns(OlFsn | [~ Ao (&) s
+C [sup e Anes@lpn | [ € Sums(6) o ds.
>0 0

Hence it follows
(4.14) N7 —Anlll7ss < l7—Aollzim + € (|An-1lam + 1An—1lim|Su-1l) -

Combining (4.11) and (4.12), we obtain

(4.15) IAnf|Zt1 S 7= Aollfrm + C (|An-1lh,m + |An—1l2,m|Sn-1lZ) 5
and

T4
(4.16) IAn — e P m_Ao|l|Z41 < C (|An=1lh i + [An-al? n|Sn-1lZ) -

Therefore (4.12-15) and (4.13-16) yield

(4.17) [4nlfm < 7= Aollfm + C (JAn-1lfm + [An-1lfmlSnilin) -
and
(4.18) An = e m_Aof} 10 < C (14nalfm + [Anoi s mISn-1l2)
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respectively.
Step 3 The L?(Ry; H™(2°(gE)))-estimate.

We estimate both sides of the second equality of (4.3) in H™(Q°(gg))-norm, we

have

ISa(®)lzm < 1GV06Y0 (N(An-1, Su-1)(t)) lzrm + IGT R An(t) | 1.
Using (3.12-15), we get

(419) 1182z < C (I 4n@®lFm + 1 An-1Olm + [An—1s @Ol [Sn-1 (D7) -

Integrating both sides of (4.19) in t, we see
[ sl at
0
<[ [T 1AnOlm dt + 330 Lnes e [ 2 ns(Ol s
0 0

+ [supez"’IIAn—x(t)H%{m] | e 1Sas(6)lam ds] .
t>0 0

This yields

(4.20) |Sulin < C (|4l m + [An1lfm + [An-1[} m|Sn-al%) -
By (4.17) and (4.20), we obtain

(4.21) 1Sal% < C (7= Aollfm + |An-1ly m + [An—i1l% mlSn-1l7) -

Then (4.5) follows from (4.17) and (4.21). Here one should note that the assumption
M, <1 and K,, <1 is needed for the estimate of non-linear terms. N

Theorem 4.1 leads apriori estimates.

COROLLARY 4.1. Let L, := max{M,,K,}, (n = 0,1,---). There ezists ¢¢ > 0 and ¢
monotone decreasing function L(e) of 0 < € < €y such that under the condition Ly < ¢y we

have
(4.22) L, < IL(e) forall n>0.
Moreover L(e) satisfies

(4.23) liﬁ)l L(e) = 0.

17
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(Proof ) Theorem 4.1 yields
Mn+1 S ”’IF_A()”?LIm + CL%
Knt1 £ C ([lm-Aollfm + L) -

Taking Mo = ||7—Ao||%m and Ko = 0, we have
(4.24) Loy1 £C (Lo + L2).

The elementary calculus yields the assertion of this corollary. I

COROLLARY 4.2. There is € > 0 such that if ||[m—Ao||%m < 6 |An|um < € and |S,|2, < €
then Any1 is contained in e-ball in B, m whose center is e —tLY ° Ao.

Corollaries 4.1 and 4.2 are regered as apriori estimates.
The final step of the proof of the main result is to show the convergence of the
iteration scheme (4.3). For this purpose, we may prove that sequence {A,} and {S,} are

Cauchy sequence in By and L?(Ry; H™(Q°(gE)), respectively.

THEOREM 4.2. For the iteration scheme (4.3), the following two inequalities hold:

(4 25) l n—1 _A Ium = (,A '2 +|Aﬂ—1|2,m+|5n|3n+I‘Sn—llgn)
X (|An - An—lli,m + lSn - Sn-—llgn) )
(4.26) |Sn—1 = Sulz <C (|4nl} m + [An—1]} m + [Sula + 1Sn-1l})

X (IAn - An—lli,m + ]Sn - Sn—llm) .

(Proof) The proof of this theorem is essentially the same as that of Theorem 4.1.

First we calculate successive differences:

Ant1(t) — An(?)
= / t e~ =L 1 P[N(An,Sn)(s) — N(An—1, Sn-1)(s)] ds
(427) - /t - 7o P [N(An,S»)(5) = N(An—1,Sn—1)(s)] ds
- / T LT L PN ( A, Sa)(5) — N(Anot, Snot)(s)] ds

18
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and
Snt1(t) — Sa(t) == GV°8V° (N(An, Sn)(t) — N(An-1,Sa-1)(t))
— GVOR(Ans1(t) — An(t)).

As in the proof of Theorem 4.1, we will take three steps to show our assertion.

(4.28)

Step 1 The H™(Q!(gg))-estimate.

(i) Taking

(4.29) F-(t):= / t eI r_P(N(An, Sn)(s) = N(An-1,Sno1)(s))ds,
0

we have f_(t) = 7_(An(t) — Apn—1(2)) and

ot
f-(0) =o.

It follows from Lemma 3.1 and Proposition 3.2 that

{ O _L¥f_ 47 P(N(An,5n) — N(An_1,5n1))

8| f_(1)[2m <C ] IV (Any Sn)(s) = N(An-1, Snc1)()|Zgrmer ds

SC/O (I4n(s) = An—1()|zgm+1 [l An-1(3)Frm

+ 1 An ()| zrm+1 1 An(s) — An1()]Fm
+ 1 4n(5) = An—-1()llZrm |Sn-1(3)[IFrm
HAn-1()|Zrm 1Sn () = Sn—1(s)llFgm) ds

=¢ [S“P 62M||J‘1n—1(75)”§f"’] / €720 An(s) — An—1(8)||}m+: ds
t>0 0

+C Sulo)ez”t“An(t) —An_l(t)n"},m] / e 2| An1(8)|[5mer ds
> 0

+ C |sup e[| 4,(t) —An-l(t)ll?fm] / e Sn—1(s)Ilym ds
Lt>0 0

+C [sup e AnaOlfn ] [ € Su(6) = Sos(o)lpm .
L 0

The above inequality implies that
| r—(Ant1—An)|Fm
<C [(|4nl m + |An-1l} ) [4n = An-al}
(4.30) +lAn = An1 2 1SalZ + [An-1l% 2 1Sn — Sn-i1]?)]
<C [(|4nl3m + |An—1l} m + [Salt + |Sn-11%)
(14 = Anc1l2  + 1Sn — Sacal2)] -
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(ii) In the similar manner of the proof of Lemma 3.1 and the above (i), we can estimate
mo and 7y -parts of An41(t) — An(t), as follows:

e |1t (Ant1(t)—An(t)) | rm
(4.31) SC [(|Anlsm + [An-1l2 m + 1Snl2 + [Sn-1lZ)
X (’An - Aﬂ—lli,m + |Sn - Sn—ll?-n)] y

and

|| mo(An+1(t)—An(t))|Fm
X (|An - An—lli,m + lSn - Sn—llfn ] -

Consequently, as for the H™(QL(gg))-norm of the successive difference, we see that
| A1 (1)~ An(t) |31
(4-33) <C [(lAnm,m + |An—1|2,m + |Sn|gn + |Sn—1|?n)
X (IAn - An—lli,m + |Sn - Sn—]l?n)] .
Step 2 The L2(Ry; H™T1(Ql(gE)))-estimate.

As we remarked in the proof of Theorem 4.1, Im(74 + o) is of finite dimension.
In the similar manner of (4.31) and (4.32), we have

17+ (Ant1—An)2ss + 1m0 (Ants — An)ll|Z 44
(4.34) <SC [(JAnl2 m + [Anci1l? o + 1Sal2 + |Sa-1(%)
X (|An — Anc12 pm + IS0 — Sn-1lZ)]

For the estimate of the m_-part of the successive difference, we apply (3.16) of Lemma 3.1
to (4.29). We thus obtain

IO s < [ IV ) = N, Sas)lpnr s
< [[sup e hnt@irm] [ €4 N4n() ~ Anms (Ol s
+ [s2 ¥ 1An(0) = AncsOlin ] [ ns Mg s
+ [sup P 406) = s Ol | [ €S i s
# [ s O | [ 05006) = Sums(Om ]
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Hence we have

M7 (Ant1=An) |71
(4.35) <C (|4l m + 1 An-al} g + Snl5 + 1Sn-al7,)
X (14n = An-1[fm + 150 = Sn1l7)] -
Therefore we get by (4.34-35)
An+1—Anllfgs
(4.36) <C [(|4nfam + [ An—alim + [Salrn + [Sn-1l7)
X (|An = Ancalf i + 1Sn — Sa-1l2)] -
Consequently, it follows from (4.33) and (4.36) that
[Ans1—Anl?
(4.37) <C [(14nlfm + [ An-1li m + 1Snlf +|Sn-1l7)
x (|An — An——lli,m +|Sn — Sn_1|3n)] .

Step 3 The LY(Ry; H™(Q%(gE)))-estimate.

We estimate (4.28) by H™(Q°%(gg))-norm. We obtain
1S (8)=Sn—1(})|I
(4.38) <G08V (N(An, Sn)(t) — N(An-1,Sn-1(1)) I3m
+IGYV R (An41(t) = An (1) I3
By using estimates (3.12), (3.13) and (3.15), the first term of the right hand side of (4.38)

is estimated as
IGYe870(N(An, Sa)() = N(An-1, Sue1)(®)) I
<C (1 4n(t) = Ana Ol s [ An (@) ll3m
(4.39) + [ An-1 (Ol 1 4n(t) = An1(t)l|7m
+ 1 4n(t) = An—a (O[3 1Sa ()
HlAn-1 @Ol Zm1Sn(t) = Sa-1 (| Fm) -
By (3.14) we have
(4.40) IGY*R (An41(t) = An(®)) [ < CllAn+1(t) — An(®)l|7im-1-
Therefore, we can estimate |Sp+1 — Sp|2, as follows:

|Sn+1 — Snly <C (|Anl2m + [Anc1l? m + 1SnlZ + 1Sn-1/%)

(4.41)
X (lAn+1 - Anli’m + !An - An——llz,m + lSﬂ - Sn—llzn) .

21



KSTS/RR-88/004
March 22, 1998

Combining (4.37) and (4.41), we therefore obtain

|Sn+1 — SnlZ <C (|Anl2m + 1An—1l2 m + ISl + |Sn-11%)

4.42
(4.42) % (n — Anca® + [Sn — SucalZ) . B

By virtue of Theorem 4.2, we can conclude the existence of a unique solution to
(4.1), therefore (YMGF'), with initial value deteminated by (4.4).

COROLLARY 4.3. For m > 3 dim M + 2 and p satisfying 0 < p < min{| 1|, [A-1|}, there
ezists an € > 0 such that for every A' € Im(n_) with

|e—tLv°A1 lum < €

then there is a unique solution {S, A} of

6250 = —PJY°A(t) + PN(A(t), 5(¢))

S(t) = GVo8V° (N(A(2), 5(2)) + GV RA(t)
n_A(0) = A’

in A€ Bym and S € L*(Ry; H™(Q°(gE))) with [A|um < €. Moreover such solution A
ezponentially tends to zero in H™-norm as t — oo.

This corollary is leaded by Corollaries 4.1 and 4.2 and Theorem 4.2.
Therefore the solution of (4.1) is expressed by

(643) A(t) =7 _Al 4 /t e_(t_’)Lvow_N(A(s),S(s)) ds
4.43 oo 0 oo
_ /t roN(A(s), S(s)) ds — /t ==L 1 N(A(s), S(s)) ds,

and
(4.44) 5(t) = GVo8V(Q(A(R)) + [A(), S()]) + GV RA(t).

This expression (4.43)—(4.44) of a solution implies that one can show that the solution A(t)
and S(t) depend smoothly on the initial value A! in the H™(Ql(gg)) and H™(2%(gEk)))-
topology, respectively. The stable manifold of the Yang-Mills connection Vj is the set of
all initial values A! satisfying the condition in Corollary 4.3. That is, the stable manifold
of Vj is the set of the initial values of the Yang-Mills gradient flow with which the solution
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is tends to Vo as t — oco. The stable manifold is clearly a submanifold of H™(Ql(gr))
with codimension: dim(Im(74 + 7)).
To obtain the unstable manifold, we use the iteration scheme:

t
An(t) =e_tLv°7r+A0+/ e—(t_s)Lvo'lr.;.PN(An_l(s),S’n_l(s))ds
0
- / 70PN (An—1(5), Su_1(s)) ds
(4.45) o ]
—/ e~ (t=9)L OW_PN(An_l(S),Sn_l(S))dS
t

Sa(t) =GV8V(Q(An=1(t)) + [An-1(t), Sn=1(2)]) + GV°RAL(t), for t<O.

— As similar to Corollary 4.3, one can show the existence of a set of the initial values with
which solutions are asymptotically stable for the backward evolution equation. This set is
clearly a submanifold of H™(Q%(gg)) and has dimension: dim(Im(7y)).

On the existence theorem of the stable manifold, readers can refer to D. Henry [H]
or C. L. Epstein and M. I. Weinstein [EW]. The method of the proof is also used in [N3].
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