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Manifolds with Finite Volume
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Dedicated to Professor Shingo Murakami on his 60th birthday

Abstract. For a noncompact complete riemannian manifold M of negative curvature with
finite volume, each cusp of M is shown to be diffeomorphic to NV x [0, 00) with N being a
compact flat space form provided that the sectional curvature of M satisfies the pinching
condition —4 < —A? < K < -1 and that |VR] < const for the covariant derivative of
the curvature tensor of M.

1. Introduction. One of main problems in differential geometry that has been
attracting us is to reveal relationships between curvature and topology of riemannian
manifolds. A celebrated success in this direction is the pinching theorem in positive
curvature due to M. Berger and W. Klingenberg (cf. [CE], [Sa]), which claims that
a closed simply connected riemannian manifold with sectional curvature 1 < K < 4
is homeomorphic to the sphere. It had lead us to the pinching problem in nega-
tive curvature as well — Is a closed riemannian manifold with sectional curvature
—4 < K < —1 homeomorphic to a space of constant negative curvature? However
Gromov and Thurston [GT] gave counter-examples to the problem in any dimension
greater than three. Though the original pinching problem fails in negative curvature
as is demonstrated by the examples of Gromov—Thurston, it still remains possible that
pinching curvature of negatively curved manifolds have topological obstructions. In
fact, U. Hamenstadt recently announced a beautiful theorem which especially suggests
that if M is a closed locally symmetric space of negative curvature other than the spaces
of constant curvature then M never carries a metric of curvature —4 < K < —1 (cf.
Ville [V] and Pansu [P]). The purpose of the present paper is to give another theorem
which indicates a topological obstruction to pinching curvature of an open negatively
curved manifold with finite volume.

To be more precise, suppose that M is a noncompact complete riemannian man-
ifold of finite volume whose sectional curvature K satisfies the pinching condition

1) -A’<K<-1

with a positive constant A. Then it is known (cf. [Gro], [E], [Sc]) that each end (or
cusp) of M is topologically of the form

(2) N x [0, 00),

where N is a closed infranil-manifold. Note here that in case M is locally symmetric,
N is homeomorphic to a flat space form if and only if M is of constant curvature.
Our main result below roughly means that the pinching condition (1) with A < 2
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implies that the ends of M are topologically the same with those of a space of constant
curvature, if we simultaneously impose a subordinate geometric uniformness condition

on M.

THEOREM. Suppose that M is a noncompact complete riemannian manifold of
finite volume whose sectional curvature satisfies the pinching condition

—4<-A’<K<-1,

and assume further that the covariant derivative VR of the curvature tensor of M is
uniformly bounded on M. Then each cusp of M is diffeomorphic to N x [0,00) with
N being a closed flat space form.

The author wishes to thank Hajime Tsuji whose theorem in [T] partially initiated
the present work.

2. Proof of The Theorem. We give the proof of the theorem in the rest of
the paper, which proceeds as follows: First we show that the infranil-manifold N in
(2) admits a torsion-free affine connection D (§2.3) which is shown to be flat (§2.4),
and finally find a riemannian metric on N that is parallel with respect to D (§2.5).
The construction of the torsion-free flat affine connection D is closely related to the
preceding work [K1], [K2] of the author.

2.1. We begin the proof with reviewing the geometric description (2) of cusps
of M (see Gromov [Gro], Eberlein [E] and Schroeder [Sc] for details). As before, let
M be a noncompact complete riemannian manifold of finite volume whose sectional
curvature satisfies the pinching condition (1) for some A > 1, and take an end, say e,
of M. We can always find a length-minimizing geodesic ray r = r(¢) (0 < t < 00) of M
diverging to e. For simplicity, assume that r is of unit speed. Then for the Busemann
function b relative to r defined by

b(z) = Jim {t —d(z,r(t)} (= € M),

there is a constant T satisfying the following conditions: (i) b is C2-differentiable on
b~1(T,00); (ii) |gradd| = 1 on b=Y(T,c0); (iii) b~1(¢) is compact for any t € (T, c0).
By reparametrizing r if necessary, we may assume T' < 0. Since b is a Morse function
on b7!(T, 0), the cusp b7![0,00) is diffeomorphic to the product space N x [0, c0)
with N = 571(0).

2.2. Next we give a few estimates for the gradient flow of the Busemann function b.
Put Ny = b71(t) for ¢ > 0. Then the gradient flow of b gives rise to a C!-diffeomorphism
a1 N¢ = Nyyq for any t,a > 0, and under the assumption (1), it obeys the following
C'-estimate which is an immediate consequence of the standard comparison argument
(cf. Heintze-Im Hof [HI]):

(3) e |X| < |dpoX| < e7*-|X|, X €eTN,.

To obtain a C?-estimate, assume further that A < 2 in (1) and that [VR| < const
for the covariant derivative of the curvature tensor of M. Under these conditions,
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Green {Gre] proved that the Busemann function b is C® on 57![0,00). In particular
the diffeomorphism ¢, : Ny — Nyyq is C2-differentiable. Now denote the riemannian
connection of the hypersurface N; of M by V;. Then the pull-back ¢%V,y, is a
torsion-free C° affine connection of Ny, and VZp, = ¢V, — V¢ is a continuous
(1,2)-tensor field on N;. It is easy to see that (d/da)Viep, = ¢%((d/da)|a=0Vi¢a).
In the right hand side, ¢} : T*N¢yo @ T*Nigo ® TNyyo — T*N; @ T*N; @ TNy is
induced by dpg : TNy — TNy, that satisfies the inequalities (3), and therefore we
have |p%| < e~(2=Me, In addition we can follow arguments of Green [Gre] once again
to show that |(d/da)V2p4la=o < const on N;, where the constant is independent of

t > 0. Hence we obtain

d
’—V?m

—(2=A)a
da ’

< const-e

Since, A < 2, this immediately implies a uniform estimate
(4) |Vf<,oa| < const
on N; with a constant independent of ¢,a > 0.

2.3. It is now possible to show that the family of the continuous affine connections
»;Vion N = Ny converges to an afline connection D of N in the C%-topology as ¢
goes to infinity. In fact, for a,t > 0, we have

letaVera —0iVe| = |07(Viva)| < const- e (=M1
by (4) and the fact that [p}| < e~(~A)*, Since A < 2, this inequality actually guaran-

tees that ¢}V, converges uniformly to a C° affine connection D of N as t — co. Of
course D is torsion-free since so are ¢;Vy’s.

2.4. The next purpose is to exhibit the flatness of the affine connection D on
N = Ny we have just obtained. Note here that D is only known to be continuous, and
the curvature tensor of D is not defined in general. However the D-parallel translation
along a smooth curve in N is always well defined, since the equation of the parallel
translation is, in this case, a first order linear ordinary differential equation with con-
tinuous coefficients. What we are going to see here is that the D-parallel translation
depends only on the homotopy class of the curve. Namely, let ¢ = ¢(s) (0 < s < 1) be
a homotopically trivial loop in N = Ny with base point £ € N, and for each tangent
vector X € TN, denote the D-parallel translation of X along ¢ by X(s) € TN
(0 < s £1). Then we should prove that X(0) = X(1). Let X;(s) be the ¢} V;-parallel
translation of X along c¢. Then X(s) converges to X(s) as t goes to oo, since ¢}V,
tends to D uniformly. Thus it is enough to show

To prove this, let ¢; = ¢4 0 ¢ be the translation of the loop ¢ in N by the diffeo-
morphism ¢; : N — Ny, and Y;(s) the V;-parallel translation of Y; = dp:X along c;.
Then it is obvious that

(6) Yi(s) = dpe Xo(s).
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Now we can show that
(7 | Y2(1) — Y(0) | < const - ™" - |¥3(0)]

for sufficiently large ¢ in the following way. First lift both the loop ¢; in Ny C M and the
parallel translation Y;(s) along ¢; to the universal covering M of M. Then we obtain a
loop &; = &(s) in a lift ﬁt C Mof Ny, and a “parallel translation” 17}(3) along é;. Notice
here that the equation of the parallel translation along &/(s) to which i;}(s) is a solution
is a first order linear ordinary differential equation with continuous coeflicients, and the
coefficients involve only the Christoffel symbols of M , the second fundamental form of
the horosphere ﬁt, and the velocity vector &/ of the loop ¢;. Since the loop & contracts
exponentially as t — 00, é; is enclosed in a certain geodesic ball U = Uy in M of radius
1 whenever ¢ is large enough. Besides, the coefficients of the metric tensor as well as the
Christoffel symbols of M relative to normal coordinates are uniformly bounded on the
unit ball U, since M satisfies |R|, [VR| < const (cf. Aubin [A], p.153). On the other
hand, by (1), the second fundamental form of the horosphere N, is also bounded: This
again follows from Rauch’s comparison theorem (cf. [HI]). Finally, by (3), the velocity
vector &/ satisfies |&/| < const - e™%. In consequence the coefficients of the equation
of the parallel translation along é; expressed in terms of normal coordinates on U are
dominated by const - e~t. Thus, by applying a standard inequality for linear ordinary
differential equations to the solution 17}(3) of the equation of the parallel transformation
along &(s), we have |Y;(1) — Y;(0)| < const; - exp(—t) - exp{const, - exp(—t)} - |¥;(0)],
and this immediately implies (7). '
Combining (6), (7) and (3), we obtain

| X¢(1) — X4(0)| < const-e~ =M. |X]|

for any sufficiently large t. This proves the desired convergence (5), and the continuous
affine connection D on N turns out to be flat in the sense that the D-parallel trans-
formation is determined only by the homotopy class of a path of the transformation.

2.5. To complete the proof of the theorem it is now sufficient to show that
N = Np carries a C?! riemannian metric h such that Dh = 0. Let g; be the induced
riemannian metric of the hypersurface V; of M. Then the pull-back ¢}g: of g; by the
C? diffeomorphism ¢; : N — Ny is a C! riemannian metric of N. Now fix a point z
in N, and normalize ¢}g; so that its norm at z relative to the metric g¢ is equal to
1. Denoting the normalized metric by k¢, we obviously have (¢7V:)hs = 0. Hence for
any y € N, hy(y) is the ¢} Vi-parallel translation of h(z) along a curve combining z
and y. Recall now that ¢}V, converges uniformly to D. On the other hand, by the
normalization |h:(z)|4, = 1, we can pick up a diverging sequence {t;} so that h¢(z)
tends to a positive-semidefinite symmetric bilinear form h(®)(z) of T, N as t = ¢ — oo.
Hence h(y) also converges to h(®)(y) that is the D-parallel translation of A(°)(z). The
resulting positive-semidefinite symmetric (0, 2)-tensor field (®) on N is clearly parallel
with respect to D.

In case h(®) is nondegenerate, the proof is already finished. Otherwise we can
proceed as follows. Let E() be the null space of 2(®), which is a C* subbundle of TN
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closed under the covariant derivative by D, and gt(l) be the induced riemannian metric
of the subbundle Et(l) = dip; ED of TN;. We can then apply the argument above again,
and show that E() possesses a D-parallel positive-semidefinite symmetric bilinear form
R, Repeating this procedure, we obtain sequences of bundles TN = E©® 5 F1)
-, and of D-parallel positive-semidefinite symmetric bilinear forms A(®, () ... on
them such that each E(® is the null space of Rk=1) Obviously h = KO L a0 ... g
a desired riemannian metric of N that is parallel with respect to the torsion-free “flat”
C° affine connection D.
In consequence, N turns out to be diffeomorphic to a flat space form, and the
proof of the theorem is completed.
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