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Introduction

In the 1930’s, Birkhoff and von Neumann clarified the mathematical mean-
ing of ergodicity. By their definition, a dynamical system with an invariant mea-
sure is said to be ergodic if it is metrically transitive, or equivalently if any L2-
integrable invariant function on the phase space is constant almost everywhere.
Soon after, following their work, Hopf and Hedlund actually demonstrated the
ergodicity of the geodesic flows on closed surfaces of constant negative curva-
tu  Furthermore their result was generalized by Anosov to the geodesic flows
of arbitrary closed riemannian manifolds of variable negative curvature. The
significance of the geodesic flows has been recognized through these works, for
they are typical examples of ergodic systems. Now, since the geodesic flow is a
differentiable dynamical system, it makes sense to consider the action of the flow
on the tensor fields defined on the phase space as well as the action on the func-
tions. In particular, it seems to be reasonable to ask whether the geodesic flow
possesses the “tensorial ergodicity”; that is, whether every L2-integrable tensor
field on the phase space which is invariant under the action of the geodesic flow
is “constant” almost everywhere. The purpose of the present note is to show
this phenomenon of the geodesic flows on certain negatively curved manifolds.

To be more precise, suppose that M is a closed riemannian manifold of
negative sectional curvature. The geodesic flow ¢; of M is then defined as a
smooth flow on the unit tangent bundle V = {v € TM : |v| = 1} of M. We
now restrict ourselves to either of the following two cases: (i) M is of dimension
tw~ (ii) M is locally symmetric. In both cases the unit tangent bundle V has
a cunonically defined affine connection V as we will see later, and in terms of
it, we can define “constant”, or more precisely, parallel tensor fields on V. In
fact, we say that a differentiable tensor field f on V is parallel if its covariant
derivative V f identically vanishes, and a measurable tensor field on V is said to
be parallel almost everywhere if it coincides with a certain parallel tensor field
almost everywhere. Also a measurable tensor field f on V is said to be L2-
integrable if its norm |f| with respect to the canonical riemannian metric of V
is L2-integrable over V relative to the Liouville measure of V. Our main result
here is

Theorem. Every o:-invariant L?-integrable tensor field on V is parallel
almost everywhere.
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The proof of the theorem will be given in §1 for locally symmetric spaces,
and in §2 for surfaces. Furthermore, in the last section, we will give a reformula-
tion of the theorem and consider a related problem concerned with ¢;-invariant
differentiable tensor fields on V.

The author wishes to thank Professor S. Kaneyuki whose suggestion made
our description of the canonical connection made in §2 simpler.

1. Locally Symmetric Spaces

In this section we prove the tensorial ergodicity for the geodesic flows of
locally symmetric spaces, and we begin it with algebraic description of the unit
tangent bundles and the geodesic flows of these spaces in order to introduce
the canonical affine connections on the unit tangent bundles. Suppose first that
M is a noncompact symmetric space of rank one: Namely, by multiplying the
riemannian metric of M by a suitable constant, M is isometric to one of the
rea! hyperbolic space Mg, the complex hyperbolic space Mg, the quaternion
hy, _rbolic space My and the Cayley hyperbolic space Mp. The symmetric
space M is represented as a homogeneous G-space M = G/K with G being a
connected simple Lie group acting on M isometrically, and K a maximal compact
“subgroup of G. Associated with the representation of M as a homogeneous G-
space, the Lie algebra g of G carries the Cartan decomposition

g=k+m,

where k is the Lie algebra of K, and m is a linear subspace of g that is naturally
identified with the tangent space of M at the point 0o = K of M = G/K. Now
fix an element ¢ of m = T, M of unit length. Direct computation shows that the
eigenvalues of ad(—¢) : g — g are 0, £1 in the case where M = Mg, and are 0,
+1, £2 in the cases M = Mg, Mg and Mo. Denoting the eigenspace of each
eigenvalue ) of ad(—:) by g*, we obtain the eigenspace decomposition

(1.1) g=g+g'+g’+g™ +g*

H after we adopt the convention that g* = 0 for |A\| > 1 provided M = Mg,
and g* = 0 for |A\| > 2 otherwise. Then, by Jacobi’s identity, we immediately
have

(1.2) g% g*] C g™t

that is, g is a graded Lie algebra. Furthermore, if m* denotes the orthogonal
complement of ¢ in m relative to the Killing form of g, we have [k, = m*
since M is a symmetric space of rank one. This yields the decomposition g =
(kN g°) + () of g°, where () denotes the linear subspace spanned by ¢. Thus
we obtain a new decomposition

(1.3) g=k"+v
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of the Lie algebra g into k® = kN g° and
v =v=2 4yl gyl gyt gyt

1.4
(14) with v®=()) and v*=g* (\==1,+2)

Now consider the unit tangent bundle V of M. The isometric action of G
on M is naturally lifted to an action on V, and it is transitive since M is a
symmetric space of rank one. Further the Lie algebra of the isotropy subgroup
K?° of the action of G on V at the point « € V coincides with the Lie algebra
k° in (1.3). Hence the decomposition (1.3) of g means that V = G/K° is a
reductive homogeneous G-space; i.e., [k%,v] C v. In particular, v is identified
with the tangent space of V' at .. Moreover, since the splitting (1.4) of v = T,V
is ad(k®)-invariant, it extends to a G-invariant splitting of the tangent bundle
of V:

(1.5) TV =E"?4+E'4+ E°+ E*! + E*2,

(N :here that E%2 = 0 in the case of M = Mg.) Fix a G-invariant riemannian
metric of V' for which the splitting (1.5) of the tangent bundle of V is orthogonal.
The geodesic flow ¢, of M defined on the unit tangent bundle V of M commutes
with the the action of G on V, and the orbit of ¢, passing through ¢ is given by
¢¢(¢) = (Expte) - «. This specifically implies that E° is spanned by the geodesic
spray ¢ = (d/dt)|t=0¢p:, which is, by definition, the vector field on V generating
the flow ¢ on V. In addition, it follows that dp.¢ = d(Exp t)o Ad(Exp(—t.))(¢)
for £ € v 2 T,V, while it holds that Ad(Exp(—t¢))¢* = e*¢* for £€* € v since
ad(—¢)¢* = M by definition. Hence we have

(1.6) de:ie* = X - d(Expt)(€)), € ev C TV, X=0,+1,+2.

In consequence, each subbundle E* in the splitting (1.5) is dipq-invariant, and
satisfies

(1.7) ldoe| = eM|Ed; e e B, A=0,+1,+2

We now proceed to the definition of the canonical affine connection V of
the unit tangent bundle V. It requires another affine connection D of V which
is defined as the canonical connection of the reductive homogeneous space V =
G/K?°, and is described as follows (cf. [KN]). First extend the decomposition
(1.3) of g to a left-invariant linear splitting TG = Cyo + C, of the tangent
bundle of G. The first component Cyo is vertical with respect to the fibering
of G over V = G/K?°, while C, is horizontal. For each tangent vector £ of V,
let £* € Cy be the horizontal lift of ¢ by the fibering of G over V. On the
other hand, let D* be the affine connection of G defined by D*¢ = 0 for all
left-invariant vector fields ¢ on G. Then the canonical connection D of V as a
homogeneous G-space is characterized by (D¢n)* = DX n* for any vector fields
§ and n on V. The connection D of V possesses the following properties. (1)
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D is G-invariant, that is, dg(Den) = Dggedg(n) for any ¢ € G and vector
fields £ and n on V. (2) The torsion tensor T and the curvature tensor R of
D have the representations T({,n) = —[{,n]v and R(€,7)¢ = —[[¢,n]koe, (] for
£&,n,( €TV =2 v C g, where, for £ € g = k® + v, {40 and &, denote k- and
v-components of ¢ respectively. (3) Each subbundle E* in the splitting (1.5)
is D-stable in the sense that the covariant derivative D¢n is a section of E*
whenever 7 is a section of E*. (4) The canonical contact form 6 of V (cf. [AM];
see also §2) is G-invariant, and therefore, is parallel with respect to D. (5) D
is @¢-invariant, i.e., dp:(Den) = Dy, edpen for any vector fields £ and n on V.
Now define the canomcal connection V of V by

v _ { DEU, €€E—2+E-—1 +E+1 +E+2’
DT\ Len, €= e B,

for an arbitrary vector field 7 on V, where L;n denotes the Lie derivative of 7
by the geodesic spray . The reason why in the above definition we adopted
' ~ Lie derivative in the direction of the geodesic spray instead of the covariant
acrivative by D is that (locally defined) ¢¢-invariant vector fields on V are, in
general, non-parallel with respect to D; cf. (1.6). Note that (7) each subbundle
EX* of TV is again V-stable, that (8) the Liouville measure A = 6 A (d6)"
(n +1 = dimM) of V is parallel with respect to the canonical connection V,
and that (9) V is ¢¢-invariant.

(1.8)

In summary, we have obtained the following things on the unit tangent
bundle of each noncompact symmetric space of rank one: the geodesic flow ¢,
the splitting (1.5) of the tangent bundle, and the canonical connection V.

Henceforth assume that M is a closed locally symmetric riemannian mani-

fold of negative curvature. Then the universal covering M of M is a noncompact
symmetric space of rank one. Moreover - the unit tangent bundle V of M is cov-
ered by the unit tangent bundle V of M and the deck transformations of the
covering VofVv preserve the above structures on V. Thus they descend down-
stairs, and we obtain the corresponding structures on V which we denote by
~ » same symbols: Namely, we are in the presence of the geodesic flow ¢; of M
aefined on V, the splitting (1.5) of the tangent bundle of V', and the canonical
connection V of V. Since the action of the geodesic flow ¢ on V is smooth, it is
naturally lifted to an action %, on the vector bundle T7¢™ = (®,TV)®(®m T*V)
of (£,m)-tensors of V as follows. First we require that the diagram

rem) ¥ | pem)

! !

V — VvV
Pt

commutes, and that the restriction of +; to each fiber of T(4™) is a linear isomor-

phism. Further 3; is given by 1:{ = dp£ specifically for ¢ € TV, ¢ra = p*,a

4
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fora € T*V and ¢4(£&1 @+ €@ 1 @+ Qam) = (¥2£1) @+ - @ (Y1€r) ® (11) @
<+ @ (Yram) for £ € TV and ax € T*V. Now the splitting (1.5) of the tangent
bundle of V yields the splitting of T(é™) into the subbundles

EQuedismypm) _ FM gL . @ EM @ EM* Q... @ E#m*

with Ag, .-+, Ae,p1,° ¢+ , bm = 0,£1,+2. Each of these bundles is v;-invariant,
and satisfies

m

[4
(19)  Wrl=ex (Z \ - Zm) el 7€ B,
J=1 k

=1

by (1.6) and (1.7). (Remind here that we have chosen a G-invariant rieman-
nian metric of V so that the splitting (1.5) of the tangent bundle of V is or-

thogonal). For a section f of E(A1:sAi#1,6m)  define a new section vy f of
EQudsm,amm) by

($ef)(v) = e 0 f o p_y(v), veV.

We say that a section f of EQ1r A6k, bm) is o, -invariant if Y f = f: In other
words, f is ¢-invariant if and only if its “graph” f(V) is a t-invariant subset
of EGursdeibyim) - Note also that the canonical connection V of V naturally
induces a connection of T(4™) which we denote by the same symbol V, and each
subbundle EQt Asik1,8m) of T(4m) is V-stable. Every differentiable section
f of EQursdisum) should satisfy

(1.10) V(i f) =%(VS),

since the canonical connection V of V is ys-invariant. To prove the tensorial
ergodicity, it is now sufficient to show

(1.11) Proposition. An L%-integrable section f of E(A1:sXe#1,58m) 45 pargllel
almost everywhere with respect to V whenever f is 1 -invariant.

The proof of the proposition is divided into two cases according to whether

Lj:l Aj — > Fe1 #k = 0 or not. We first consider the easier one.

Case 1. Suppose that £A;—Zux # 0. For a measurable t;-invariant section
f of E(’\ly"' P AL B0 )l‘m), we obtajn

(1.12) [f(0)] = |-t 0 f 0 pe(v)] = e™FXNTEL £ 0 oy (v)|

from (1.9). Now choose a constant ¢ > 0 so that A(W) > 0for W = {v e V :
|f(v)] < c}, where A denotes the Liouville measure of the unit tangent bundle V.
Since the Liouville measure is invariant under the the geodesic flow, Birkhoff’s
individual ergodic theorem (see e.g. [P]), ‘together with the ergodicity of the
geodesic flow, implies that ¢! _[:XW 0 ps(v)ds converges to A(W)/A(V) >0
as t goes to infinity for almost all v € V, where xw denotes the characteristic
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function of W. In particular, for almost all v € V there exists a diverging
sequence {tx} such that ¢, (v) € W, i.e., |fl(¢t,(v)) < ¢. Thus, in the case
where £X; — Ty > 0, we can obtain f = 0 almost everywhere by letting
t =ty — oo in (1.12). The case of Z\; — Zux < 0 can be treated in a similar
way.

Case 2. Next we consider the remaining case ) j—Xu; = 0, which requires
two preliminary notions — the covariant derivative in distribution sense, and an
averaging operator. We have first to explain the former one. For a riemannian
vector bundle F over V, denote, by L?(F), the Hilbert space of L? sections of F
equipped with L?>-norm | - ||z2, and by C¥(F), the Banach space of C* sections
of F equipped with the C¥-norm || - ||cx. Define the contraction of L? sections
of F and of its dual bundle F** by

(flo) = /V (f),0(0)) dA(w)  for feI*(F), o€ L*(F"),

ere the integrand (f(v), o(v)) denotes the contraction of f(v) € F, and o(v) €
k. Tt satisfies |(f |0)| < ||fllz2 - ||lo||z2, and the correspondence f € L2(F) —
(f1-) € L:(F*)* yields an isomorphism L?(F) & L?(F*)*. In the rest of this
section, put F = EQur A6k 8m) for simplicity. The ¢¢-invariance of the
Liouville measure A implies

(1.13) (ef|Ye0) = (f,0)  for feL*(F), oeL*(F).

Now the covariant derivative by the canonical connection V is regarded as a
differential operator V : CY(F) — C%T*V ® F), and the adjoint operator
V*: CYTV @F*) — C%(F*) of V is again realized as a first order differentiable
operator. In fact, for 7 € CY(TV ® F*), define V*r € C°(F*) by contracting
T*V- and TV-components of —V7 € CYT*V ® TV ® F*). Then we actually
have

(1.14) (VD) =(fIV'r), for feCYF), reCHTV®F),

~"~ce the Liouville measure A (regarded as a volume form of V) is parallel with
1.spect to the canonical connection V. With regard to (1.14), it is possible to
introduce a covariant derivative in distribution sense as an operator V : L2(F) —

CYTV ® F*)* by
(VilT)=(fIV*r) for feL*F), 7eCYTVQF").

In particular, we say that Vf = g in distribution sense for f,g € L%(F), if
(Vflr) = (g]7) for all 7 € CY(TV ® F*). It is not hard to see that for
f € L*(F), Vf = 0 in distribution sense if and only if f is parallel almost
everywhere with respect to the canonical connection V (cf. [S;§11.6]). Hence, to
prove the proposition, it suffices to show Vf = 0 in distribution sense for all
-invariant L? sections f of F.. Now recall that the tangent bundle of V has the
splitting TV = E-+E°+Et with E- = E"'+E~? and E* = E*'4 E+2. This

6
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also gives rise to the decomposition of the covariant derivative in distribution
sense into the “restricted derivatives” V* : L*(F) — CY(E*@F*)* (v = 0,%). In
particular, we can easily prove that V®f = 0 in distribution sense if f € L?(F)
is 1s-invariant. This can be seen as follows. Let f € L?(F) be s-invariant.
We have to prove (VUf|7) = (f|V%®*7r) = 0 for all 7 € C}(E® ® F*), where
Vo* . CYE®° ® F*) — C°(F*) denotes the adjoint of V°. Without loss of
generality, we may assume that 7 is of the form 7 = ¢ ® 0, 0 € CY(F*),
where ¢ denotes the geodesic spray as before. Then, by (1.8), we have Vo*7r =
V(¢ ® 0) = Lyo = (d/dt)|t=0%:0, and therefore, (1.13) and t;-invariance of

f imply

d d
(Voflm)=(f| 7

(Fl$eo)= =1 (flo)=0.

t=0 dt t=0

4

Yio) = 3

In consequence, to prove the proposition, it is enough to show V*f = 0 in
distribution sense for all 4;-invariant f € L2(F).

We now turn to the definition of an averaging operator A* : L%*(F) —
L?(F). First let B be the Banach space of bounded linear operators on L2(F)
whose norm is denoted by || - |8, and define the weak topology of B so that for
B,BreB (k = 172a"')7

Bi; — B in the weak topology if and only if
(Beflo) — (Bf|o) for any f € L*(F), o € L}(F*).
Then the unit ball By = {B € B : ||B||p < 1} in B is sequentially compact

relative to the weak topology (cf. [R;§10.6]). Now for each real number ¢, define
Ag € B by

@Hw =7 [, fer®), vev.

By (1.9), ¢¢ : L*(F) — L?(F) is an isometry (recall that we are assuming
YA; — Zpx = 0), and therefore we have ||A¢||s < 1. Hence, there is a sequence
. k} with tx — oo for which A, converges to some AT € B; in the weak
topology.

(1.15) Lemma. For any f € L%(F), A% f is 1;-invariant.
Proof. For f € L*(F) and T € R, it follows that

1 t t
A f — A, 2 = — s ds — ofd
raes = afllen = 3 | [ buersas [wras]

1 T 2T
< n { /0 Psfds L2} < T”f”L?-

On the other hand, by letting t = tx — o0, (Y7 A:f | o) = (4ef | ¥40) converges

t+T

s f ds

t

+
L2
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to (A f|$10) = (YrA* f|0), and (A:f | o) to (At f|o) for any o € L2(F*).
Hence we can conclude that (1A% f|o) = (AT f|o) for all f € L?>(F) and
o € L?(F*). This proves the lemma. |

Suppose now that f € L%(F) is ys-invariant. Then we can always take
g € CY(F) so that || f—g|| 2 is sufficiently small. Since ||A*||s < 1and A*f = §,
we obtain ||f — A%g||2 = ||AY(f — 9)llz2 < ||f — gllz2- Furthermore it holds
that

[(VF*(f — 4% 9) )| = |(f = A*g | V7)< |If — AtgllLe - |7l

for any 7 € C'(E* @ F*), where V** : CY(E* ® F*) — C°(F*) denotes the
adjoint of V*. Thus, to see that V*f = 0 in distribution sense, it is sufficient
to prove

(1.16) Lemma. V+tAtg =0 in distribution sense for any g € C1(F).

~ Proof. Recall first that the action of v; on F is isometric on each fiber
"~ (1.9), while |¢1a| < e7!|a| for @ € E** and t > 0 by (1.7). Thus, for
Vtg € CO(E** @ F), we obtain |[¢:Vtg|lco < e~*- |lg|lc1, t > 0. Hence it
follows from (1.10) that

1—e¢"t
t

1 t
IV*4ugle < 7 [ 1% buglleods < 25 gl
0
Consequently we obtain (A:g|V**r) = (V*Ag|7) - 0ast — oo for €
C!(E* ® F*). Meanwhile, by the definition of A%, (4:;g|V**7) converges to
(A+g|V**r) = (V*Atg|r) as t = t; goes to co. This proves (V*A*g| 7)=0
for all 7 € C}(E* ® F*), and concludes the lemma.

In consequence, we have V¥ f = 0 in distribution sense for any ;-invariant
f € L(F). Of course, it is also possible to show that V~ f = 0 in distribution
sense for all ¢,-invariant f € L%(F), and this completes the proof of Proposition
(1.11) in the case of ZAj —Zpr =0.

2. Negatively Curved Surfaces

We now proceed to the demonstration of the tensorial ergodicity for the
geodesic flows on negatively curved surfaces. We first introduce a canonical
connection on the unit tangent bundle of such a surface, and then show the ten-
sorial ergodicity by modifying the arguments in the preceding section slightly.
The method emploied here to construct the canonical connection is basically the
same with Kanai [K] except the point that a suggestion given by S. Kaneyuki
made our definition much simpler than [K] (cf. [KK], [KW]). Anyway the canon-
ical connection is roughly speaking defined by combining contact geometry of the
unit tangent bundle together with consideration on the dynamics of the geodesic
flow.

First of all, we briefly review contact geometry of the unit tangent bundles

8
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of riemannian manifolds. Let M be a riemannian manifold whose unit tangent
bundle is denoted by V. For a local coordinate system {z;} of M, every tangent
vector of M is represented as v = 3 #;8/38z;, and in consequence, we obtain the
local coordinate system {z;,z;} of the tangent bundle TM. In terms of these
coordinates, it is possible to define a 1-form 6y on T'M which is expressed locally
as 6y = > gi;Zidzrj, where g;;’s denote the coefficients of the metric tensor of
M in the coordinate system {z;}. Now pull back 6, by the inclusion of the unit
tangent bundle V into TM. The resulting 1-form 6 of V, called the canonical
contact form, relates to the geodesic flow ¢; of M in the following manner.
(1) The canonical contact form 6 and its exterior derivative d are ys-invariant
(Liouville’s theorem). (2) 6(¢) = 1 for the geodesic spray ¢ = (d/dt)|i—o¢s.
(3) dé(4, -) = 0. In addition, we can easily show that (4) the 2-form df is
nondegenerate on the subbundle E = {¢ € TV : 6(¢) = 0}.

Next suppose that M is a closed riemannian manifold of negative sectional
curvature. Then the geodesic flow ¢; of M is an Anosov flow; that is, the
" ngent bundle of V' carries a unique ¢;-invariant continuous splitting TV =
&~ + E° + E* into linear subbundles satisfying the following two conditions:
(1) E® is spanned by the geodesic spray ¢; (2) For each ¢+ € E*, dpt*
contracts exponentially as ¢t — Foo. We call the splitting TV = E~ + E® + E+
the Anosov splitting of M. Fundamental relations between the Anosov splitting
and the canonical contact form # can be summarized in

(2.1) Lemma. (1) 6(¢) =0 whenever £ € E- + E*.
(2) For any fi,ﬂi € Ei: d6(£-777_) = d6(§+a77+) =0.

Proof. Suppose that £~ € E~. Then Liouville’s theorem implies that
1667)] = (#36)(67)| = 18(dipe6™)| < 116l - ldps€ . Since |dgeé-| tends o zero
as t goes to oo, we have §({~) = 0. Similarly we can show that 6(¢%) = 0 for
£* € E*, and this proves (1). The second assertion (2) can be proved in a
similar way. |

The first assertion in the lemma implies that the 2-form d# is nondegenerate
when it is restricted to E x E, where E = {{ € TV : §(¢) = 0} = E~ + E+.
. other words, df is a symplectic structure of the vector bundle E. Then
the second assertion claims that E = E~ + Et is a lagrangian splitting of E
with respect to the symplectic structure df. By virtue of these observations,
we can define a continuous pseudo riemannian metric ¢ of V in the following
way. First let I be the continuous involution of E characterized by I|E* = +id.
Then go(¢,n) = d8(¢,In) (§,n € E) is a pseudo riemannian structure of E, and
g = go + 6 ® 0 is the desired pseudo riemannian metric of V.

To introduce the canonical connection of V, assume especially that the
Anosov splitting of M is C1-differentiable. This assumption is fulfilled especially
if M is a surface, or if the sectional curvature of M satisfies the pinching condition
—4 < KM < —1 (see Hirsch-Pugh [HP,], [HP;]). Under this condition, the
pseudo riemannian metric g of V' we have just defined is C-differentiable, and
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has the continuous Levi-Civita connection V. It is not hard to see that the
canonical connection V possesses the following properties. (1) The subbundles
E° E* of TV are V-stable. (2) V8 = 0, Vdf = 0 and VA = 0, where A =
6 A(d8)" (n+ 1 = dimM) denotes the Liouville measure. (3) V is invariant
under the geodesic flow ¢;. (4) V€ = L€ for any vector field £ on V.

Notice here that the Anosov splitting of a closed locally symmetric rieman-
nian manifold of negative curvature is C'°°-differentiable. Thus its unit tangent
bundle has the canonical connection as above. However it does not coincide
with the canonical connection introduced in the preceding section unless M is
of constant negative curvature. In fact, for the complex, quaternion and Cayley
hyperbolic spaces, the canonical connections of their unit tangent bundles given
in §1 have torsion, while the canonical connection defined here is torsion-free.

We are now in the position to prove the tensorial ergodicity for surfaces.

Let M be a 2-dimensional closed riemannian manifold of negative curvature.

Then the subbundles E¥ appearing in the Anosov splitting of M are both 1-

nensional, and therefore we obtain functions h*(v,t) (v € V, t € R) such
that

(2.2) |dou®| = 2P|t for ¢ e BE, veV,
where EZ denotes the fiber of E¥ over v € V. These functions should satisfy
(2.3) 't < hE(v,t) < at and |hF(v,t) — A= (v,t)] < ca,

where c; and ¢, are positive constants. The first assertion actually follows from
the assumption on the curvature of M together with the compactness of M.
Meanwhile, the last inequality is a consequence of the following three facts: (1)
The symplectic structure df of E = E~ + E¥ is preserved by the geodesic flow;
(2) E = E~ + E* is a lagrangian splitting of the symplectic vector bundle
(E,df); (3) The angles between the lines E; and EF in T,V are uniformly
bounded in v € V. Here set E*! = E* h*l(v,t) = h*(v,t) and A%(v,t) = 0.
Then, by (2.2), the natural lift ¢, of the geodesic flow ¢, to the vector bundle

EQu=dipum) — Pl g .. @ FM @ EM* Q... Q Ebm*
with Ay, -+, Ay p1,--+ , wm = 0,+1 satisfles
£ m
(24) ] < cz-exp{ D AhN(v,8) = D prh**(v,2) ¢ - I7]
J=1 k=1

for 7 € EQuAsunmm) - Thus, in the case where TAj — Zpp # 0, oy,
7 € EQuAdpbm) | contracts exponentially as ¢ diverges to oo or —oo
by (2.3). This proves as in §1 that each measurable v;-invariant section of
EQusdissum) with ©X; — Sug # 0 vanishes almost everywhere.
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Next we consider the case of £A; — Zuz = 0. Also in this case, the proof
goes as in the preceding section. Notice here that (2.4) together with the last
inequality in (2.3) guarantees that 1 is an “almost isometry” on each fiber of
EQas s Aim1,8m) s that is, there is a constant ¢4 such that

[he7| < cq-|r| for T€ E('\ly"‘y)\““ly"':l"m)’ teR.

This again makes it possible for us to follow the arguments in §1 with suitable
slight modification, and we can conclude the tensorial ergodicity of the geodesic
flows of negatively curved surfaces.

3. Differentiable Tensor Fields

As we have observed in the previous sections, the geodesic flows of neg-
atively curved surfaces and locally symmetric spaces possess the tensorial er-
godicity. In particular, in the former case, the tensorial ergodicity is stated in
terms of the canonical connection of the unit tangent bundle, while the defi-

1on of the canonical connection requires only the C!-differentiability of the
Anosov splitting. On the other hand, we know that there are actually a number
of negatively curved manifolds other than surfaces which have C!-differentiable
Anosov splittings: For example, closed riemannian manifolds whose sectional
curvatures are bounded between —4 and —1 strictly have this property (remind
Hirsch-Pugh [HP;], [HP,]). Thus the unit tangent bundles of these manifolds
carry canonical connections, and it makes sense to ask whether the geodesic
flows of these manifolds possess the tensorial ergodicity. Unfortunately we have
no answer to the this question. However, if we restrict ourselves to cons1der1ng
only differentiable tensor fields, we can obtain a partial result, and that is the
purpose of the present section.

To mention it clearly, it is convenient to reformulate our problem slightly.
Suppose that M is a closed riemannian manifold of negative curvature, and let
M be the universal covering of M. Then the unit tangent bundle V of M has
two > group actions: One of them is the action of R on V as the geodesic flow

" M, and the other is the action of the fundamental group I' = m; (M) of M
that is obtained by lifting the covering action of I' on M to V. Since those
actions on V commute with each other, the orbit space of one of these actions
again has an group action induced by the other. In fact, the induced action of R
on the the orbit space V/ T, which is naturally identified with the unit tangent
bundle V of M, is nothing but the geodesic flow of f M. Meanwhile, T acts on
the orbit space of P = V/ R of the geodesic flow of M. It is easy to see that the
orbit space P naturally becomes a smooth manifold, and the action of I" on P
is differentiable. These two actions, the geodesic ﬂow of M and the action of T
on P, are essentially equivalent in the viewpoint of ergodic theory. For instance,
the ergodicity of the geodesic flow of M can be explained by the ergodicity of the
T-action on P, and vice verse. Furthermore, in some cases, such as the problem

11
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we are now involved in, the description is much simpler for the I'-action on P
than for the geodesic flow of M. So, in the rest, we will discuss on the I'-action
on P instead of the geodesic flow of M.

First we restate the results we have obtained in the earlier sections in
the new framework. Throughout the following discussions, let 7 : V — P
be the projection of V onto the orbit space P = V/R. Then, for the lift
TV = E- + E° + E+ of the Anosov splitting TV = E~ + E° + E* of M,
the subbundle E = E~ + E+ of TV is horizontal relative to the R-fibering
7 :V — P. For each tangent vector £ of P, let £* € E be the horizontal lift of
€. On the other hand, each 1-form a of P is pulled back to the 1-form o* = n*«
of V. Hence it is also possible to define the horizontal lift of any tensor of P:
For a tensor 7 of P, denote the tensor of V obtained by lifting 7 horizontally to
V by 7*. A measurable tensor field 7 on P is said to be locally L?-integrable, or
simply, L,oc if the horizontal lift 7* is a locally L2-1ntegrable tensor field on V
ie., [, |7*> < oo for any compact subset K of V. Notice further that for a
«mvariant tensor fleld 7 on P, its lift 7* to V is invariant by the geodesic flow
of M as well as the T-action on V. Therefore 7* induces a tensor field # on the
unit tangent bundle V = V /T of M which is invariant under the geodesic flow
of M. Of course,  is L*-integrable over V provided 7 is L}, .

A. Locally Symmetric Spaces. Suppose sgsciﬁca.lly that M is locally sym-
metric. Then the unit tangent bundle V of M has the canonical connection
V as in §1, and both the geodesic flow of M and the I-action on V preserve
the connection V. Thus we can define a I-invariant connection D on P by
(DeT)* = Vg7 for any vector field ¢ and tensor field 7 on P. The connection
D can be also described as follows. Since the identity  component G of the iso-
metric transformation group of the symmetric space M acts on V transitively,
G acts also on P transitively so that the projection  : V — Pis G- -equivariant.
In fact, if G° denotes the connected Lie subgroup of G with the Lie algebra
g° in the gradation (1.1) of the Lie algebra g of G, then P is represented as
the homogeneous space G/G°. Further, (1.2) guarantees that P = G/GO is a

ductive homogeneous G-space, and D is just the canonical connection of P as
a homogeneous G-space (cf. [KN]). It is easy to show that a tensor field on P
is parallel with respect to D if and only if it is invariant under the action of G
on P. Thus the tensorial ergodicity of the geodesic flow of M we proved in §1
implies
(3.1) Corollary. Every I-invariant L}, tensor field on P is G-invariant almost
everywhere.

B. Negatively Curved Surfaces. Next consider a 2-dimensional closed rie-
mannian manifold M of negative curvature. The canonical connection V of the -
unit tangent bundle V of M which  we constructed in §2 is lifted to a connection
of V and the lifted connection on V which we denote by the same symbol V, is
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invariant under both the I-action on V and the geodesic flow of M. Thus we can
* again define a continuous I'-invariant connection D of P by (D¢7)* = V. r* for

any vector field £ and tensor field 7 on P. The following assertion is an imme-

diate consequence of the tensorial ergodicity for the geodesic flows of surfaces.

(3.2) Corollary. A I'-invariant L} tensor field on P is parallel almost every-
where with respect to D.

C. Manifolds with Pinched Negative Curvature. We now proceed to the
study of continuous or differentiable tensor fields on P which are invariant under
the action of I' on P. Suppose that M is a closed riemannian manifold whose
sectional curvature satisfies the pinching condition

(3.3) —(°+1)2<KM5-1

[

with a nonnegative integer c. Then we first have

"~ 4) Proposition. Under the condition (3.9), every I'-invariant continuous
wensor field on P of odd degree < 2¢ + 1 vanishes.

Proof. Recall here that the exterior derivative dd of the canonical contact
form § of V is invariant under the geodesic flow of M (Liouville’s theorem). Thus
it induces a 2-form w on P which is characterized by the condition 7*w = dé,
and it is easily seen to be a I-invariant smooth symplectic form of P. Especially
it yields the I'-equivariant isomorphism TP & T* P defined by ¢ — w(¢, - ). This
guarantees that it is enough to consider only covariant tensor fields. Let g be a
continuous covariant tensor field on P of degree 2d+1 < 2¢+1 which is invariant
under the action of I' on P. Then f = § is a continuous covariant tensor field
on the unit tangent bundle V of M which is invariant under the geodesic flow
¢ of M, and to see that g = 0, it is sufficient to prove f|[E* x ... x EX2a+1 =
for A1,-++,A2a41 = %, where TV = E~ + E® + E+ denotes the Anosov splitting
of M. Let N~ be the number of —’s appearing in Ay, - - , A2d+1, and Nt the
number of +’s. Note that we have only two possibilities N~ > N+ and N— <
N* since N~ 4+ N+ =2d +1 is odd. We here give the proof in the former case,

the other is treated in the same way. By the compactness of M, we can take
a constant A so that —{(c+1)/c}* < —A? < Kpy < -1 (1 < A < (c+1)/c),
and the standard comparison theorem implies the following estimates for the
hyperbolicity of the geodesic flow ¢;:

el S ldp—ofT < eMET],  eTMETI S |dpetT| < eTHET,
el¢F] < ldpe™| < eMET],  eTMEF] < Jdpoett] < e7HE,

where ¢ € E* and ¢t > 0. Thus we have the following for any £% € E* and
1 > 0 since f is ¢¢-invariant:

(3.5) lf({h, . ’€A24+1)! - |(90:f)(f)‘1 oo ’§A2d+l)l
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= 'f(d%f'\‘, ‘e ,d#’tﬁ'\““”

< ”f” Idsotg)‘l | cee |d<pt£>\2d+;l
+_ -
S |IFI M ] - - - [€P2e+n] . ANT=NT)E

Notice here that N~ > d+1and N7 < dsince N~ > N* with N~ +N* = 2d+1.
On the other hand, we have been assuming A < (¢+1)/¢ < (d+1)/d. Thus we
obtain ANt — N~ < 0, and, in consequence, f(£*,... ¢ 24+1) = 0 by letting
t — oo in (3.5). |
Now assume especially that ¢ > 1 in (3.3), that is, the curvature of M
lies between —4 and —1 strictly. Then, by the theorem of Hirsch-Pugh [HP,],
[HP,], the Anosov splitting of M is C!-differentiable, and therefore the unit
tangent bundle V' of M has a canonical connection V (recall §2), which again
gives rise to a I-invariant continuous connection D on P as in the previous case.
The connection D of P has another simpler description. As we have already
mentioned in the proof of Proposition (3.4), P has a canonically defined I'-
rariant symplectic form w. In addition, the Anosov splitting TV =E-+E°+
E* of M is also invariant under the geodesic flow of M, and the subbundles E*
are transverse to the fibers of the R-fibering of V over P. Thus they induce the
C! subbundles F* of TP such that TP = F~ + F* is a lagrangian splitting of
the tangent bundle of P; i.e., dim F% = dim P/2 and w(¢~,n~) = w(é*,n+) =0
for any £€%,n* € F* (cf. Lemma (2.1)). Furthermore, the subbundles F* are
integrable since so are E*, and, in consequence, we obtain I-invariant lagrangian
foliations F* of the symplectic manifold (P,w) which integrate F*. Now define
a I-invariant C' pseudo riemannian metric g of P by g(£,n) = w(€,In) for
§,n € TP, where I denotes the involution of TP given by I|p+ = +id. Then D
coincides with the Levi-Civita connection of the pseudo riemannian metric g of
P. 1t is obvious that for any I'-invariant differentiable tensor field f on P, the
covariant derivative Df is again I-invariant. Thus Proposition (3.4) has

(3.6) Corollary. Under the assumption (3.8) with ¢ > 1, we always have Df = 0
for any T'-invariant C? tensor field f on P of even degree < 2c.

An application of Corollary (3.6) was already made by author [K] concerned
with the smoothness problem of the Anosov splitting. It proceeds as follows.
Suppose that M is a closed riemannian manifold of negative curvature whose
Anosov splitting is C*°. Then the canonical connection V on the unit tangent
bundle V' of M is C*, and therefore so is the connection D of P. In particular
the curvature tensor R of D is defined as a I'-invariant smooth tensor field on P
of degree four, and we can apply Corollary (3.6) to the curvature tensor R with
c=2:

(3.7) DR=0
provided —9/4 < Kpr < —1. This equation means that the affine connection D

on P is locally symmetric, and has a quite strong implication. In fact, we proved
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in [K] that under (3.7) the geodesic flow ¢; of M is completely isomorphic to
the geodesic flow of a certain closed riemannian manifold of constant negative
curvature. Hence we obtain

(3.8) Theorem ([K]). Suppose that M is a closed riemannian manifold with
sectional curvature —9/4 < Kp < —1. If the Anosov splitting of M is C°°,
then the geodesic flow of M is isomorphic to the geodesic flow of a certain closed
riemannian manifold of constant negative curvature.

In the case of dimension two, a much stronger result had been obtained
by Ghys [G]. He proved that a 2-dimensional closed riemannian manifold M
of negative curvature should be of constant curvature provided that the Anosov
splitting of M is C?-differentiable (cf. Hurder-Katok [HK]). Thus Theorem (3.8)
is a partial generalization of the theorem of Ghys. Furthermore Katok and Feres
recently improved our arguments extensively, and showed that in Theorem (3.8)
we can replace the pinching condition —9/4 < Kjs < —1 by K3 < 0 in the case
of dim M = 3 (Katok [Kt]), and by —4 < Kp < —1 in the case of dim M = 4
“ores [F]). Actually they proved the identity (3.7) under their conditions by
tne aid of the multiplicative ergodic theorem of Oseledec. This may suggest the
possibility that the multiplicative ergodic theorem would sometimes strengthen
our results (3.4) and (3.6).
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