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Asymptotic distributions of digits in integers

by Iekata Shiokawa

For an increasing sequence of positive integers LITLDTRARE let
A(x) be the number of ni's up to x. Copeland and Erdos [1] proved that
if, for any €>0,

(1) A(x) > x!7€

provided that x 1is sufficiently large, or what amounts the same thing

log—z%;y = o(log x)

as X > o, then the infinite decimal O.n1n2°-‘ is normal to base r

when each of these integers n, is replaced by its r-adic expansion. In

the present paper we shall refine this results and make some remarks on it.

§1. Statements of Results
Throughout of this paper r 1is an integer greater than 1.

Every positive integer n can be written uniquely as

k X
cecay = 'E a.r , (2)
i=1

where each ai is one of O0,l,¢¢+,r-1, and a1=0, or equivalently

k=[logrn]+1, where [t] is the greatest integer not exceeding a real

1

number t. For any sequence bl,b2,°-',b of O's,1's,*«+, and r-l1's

2
of length £, we denote by N(n) = Nr(n;blb2-~-bz) the number of indices

i's 1in the expression (2) such that a,= bl’ai+1=b2’...’ai+2—1=b£'
k
We put sr(n) = .Z a;, so that
i=1
r-1
sr(n) = biler(n;b) (3)
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Theorem 1. Let 0,0y, be any, finite or infinite,

increasing sequence of positive integers. Then, for any & integers

bl’b e*,b with Oébi<r, we have

20" 2
1
| = N (ng3bibyeeeby) - —— A(x)logrxl

n.=x
1

IA

1/2

X
log o) + log log x
) A(x)logrx,

c(

A

log x

provided x 2 rlr , where c¢ = ZSl/E_log r.

By the relation (1) we have the following
Corollary 1. (cf. Heppner [2]). For any, finite or infinite,

increasing sequence nysNy,cee of positive integers, we have

r-1
| z< s (n) - — A(x)logrxl
n,sx
i
log A?x) + log log x 1/2
S e TR ) AGolog x,
2

provided x 2 r’ , where ¢ = 27r(r—1)V1og r.

Example 1. Let Y (n) be the Enler function. Then we obtain
1/2
I | . log log n
Esr(m) 57— P(n)log n- (1 + 0( Tog n ) )
msn
(m,n)=1

using the estimates 1lim inf ¥ (n)(log log n)/n > 0.
n->«o

Example 2. (Shiokawa [8], Heppner [2]).
1/2

log log x ) )
log x ’

r-1 X

L s _(p) =
psx r'P 2 log r

(1 + o(

where p runs through prime numbers.



KSTS/RR-87/007
September 24, 1987

Every irrational number 6 with 056<l can be uniquely expanded

to base r as

-1 -2
0 —O.alaz-'- —alr +azr + oeee, (4)

where each ay is one of O0,l1,*+*,r-1. Then 6 is said to be normal to

base r, 1if the relative frequency t_lN(t;e;b1b2°-'bl) of a given
-2

sequence bl,bz,-°-,b2 as in Theorem 1l tends to r as t » «, where
N(t;e;b1b2-~'bl) is the number of occurrences of the sequence blbz---bQ

in the first t digits aja,*eta . Let 0,0y, 0" be any increasing

sequence of positive integers and let nj=ajlaj2"'ajk. be the expression
(2) of nj. We define by (4) a number 8r=0.a11a12-~-a1k1a21---32k2'--,
which will be written simply as 6r= O.n1n2°-°. Then Copeland and Erdos
proved that, for any increasing sequence ny,n,ece of positive integers
satisfying (1), t_lN(t;Br;b1b2-~-b2) = r—2+ o(l) as t > », It seems

difficult, in general, to estimate the remainder o(l) explicitly in terms

of t. However, choosing an index 1i=i(t) such that

i-1 i
L [log.n +1] £ t < I [log n +1],
h=1 rh h=1 rh
we have the following
Theorem 2. Let DNy, be any increasing sequence of

positive integers satisfying (1). Then, for any bl’bz’.."bk as in

Theorem 1, we have

n
i(t) 1/2

N(t) 1 + o log 100 + log log t
t rk log t ’

where log(ni(t)/i(t)) = o(log t) as t » « and the constant implied

depends possibly on r and 4.
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Example 3. Let 9r= 0.23571113¢+«+« be the number defined by

the sequence of primes. Then

'.'bk) = _li a+ o(_lSE_LQ&_E_) ).

1
t N(t’er’b log t

1°2
r
The assumption (1) in the theorem of Copeland and Erdos as well as
Corollary 2 is indispensable as the following theorem shows.
Theorem. (Shiokawa [7]) For any given €>0, there is an

increasing sequence Ryany, e of positive integers satisfying

A(x) > xl_€ N

provided that x 1is sufficiently large, such that 6r=0.nln2-~- is not
normal to base r.

The estimate obtained in Theorem 1 is best possible in the sense
that O0((log(x/A(x)) + log log x)/log x)l/2 cannot be replaced by

1/2. The same is true for Theorem 2, and

o((log(x/A(x)) + log log x)/log x)
when r=2 for Corollary 1, since Nz(n;1)=sz(n). Indeed we have the following
Theorem 3. Let b be one of 0,1,+¢+,r-1. Then there is an

increasing sequence 0,0, et of positive integers satisfying

1 X

At > 8 log x

for all sufficiently large x such that

1 log log x 1/2 1
N_(asb) 2 (1 + T(—-8——5—) ) —A(x)log x

r log x
for infinitely many integers x.
For some specified sequences nl,nz,'-- satisfying the
condition (1), one may get better results than those which can be deduced
from Theorem 1. For instance, we can show the following by a method similar

to that used in [3]: Let £ and m be integers such that 0=%<m, and
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let bl,b2,°-',b2 as in Theorem 1. Then
=1 X
nix Nr(n,blb2 b£> = logrx + 0(x)

nza(mod m)

and
. -l P
nix Nr(n,blb2 bg) < p— logrx + 0(d(m)x).
(n,m)=1

where d(n) 1is the number of divisors of n. By (1) we also have the
estimates for the corresponding sums of digits as Corollary 1.

Finally we exhibit a theorem which is of interest in connection
with Example 1.

Theorem 4. For any £ integers bl’bZ’...’bz with

Oébi<r, we have

. cer -1 3 2 . _log log x
L E Nr(n’ble bl) - 5 X logrx (1 + 0¢( Tog x )Y,
n=x m=n ki

(m,n)=1
as x > », where the constant implied depends possibly on r and £%.

Especially,

__r-1 3 .2 . log log x
z E sr(m) 5~ X logrx (1 + 0o Tog x ).
nsx  mSn

(m,n)=1
§2. Proofs
For the proofs of Theorems 1 and 3, we need the following Lemma
which is a refinement of those proved in [6] and [7]. We denote by T(k,e;b)
and S(k,e3b) the number of integers n with 0§n<rk such that
|Nr(n;b)—k/r| > ke and Nr(n;b)-k/r > ke, respectively.

Lemma. Let b be any integer with O0sb<r. Then we have

T(k,e5b) < £° k exp(- 53— ke’)

and
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S(k,e;b) > T%— rk/E_exp(—Srkez)

for any ¢ with 0<e<1/8 and any integer k with ke24r.

Proof of the first inequality. Putting p(mr,2)=(m;)(r—l)mr_z

for brevity, we have

T(mr,e/2) = z p(mr,L)
| 2-m|>mre/2
= z p(mr,m+j) < ™ or exp (- T%— mrez),
|3]>mre/2

provided mre22, using the inequality (see [5]) p(mr,m+j) < rmrexp(—jz/(4mr)),
where j 1is an integer with |j|§2. Now let k=mr+d, Osd<r. Then writing
ko k1

n<rk as (2) and putting n, = I a;r , we have |N(n)—k/r[ < IN(nl)—m|+r,
i=d+1

so that if [N(n)—k/r’ > ke, we have IN(nl)—ml > mre/2, provided keZé4r.

Therefore we obtain

T(k,e;b) < rdT(mr,e/Z) < rkk exp (- 3%— kez).

Proof of the second inequality. Assume first that b=z0. Then

S(mr,2e;b) = z p(mr,L) = z p(mr,m+j).
2-m>2mre mre<j<mr-m
Here
. 3 1 71 i-1 23
p(mr,m+j)/p(mr,m) = E (1+ -E_) (1+ _E?:E_) > exp(- __E_)’

i=1
provided j<(mr-m)/2, noticing that l--x>e_-2X with 02xs£1/2. Thus we have

mr

p(mr,mt+j) > exp(—4mr252)

m
for all j with mre<j<(mr-m)/2, using the inequality p(mr,m)>rmr/ﬂ5.

Hence

S(mr,2e;b) > —é—rmr+1/5_exp(—4mr252),
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since (mr-m)/2-mre > mr/8 provided e<1/8.
Now let k=mr+d, osd<r. Then N(nl)—m > 2mre implies
N(n)-k/r > N(nl)—k/r > ke, provided ke24r. Therefore we obtain

S(k,e;b) > rdS(mr,Ze;b) > —%— rk/E_exp(—Srksz).

For the remaining case of b=0, we get

r-1
- S(k,e3r-1)

S(k,e3;0) 2 z 1 =

rk_1§n<rk

Nr(n;O)—k/r>k€
> T%—rk/i‘exp(-Srkez)

as required, and the proof of Lemma is completed.

Proof of Theorem 1. Assume first that £=1. Putting

k=[logrx + 1], we have

| £ N(n,) - é£§llog x| £] L N - éﬁﬁlkl + | A—(-zlk - é£§2-10g x|
< i r r < i r r r r
n,sx n,sx
i i
s ( L + b ) [N@m)- K| + A
i r r
n,<x n,sx
]n(ni)-k/rléka In(ni)—k/r[>ke
< A()ke + éﬁ-’—‘)— + KT(k,e3b),
where e=e(x) 1is defined by
5 k
2 _ 2 r
e” = ——E—(log—zzzj + 2 log k),
rZ
so that, by the assumption x2r , we find ke24r and
2 28 X
e” < EGEZE- log 0 + log(logrx) . (5)

Thus we may use the first inequality of Lemma and obatin T(k,e;b) < A(x)/k.

-7 -
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Therefore

l z N(ni) - r_lA(x)logrx! < A(x)ke + A(x)/r + A(x)
n,Sx
i

< 4re A(x) logrx,
noticing that e%&r/k>1/logrx, which together with (5) leads to

log(x/A(x)) + log(logrx) 1/2

2 r( ) A(x)logrx. (6)

1ogrx

Now let 222, It follows from the definition that

2-1 i
|Nr(n;b1b2°--b2) - o ([nr 1;8)] = &,
j=0 r
L -1
where B = I b,r , so that
i
i=1
! Z N (n.i;b.b,s**b ) - r_zA(x)log X‘
< 227127172 L r
n,fx r
i
-1 s -2 _s
< I | X N E([nir J];BO - r "A(x)log Q(xr J)[ + 22A(x),
j=0 ni§x r r

and hence using (6) with rl and xr_j in place of r and x,

log(x/A(x)) + log(log Qx) 1/2
7
<22 ¢ Tog = ) A(x)logrzx + 28A(x),
r

provided xngE, which leads to Theorem 1.

Proof of Theorem 2. We put for brevity
N(t)=N(t;6r;blb2--°b£), N(m)=Nr(m;b1b2°°°bZ), K(m)=[1ogrm]+l, and n=n(t).
Then

t= I K(ni) + 0(log n) (7)
n,<n
i
and
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N(t) = I N(ni) + 0(log n) + O(A(n)),

n,sn
i
so that
I N(n,)
N(t) n.<n * 1
_ i og n
t £ K(n,) + 0( t ) s
i
n,<n
i
noticing that A(n) = 0(log n) by (1).
Now putting k=K(n), we get
k-1 .
- A(mk - I Ky = 2 A(rI-1),
n.sn j=1
i
and so
k-1 .
£ N(n) £ N T A(e?-1)
n.sn n,sn j=1
= i (1 +
T K(n,) A(m)k I K(n,)
< i < i
n.<n n.<n
i i
Here
k-1 . .
£ A()) = L rd + (k-1-[10g AGCSTH DACHT
=1 1Sj§[logrA(rk_1)]
k-1
< (3 + 10gr_—rk—-—1— ) A(rk_l);
A(r )

so that by (1) and (9)

I K(ny) = A(m)k(Ll + o(1)),
=N

IA

n
1

and consequently

k-1 j

L A(r'-1)

k-1 k-1
i Ll S O A(r™ ) n A(n) r

A CHE o( * )y +0 ( ) (1ogA(n) + log " ) + log
n,sn 1 (r )

i

1 n
= of log n ) + 0 log n Log A(n))'

(8)

9

(10)

(11)

))



KSTS/RR-87/007
September 24, 1987

Therefore we obtain by (1) and Theorem 1

I N(n})
i n
n sn 1, o log e + log log n )1/2
Z K(n,) L log n ?
i r
nién

which together with (8) yealds Theorem 2, since by (7) and (l1)
log t=log n + o(log n), and so log(n/A(n)) = o(log t).
Proof of Theorem 3. Let ko be a sufficiently large integer.

We define

- e = (3 logk 172
k 16rk

so that
rk/E-exp(—Srkei) = rk/k

and kek£4r for kgko. Then for each integer kzko we can choose, by the
second inequality of Lemma, [rk/(lék)+l] integers n's with rk_l§n<rk

such that Nr(n;b)—k/r > ke We denote by n;,n *+ the increasing

k* 20"

sequence consisting of all these integer for all k;ko.

By the partial summation formula, we have

3 k+1 k

k
5 r + 4y ,
j=ko J (r-Dk (r—l)k2
so that
k i k+1
k 1 r r
A(]’.‘)§Tjik J +k§T’ (12)
o
[logrx]
A(x) . A(x ) 5 1 (13)
x [log x]+1 8 log x °
r r r
and
k ri Srk
z (k-3) 3 < T . (14)
J=k,

- 10 -
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Using (12) and (l4), we obtain

1 k
z Nr(n,b) - —;—A(r )k

n.§rk
i
k K 1 K 3
= I Z N(r(n;b)— —;—) -—X (k~3) [ 57+ 1]
j=k_ _j-1 h| =k J
or §ni<r o
s ke rk _ rk—l _ kZ g € A(rk) .
k 16k 2k 24 4 r

for all kzko; which as well as (13) implies that the sequence ny,0y,0ee
satisfies the properties mentioned in the theorem.
Proof of Theorem 4. We note first that for any interger b

with Osb<r

= X
nier(n,b) = logrx + 0(x),

(which can be proved for instance by using the same idea as in [4],) and

consequently, the same argument as in the proof of Theorem 1 will yield

z Nr(n;blb2

eesb ) = X log x + 0(x). (15)
< £ r
nsx r

L

Now we put

A

A= [logr(log n)] and J = [nr "]

so that JrA S n< (J+1)rA. We note that for any integer j20,

IA

N(3) N(m) £ N(j) + A

if m is an integer with jrxém<(j+1)rk, where N(n)=Nr(n;blb2---bz).

Then, using the equality (see [5])

msq n d

(m,n)=1

po1=—® g Pr@t
n

- 11 -
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where n and q are positive integers and {x}=x-[x], we get

I N(m) =
mEn j
(m,n)=1

> N(m) + I N(m)

1(j—l)r>‘<m§jrA Jr’<msn
(m,n)=1

[/ e 2N

N(3) L 1+ 0(A9(n)) + 0(c’log n)

(j—l)rx<m§jrk
(m,n)=1

[ e 4]

j=1

Pm) 2L

r
n .
J

J ¥ (i-1)r*
NG - E NG T w@ U= - (D
1 j=1 d|n

™

+ 0(¢¥ (n) log log n). (16)

Here it follows from (15) that

L) 2

r
n s
J

N(j) =
1

log n + 0(¥ (n) log log n). (17)

L e B S

P ()
r

On the other hand, we have

irz ('—l)rl
N(i) Z u@d d}-{J a2
1 d|n

e

J

Jrk J (‘—l)rl
N I w(@{=F} - I (NG - NG-D 2 u@ )
d|n j=2 d|n

J
O(N(J)d(n)) + 0(d(n) I [N(§)-N(-1)])
3=1

0(d(n)n/log n), (18)

where d(n) is the number of divisors of n, since

My

IN(DH-NG-D | s =
1 k=20 J=1

I (k+l) = 0(J).
ky .
o4

™y

i

Combining (16), (17), and (18), we get

- 12 -
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_ Y@ d(n)n
I N(m) =575 logn + 0(¥ (n)log log m) + O(~F).
m=n
(m,n)=1

Therefore we obtain

T z N(m) = —%~ z f?(n)logrn
nsx msn nsx
(m,n)=1

n
+ 0(Z $(n)log logn) + 0( I d(n)_IBE_E_)
nx nsx

1 3 2 2
= ﬁz be logrx + 0(x"log log x),

using the inequalities

I Y

—éf x2+ 0(x log x)
nsx m

and

L d(n) = x log x + 0(x),

and the proof of Theorem 3 is completed.

- 13 -
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