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Introduction

In this paper, we consider a system of infinitely many hard
balls with the same diameter r moving discontinuously in Rd.

We denote the configuration space of hard balls by
T = {F = {x}: Ixs - xgl =2 r, 1 #73}.

The ball of the system moves by random Jjump respecting the
hard core condition. The system is completely specified by the
measure c(x,dy,&) which gives the rate of the movement of the
ball at the position x to the position y when the entire
configuration is §¢. We shall consider the case where c(x,dy,§)
is given as follows by a translation invariant hard core pair

potential @ which is stable and has a finite range,

c(x,dy,&) = exp{ - = ®(ly - 2zl) tp(lx - yl)dy,
z€EN {x)
where p(-) 1is a non-negaive function on [0,+c0) such that

%d p(|x|)dx =1 and p{(-) > 0 on [0,2h) for some h > O,



KSTS/RR-87/005

June 23, 1987

and o] is a measurable function on [0,0) satiéfyihg the

following properties,

(P.1) d(-) = -C for some constant C z O,
(P.2) P(a) = o 1if and only if a € [0,r),
(P.3) ®(-) =0 on |[r',~) for some constat r' = r.

In the previous paper [8] we studied the case where r =r

We construct the Markov process Et which describes our
system. This process has the Gibbs state 4 associated with the
potential & as the stationary measure.

The purpose of this paper is to show the ergodicity of the
stationary Markov process in the case where the density of balls
is sufficiently small. It is important to develop a topological
argument on the configuration space to prove the ergodicity. If
the configuration space were connected, any configuration would be
attained from any other configuration by moving balls
continuously. However, due to the hard core potential, our
configuration space 1is not connected and has more than one
connected component. We prove that every pair of different
connected components I, and I, are jointed by the chain of
connected components I’y = Ay, Ay, Ay = T, in which Aj and
Ai+1 are in "h-communication" for all i with 0 £ 1 = k - 1.
This means that any configuration is attained from any other
configuration by means of a finite number of jumps of magnitude
egual or less than h. This argument constitutes the most crucial

part for the proof of ergodicity. The precise definition of

"h-communication" will be given in § 2.
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In § 1, we construct the Markov process describing our model
by using Liggett's theorem [5] and show that a Gibbs state is a
reversible measure for the process. In § 2, using the key lemma
about the topological property of the configuration space, we
prove the ergodicity of the process. The proof of key lemma is
given in § 3. In § 4, we study the central limit theorem of the
tagged particle of our process. Kipnis-Varadhan [3] proved the
central limit theorem for a tagged particle of simple exclusion
process on a lattice. Using the ergodicity of the process and the
same technigue as [3], we can discuss the central limit theorem.
But the proof of non-degeneracy of the covariance matrix 1is not

obtained.
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§ 1. Construction of a Markov process

Let T be the set of all countable subsets ¢ of Rd

satisfying #( N K) < o for any compact subset K C Rd. We
regard £ € I as a non-negative integer valued Radon measure on
Rd: E(-) = % 64 (). % 1is a compact subset of ® with the

i

vague topology-

d e enote EU {y} by é&-y.

For any £ € M and y € R
Also we denote E\{z} by £\z if =z € £. The restriction of ¢
to any subset K will be denote by {K.

Let C(X) be the space of all real valued continuous
functions on X% with supremum norm | [ . We denote by co(x)

the set of functions of C(X) each of which depends only on the

configurations in some compact set K;
CO<%) = {f € C(X):f(f) = £(fy) for some compact set K} .

It is easily seen that CO(Q) is dense in C(X). We define o-
fields ®B(&) and BK(£) by

and BK(E) =o( Ny : Re B(Rd), ACK),

where NA(E) is the number of particles of ¢ in A. The o-
field ®B(¥) coincides with the topological Borel field on X.

Before defining a linear operator on C(%) which generates a
Markov process, we define the function y(x[f) for x =

{xq,x2,~-,xn} and £ € ® by

2 (x1E) = exp{--;- > o(ly -z) - @(ly - z1)}-
Y, 2€X YEX, z€E
y#z

_47



KSTS/RR-87/005
June 23, 1987

Let p(-) be a non-negative function on [0, 00) satisfying

(1.n § dx p(ixl) = 1,
Rd
(1.2) § dx Ix|*p(Ix]) <o,
IRd
(1.3) p(-) >» 0 on [0,2h) for some h > 0.

Now, we shall define a linear operator on CO(£) by

LE(E) = § (EEXY) - £@) ) x e P Ix - yl)dy,

xXe¥ Rd
where
Y [ &0y, if xef y&E
1 £, otherwise.
Since L is dissipative and CO(%) is dense in C(¥), L has a

minimal closed extension . Define bounded operators Lj g on

d

C(%) for j = (j']l rjd)l k = (kjl rkd) € Z bY

i = 5 EE*Y) - f@xrIeex - yDay,

xefFNI. I
j ok
if pj,k > 0,

Lj,kf(£> =l
0,

otherwise,

where
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and

Then, we have

Lf(§) =.§2 3 pjlij’kf(E) for f € Co(f).
j,k€eZ
Tt follows from the Liggett's theorem [5] that (f, S(f)) generates
a unique strongly continuous Markov semigroup Tt on C(XF).

We denote by (gt, Pu) the Markov process associated with L
having initial distribution y. Since T, is a Feller semigroup,
we can take a version of £y which is right continuous and has
left limits.

For any compact subset K C Rd, we denote by M(K) and
M(K,n) the set of all finite subsets of K and the set of all
subsets of K having n points respectively.

An alternative description of W(K,n) 1is given by

[{QJ}, if n =0,
(1.4) B(K,n) =

\(K”)'/sn, if nz 1,
where (K™)' = {(len‘,xn) e k1 Xy # Xy if 1 # j} and
Sn is the symmetric group of degree n. By means of the factoriza-
tion (1.4) we introduce a measure AK,Z on M({K) = ng; M(K,n)

(direct sum) such that

KK,Z(Q) =1,

and
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n .
_ oz .
AK’Z(A) = = S?de1dx2 dx,~ for a Borel set A in RB(K,n}),

n =1,

where z = 0 and A is a preimage of A by factorization
(1.4) . The integral of a measurable function f on T (K) with
respect to this measure is denoted by § f(x) a%x.

Now, we are going to define a Gibbs state. We will see that
this Gibbs state is a stationary measure for our process Et'

Definition 1.1 ([2)). A probability measure py oOn X is

called a (grand canonical) Gibbs state with activity z = 0, 1if

for any compact set K, the restriction of g on BK(Q) is
absolutely continuous with respect to dzi and the density is
given by

og (x) = u(dn) x (xln) -

7 (§<) =0

Denote by 9 (z) the set of all Gibbs states with activity =z
= 0. This set 9 (z) is convex and compact with respect to the
topology of weak convergence, sO that the element of 9 (z) 1is
represented by the extremal points of 9 (z) . We denote by
ex? (z) the set of all extremal points of 9 (z) .

Remark 1.1 ([4]). There exists 2, > 0 such that if
z < z,, then #9 (z) = 1.

Remark 1.2 ([7]). Let 2z < 2. Then, for any pu € 9’ (z)
the limit '

. 1
p(z) = lim,k — §_ &K p(df),
KTle K| x
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We call _p(z) the particle density of pu. Also the

following property holds. For any ¢ > 0,

ffi% —p(2)] = e )0 as K1t RO

pl |

Lemma 1.2. If x 1is a Gibbs state, then y 1s a reversible

measure for Et' i.e.

<th, g)u

<f, Ttg>u for any f,ge C(&, t =z 0,
where <- , - >u is an L? inner product with respect to .

d

Proof of Lemma 1.2. Let Jj.,k € Z and f,g € co(x). Since

Py x = Pk, 4 we have
(1.5) pj,k{<(lek + Lk,j)f’ g>ﬂ - <f, (Lj.k + Lk,j)g>u }

= 9§ opl@) = {ay £ NgE) xIE\X)P(Ix - ¥I)

x erﬂIj Ik

S ou@) = { day £ NgE) xIE\PUx - ¥
x erﬂIk Ij

- oul@) = { dy £@) g™ N xiylEx)p(lx - ¥I)
x erﬂIj Ik

- opd) = [ dy ) gE N xylE)p(Ix - yI).
X xefﬂlk Ij

Choose a compact set K satisfying f(EK) = f (&), g(gK) = g (¥)
and Br'(IjU Ik) c K, where BQ(A) is an open (-neighborhood of

A C Rd. Then, by the definition of a Gibbs state we have

{op(@d) = {ay £ENgE) xyIE\®)P(Ix - ¥I)
x xegnzj Iy
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£ (% X _qoY) g X X)) x (YIxg o xp e lIxy = yl)-

Let us note that aK(x]~-xn) = UK(X1~~xn_1)x(xn]x1~-xn_1) for
X, € Ij U Ik . Using this relation, we have
(1.6) §opld) = fay £E N gE xyIE¥ P (IX - ¥I)

x xegan Ik

oo n

- S z e s

= = oy bnea@gdxg g §odxg §ody og(Xge )
he1 X NI,

f (X.]--- Xn-1 -Y) 9 (x']"'xn)X (YIX'l“‘Xn,'])X (anx1“'xn_1)P Hxn"}")

{oul(@) = { ay FEgE™ Ny ylE\Pp(Ix - vi) .
x x€ENT, 1y

Hence, from (1.5) and (1.6) we have

’

<(Lj,k + Lk,j)f' g>u = <f, (Lj.k + Lk,j)g>u

for f.ge Co®, 3.ke 2%

Therefore,
£ = S
<Lf, g>u <f, Lg)u , for f,gc€ Co(x).

Since L 1is the generator for T Lemma 1.2 1is proved.

t

— 09—
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§ 2. Ergodicity of ( ft’ Pu )
The primary purpose of this section is to prove the following
theorem.

Theorem 2.1. If z > 0 1is sufficiently small, then the

Markov process (Et, Pu) is ergodic for any pu € exg’(z).

Let T, be the strongly continuous semigroup on L? (X, yu)
associated with ft and L be the generator for Tt‘ To prove
the ergodicity of the process (ft, Pu) it is enough to prove

the following condition (C.1):

(C.1) If f e L, (%, satisfies th = f for any t = O,

then f 1is constant.

We shall prove that the condition (C.1) holds for (ft, Pu),
ye ex# (z), if z > 0 is sufficiently small. The following
result [1] about Gibbs states is very useful to show the

condition (C.7). Let §_ (%X) Dbe the o-field given by

Bo, (®) = K;Qmpa‘é (Mg Bre @),
where o(NK , BKC(%)) is the ¢g-field generated by NK(E) and
(BKC (). If pe exg (z) then p{A) = 0 or 1 for any A €
Do () -
The following Lemma 2.1 follows from this result immediately.
For a given compact subset K C Rd, nelN and ¢ € %, we denote

by A(K,n,f) the interior of the configuration space
{ x € M(K,n): X(5|EKC) # 0}, and for me N we put
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k= {xeRI: x| = Y& ).
Lemma 2.1. Let f e L2 (%,u) and pu € exg'(z). If there

exists a positive number ¢ and the following equation (2.1)

holds for all m, n € N satisfying

n

TR;T < plz) + ¢,

and for almost all ¢,

(2.1) f@x f aly |f(x-Fyc)-f(

then f 1is constant.

Since p(z) |, 0 as z| 0, the condition (C.1) is obtained

by Lemma 2.1, if we prove the following condition (C.2):

(C.2) There exists a positive number ¢ and (2.1) holds for

almost all £ € ¥ and all (m,n) € NXN satisfying

T%n’(c'

To show the condition (C.2) it is neccessary to develop the
topological argument on the configuration space. We introduce
some notion about the configuration space which is weaker than the

connectedness.

Definition 2.1. i) Two configurations § € ¥ and 7 € X

are said to be in h-communication (denote by §< h—yp), 1f there

exist x € £ and y € n such that |x-y| £ h and gY = g

,117
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i) Two subsets I’ and A of X are said to be in h-

communication (denote by —~h—A), if there exist & € I' and g
€ A such that £« h—gp.

i) A family of subsets {A(j)}jeJ of % 1is said to be in
5',3" € J, there exists a sequence

h-communication, if for any

{39,3.  3g such that

AU'%~h%A(h)**P*AOQF—hH'“kﬁk*AUq%-héA(TW-

Let {Aj}jeJ be the set of all connected components of

A(Km,n,E). Then, our key lemma is the following.

Lemma 2.2. There exists a positive constant c¢(r,h) such

that for all £ € £ and all m, n€N satisfying T%—l < c(r, h)
m

{Aj}jeJ are in h-communication.

The proof of Lemma 2.2 is given in § 3.

We shall show the condition (C.2) for c¢ = c(r,h) to prove

Theorem 2.1.

From the definition of L and Lemma 1.2, for g € CO(£) we

have

-2<Lg, 9>
9.9 u

g GEY) - g@ rIewex - ¥y ay.

{ou(d) = §
X xef R

Since f 1is Tt—invariant for any t= 0, we see that Lf = 0.

~

Since L

is a minimal closed extension of L, we have

op(ds) =

, (EEY) - 1@ 2 ievp(x - yldy = 0.
x xef R
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From the definition of Gibbs state and (1.3), we have

(2.2) fax X § dy £ Ege) - £(xeEgo) |
A(Kmlnrf) xef(_ Bzh (X) m m

A(Km,n/f) (ﬁx,y) =0

it

for all m, n € N and almost all & € X. We define a non-
negative function H on W(Km,n)x m(Km,n) by
n
Hix,y) = = > T1 1 (Xqo"Xo 4y y ) (y.) -
2L i1 A(Km,n,g) 1 i-141 n B2h(xi) i
The above sums run over all ordered n-tuples (x1,~~,xn) and

(4, .Yy such that {x;,-,x ) =x and {yq, .,y } =y

Employing this function, from (2.2) we obtain

(2.3) { a'x {

for all m, n € N and almost all § € X%.
Since A(Km,n,g) is open, for any x', x* € A(Km,n,g), we
can choose ¢ (x',x*) € (0,h) such that

I(x',e(x,x*)) U I, e(x' x*)) cAE K,,n),

where

I(Xlﬁ) = {{y‘ll ,}’n} € W(Km,n) |yl - xll < & }
We abbreviate I(x’,e(x',x?)) U I(x?,e(x',x?)) to I(x',x*). If
x'<h—-x*, H =z 1 on I(x',x')xI(x',x*). From (2.3), we have
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For any ,, I'n C A(Km,n,g) satisfying I’y n I} » 0 and

{ a'x § d'z If(x-ch) - f(E'EKC)l =0 for i = 1,2,
r. - .~ T m m
i i
we have
P T g ax § Ay IEGeRge) - O |
1 2 m
< T.§ d'x § d'z |[f(x-Fyge) - £(z-Egc) |
3 1 m m
+ I, 1§ d'z § @y [f(z-Ege) - f(y-&ge)l =0,
2 2 m m
and so
d'x { d'z |f(5'5KC) - f(E’EKC)' = 0.
TIUFQ - F]Urz m m

Repeating this procedure and using (2.4), we have that if

Aje—h*>Aj., then

{a'x [ d@y [f(x-gge) - £
AJ Ajv m

Y'fKC)| = 0.
m

Therefore, it follows from Lemma 2.2 that the condition (C.2)

holds for ¢ = c(r,h). This completes the proof of Theorem 2.1.



KSTS/RR-87/005
June 23, 1987

8 3.7 Proof of Lemma 2.2

First of all, we introduce some notions about configurations.

Let B be a convex subset of K and k be a non-negative

integer. A configuration {xi} in B 1is called standard in B
i=1
if d(BC,{xi}k ) > 2r and [x; - x5l > 4T, for 1 £ i <3 € k,
i=1
where d(A,,R,) = inf{|x - yl: x € A,, ¥ € A,}, for A,, A, C Rd
Note that the standard configuration in B, is also standard in

B, if B, C B,.
Also a configuration x € A(Km,n,g) is called B-standard
if xnNB is standard in B. We abbreviate a Km—standard

configuration to a standard configuration.
If the number of balls in B is sufficiently large, then

there is no B-standard configuration. For each convex set B we
assign the number N (B) as the largest number of balls in B for

B-standard configurations, i.e. ,
N(B) = max {(k = 0 : there exists a B-standard

configuration x with nB(é) = k}

’

where nB(f) is number of balls of x in B. If k = M (B),
there exists a standard configuration of k balls. Since N(BQ(b))
is determined by the radius of Bg(b), we abbreviate N(BQ(b))

to N{g) . t is easily seen that

g -2r d
R

For x € A(Km,n,f), let A(x) be the connected component of

A(Km,n,f) containing x-
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Lemma 3.1. Any standard configuration in B can be attained
from other standard configuration in B by moving balls continu-
ously within B preserving the hard core condition and without
interference the boundary condition, more precisely, if y and z

are standard configurations in B such that nB(Z) = nB(E)' then

for any configuration w in Km\B.
This lemma will be proved later.

From Lemma 3.1 all standard configurations are contained in
one connected component AS of A(Km,n,g). For the connected
components F1 and F2 of A(Km,n,f) we write F164 FQ, if
there exists a sequence of connected comoponents AW'AQ’""Ak of

A(Km,n,f) such that
F1«~h—>A1«~h—>A2«—h~>~~«—h—>Ak = F2.
We introduce several numbers Jo, {o and c(r,h) which will

be used in the proof of Lemma 2.2. Let J, Dbe an integer such

that 23071 < r/h VvV 84 < 2Js . put 0o = 2Jor  and c(r,h) =

B (0)1"". Then, o z 4 and c(r,h) K | = 28 3]

aq

Wg also denote the convex hull of A C Rd by [A]. For a
given ordered sequence B1, BZ’ ~-,Bk of open balls, we define
Bli)], 2 =< i £ k by BI[i] = 151UBQJU[BQUB3]U“'[Bi_jUBi]~

See, e.g. Fig.1.

Fig.1.
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To prove Lemma 2.2, it is enough to prove the following

lemma.

Lemma 2.2'. Let f € ¥ and m be an integer with m =2 J,.
If n <« 2d(m—j0)’ then for any x € A(K_,n,§) there exist a
sequence of open balls B1,B2,~~~,Bk and a sequence of configura-
tions X1,12,~-,zk € A(Km,n,f) such that for 1 £ 1 £ Kk

(i) yi is Bi—standard,

(i) XiB[i]C = 51}3 [i]cl
(i) Ng (4] \Bi (Zl)

1

(iv) A e Aty ) e AlyD)

P A(zk) = AS.

We shall prove this lemma by induction. The following lemma

play an important role for the proof.

Lemma 3.2. Let B, = BQ(b,), B, = B, {(b,) C K for some
—_— 1 2

0, = (0, = (o, by, by € Rd. Take a B,-standard configuration

y € A(sznrf) . If n lBIUBg](Z)
configuration is obtained from y by moving balls in [B,UB,]

N(¢,-5r), then a B,-standard

IIA

into B, by means of finite many jumps of magnitude equal or less

than h. More precisely, there exists a B, -standard

configuration z such that

_17,,
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(i) 25,° = Z18,uB,) ¢ ~ (B, UB,] "
Proof of Lemma 2.2'. We construct an increasing sequence
Eq. E2,~~,Em_j0 of cubes in K satisfying the condition (3.2)
as follows,
aj . .
(3.2) nE.(ﬁ) < 277, for 1 £ jJ = m- Jo-
J
First, we put
d m .

Em—jo: {(aw,~-,ad) € R™: -2°r « a; = Zmr, =iz d).

From the assumption of Lemma 2.2' we have np (x) £ n« 2dm.

0
We decompose E into the disjoint union of congruent Zd cubes
with edge length oM. Pick up one of the cubes having the

smallest number of balls of x and denote it E Then,

m-1°

ng (x) = 2d(m—1—30). Repeating this procedure, we can
m-Jjo-1

const;uct a sequence E1 C E2 c - C Em—‘

3 satisfying the
0

condition ({3.2).

Let Bi be the inscribed open ball in Ei for O=ism - Jo

and By, ; be the interior of K. The radius of By is 21y,
for 0 < i £ m - Jo. Taking (3.1) in account and using (3.2)
have
id i-1
(3.3) ngpy ) s ng (0 < 218 s @ Tge-5m),
i
for 02 1< m+ 1 -3

From (3.3) x 1is a BO -standard configuration satisfying
np (x) = N(0o-5r). Then, we can apply Lemma 3.2 and have
[BoUB-]

that there exsits a Bw—standard configuration 11 satisfying
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Ay e AlX),
Ty - Ty _
(34) n51 (z ) =n [BouBﬂ (Z ) - n[BWUBO] (5) ’
(3.5) y1 c = y1 c =X c.
. = B-! = [Boug'l] - [Boqu]

From (3.4) and (3.5) we have

1

1y _ 1 .
Rlpus,) (L) = Pa )T Pa,uBy BT

= nigus,) %) P (BiUB,\ [BouB,) &
= N7 (x) = N(20,-51r) .

Then, we can apply Lemma 3.2 and we obtain a Bz—standard

configuration 12 satisfying

2, 1
= P p,uB,) X7 T PiBiUBy) X

2 2 1
yrC = Y c =y c.
Y°BS = ¥ (BB, © T L(B,UB,]

Repeating this procedure, we construct the seguence of
configurations 11'22r”':1m+1-]°' Since A(Km,n,g) is open,

there is no ball in the boundary aKm of Km, therefore,

zm+1_30 is a standard configuration. Now, we have a seguence
11112,~~,Zm+1—]° of configurations satisfying the conditions
(i}~ (iv) in Lemma 2.2"'.

— 19_
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Proof of Lemma 3.1. This lemma is trivial when y ZUE or

nB(Z) - 1. So, we assume that y # 2z and ng(y) = 2.
Suppose that y € ¥ and z € 2 satisfy |y - z| = 2r, then we

have
z -yl z ly-y'l-ly-z
> 4r - 2r = 2r, for y' € y\y.

In the same way, we have

ly - 2"} > 2r ) for z' € z\z.

Then, there is at most one ball =z € z with ly - z| = 2r, for
any y € y and there is at most one ball y € y with |y - z| <
2r, for any z € z. 5o, we can take pairings (yi,zi), 1gis g

such that

N
m
|~

lz - yil = 2r) = {z4},

Put  x\{xq, o xgh = Xguqe I AN CTEERS 5 e T Xy}

For 1 = 1< g, a€ [0,1] we put
z. (@) = (1 - a)z

.o+ .
i a’}’l.

Then, for 1 £ 1

IA
Q

_207
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2 (@) - 25l = l(zg - 2') - alzg -yl
= tzi - z'| - alzi - yll
> 2r, for z' € E\Zi' a € [0,1],

and
a8,z (@)= A, z)AA(B ,yy) > 2r, for ac [0,1].

Hence, for 1 £ 1 £ g Wwe can move the ball z5 to the

position Yi without interference from any ball of (E\;i)-g.
Repeating this procedure, we obtain the configuration
{y1,~-yq,zq+1,~~,zk} from 2z by moving balls continuously
within B preserving the hard core condition and without

interference from the boundary condition, more precisely,

{(3.6) Ay -y 2z oW = Afzew) -

qo zq+-‘ ..

Since d(z,{zq+1,”4,zk}) s 2r, for any i with g+ 1 £ 1 = Kk,

B we have
2' - 2"] » 2r, z',2" € {y1,~-,yi,zi,~‘,2k}, z'#F 2.
Hence, we can obtain the configuration {YW'”"yi+1'zi+2'”"Zk}
from {y1,~-,yi,zi+1,~~,zk} by moving the ball 2541 tO Y4

continuously within B and without interference from the boundary

condition, more precisely,

(3.7 MYy Yiaq 2 20 W) = ATy oz s
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(3.8) Alyw) = Ay Yy 2 ¥ -
Combining (3.6), (3.7) and (3.8) we complete the proof.

Before proving Lemma 3.2, we prepare the following two lemmas
which will be used for the proof. From now on, we put B = BQ (b)

for ¢ = 0., for simplicity.

Lemma A-1. For x € 8B put xf{a) = x - alx - b) /0,
a € [0,¢). Then,

a(BMB, (x) %, x (@) > r, if a> r*/0.

Fig.2.

Lemma A-1 implies that even if balls are arranged closely on
3B as in Fig. 2, we can move the ball at x to x{a) by means
of a jump of range a preserving the hard core condition. The

proof of this lemma is easy, SO we omit the proof.

Lemma A-2. Let y and 2z be standard configurations in B

with nB(z) = ng (z) -1 and w Dbe a configuration in Km\B with

wnaoB # ¢ and y-we A(K,nE). If ngly) = N(L-51),

A(X-E)«h—dx(g-ﬁ\x), for any x € w N 3B.
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Proof of Lemma A-2. From Lemma 3.1 we can assume Yy 1is a

standard configuration in BQ—Sr(b)'
For x € wN 38 put x{(a) = x - a(x-b) /g, a € [0,0). Since,
0o > r?*/hV 8dr, we have hATr » r2/f. Then, it follows from

Lemma A-1 that
a(w\x,x (hAT)) > (BN B_(x),x(hAT)) > r,
so that

wmeA”eAmanL

<

Since |x - x(hAr)| £ h, we have

(3.9) Z'_‘j’f—h—)z-gx’x(h/\r)_

Since y 1is the standard configuration in BQ»Sr(b)' there is no

ball of y outside of BQ—7r(b)’ Then, we have

(3.10) d(y-w\x,x (@) > rVe, for a« € [hA T, 3r],
) and
(3.11) d(y,x(3r)) > 4r.
The condition (3.10) implies that we can move the ball at
x (hA ) to the position x (3r) continuously along the 1line

segment connecting these two points, so that

(3.12) A(X.WXVX(h/\r)) - A(z.ﬁx,x(h‘))_
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Also the condition (3.11) implies the that configuration Ty-x(3r)

is standard in B, so that we have the following relation (3.13)

from Lemma 3.7.
3.13) AWt XBT) 2z
Combining (3.9), (3.12) and (3.13) we complete the proof.

Proof of Lemma 3.2. For a € [0,1] put

where bla) = ab, + (1 - a)b, and ((a) =af, + (1 - ).
Since [B,UB,J\B, ¢ LUJ 3B (@) there exists a € [0,1) such that

a€ [0, 1]
%x € 8B(a), for any x € y N ([B, U B,J\B;). First, we put

aq = min{a= O:d(z[B]UBZ]\B‘,aB(a)) =0},

and pick up one of the balls of Z[B UB,] \B in aB(aj) and
1 1

denote it by Xq - Next, we put
an = min{a= a‘]:d(z [B,UBQ]\BI\{M} ,3B(a)) =0},
and pick up one of the balls of Y[B UB,] \B \{xj} in 8B(a2)
- 1 2 1

and denote it by Xq - Repeating this procedure, we can take

= 1 such that

liA

Xqi X, Xy and 0 = ag £ ay = ay = Xy 1

by %o xich = Y (B, UB,1\B,

{5 %) € [BUB(a)]S, 1= 1= Kk

X410
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X; € aB(ai), 1< 1 £ k.

let y5, 0= i< k and 2, 1= is k+1 be Blay-

standard configurations such that

i | - e .
Y'Ba)® =L B,UBy)) ¢ T Hier X (B,uB,
i .. - oo .
2h)C T 2 BBl T M % s, uB,) S
. . _ 0 k+1 .
It is easily seen that y =y and z is the B,-standard
configuration satisfying (ii) and (iii) in Lemma 3.2. Therefore

it is enough to show the following two relations (3.14) and (3.15)

to finish the proof of Lemma 3.2.

1A
-
A
r

(3.14)  AEYH =AM, for O

IIA
.

IIA
=

(3.15)  Azh)<h—Alyh), for 1

Since zi and zi+1 are [B,UB(ai)]—standard, (3.14) follows

from Lemma 3.1, and (3.15) follows from Lemma 3.2 directly.
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§ 4. Asymptotics for a tagged particle

In this section, we study the behavior of one of the balls in
our process. We call this ball the tagged particle. In order to
follow the motion of the tagged particle it is convenient to
regard the process Et as a Markov process (xt,nt) on the

locally compact space Rdyiiu, where
T, = {n€x:nNB.(0) =¢].

X is the position of the tagged particle and Ne is the entire

t
configuration seen from the tagged particle. We can see that g7,
is a Markov process whose generator ¥ is the closure of the

operator given by

2f(n) =§_ {fl_ym) - £@)xuip)p(ul)du

Rd
+ = £0%Y) - ft@)xyin\z)p(lz - yl)dy,
2677 Rd\Br (O)
where
(Y = {Xi + u}, if g5 = {Xi)

We denote by 5S¢ the semigroup for £ and (nt, P; ) the Markov
process generated by € with initial distribution yp.

From Remark 1.2, #91(2) = 1 for sufficiently small =z > O
and so yu € 91(2) is shift invariant. For any shift invariant
U € exg (z) we define

]

io (dn) = m X(O|77)/l(d77) .

— 26._
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Using the same argument as Lemma 1.2 and Theorem 2.7, we have

the following lemma.

Lemma 4.1. If 2z > 0 is sufficiently small, then (”t’PZ )
— 0

is an ergodic reversible Markov process for any u € exd (z).

The process X, is driven by the process N in the

following way. We introduce measurable sets
A: {(”/{)E}:DXEO :77:[}/
My = ((,0) € B X T\ : £ = 7 for some uehl],
d
for A e BR),
and define the family of og-fields {?t} by
ft = O(ns:s € (—OO /t])'
Then,
N((t,,t,] XA = > 1 ne_.no) for 0 < t, < t,,
1 2 SE(t ,t] FA S s 1 2
1772
is an ft—adapted o-finite random measure and we have
X, = Xnq + { u N(dsdu).
£ 0 0, e

Using the same argument as Theorem 2.4 of [3], we have the

following result.
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Theorem 4.1. For sufficiently small =z > 0 if gy € ex?‘(ﬂ
then
Axt/K2 - D-By as A—0

in the sense of distribution in the Skorohod space, where B, is
d-dimensional Brownian motion and D is dx 4 matrix such that

2
(D?) ;. = § du§ due uyugx(ul-)p(lul)
13 Rd %, 173

- 2 §{ dt <S.F.,F.>
0,00) ©1

’

Ko

F(p) =§ du u p(lul)xuln).

Unfortunately, we haven't proved the non-degeneracy of D.
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Fig.1. Example of B[4]




