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1. Introduction.

We consider the following initial-boundary value problem:

(1.1) u = vy,
(1.2) vy = <_ rY o “1"’_) ,
u u/,

fv, v? 6,
(1.3) cvly = -R—=+p=2+r|Z],

u u u/,
for (z,t) € [0,1] X [0,+ co) with the initial condition
(1.4) (u,v,8)(z,0) = (uo,v0,00)(z), uo >0, 5 >0,
and the boundary conditions

[/ v 9 v

1. LA —(_gl 4 = -
(1) (-rL+u2) 00 = (-RL+ 4% ) ) =0

(1.6) 8.(0,t) = 6,(1,8) = 0,
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(1.8) pue = RO.

This problem is a model of the one-dimensional motion of the polytropic ideal gas with adiabatic
ends which is put into a vacuum. (u,v,6), unknown functions, represent the specific volume, the
velocity, the absolute temperature of the gas; (R, u, ¢y, x), given positive constants, do the gas
constant, the coefficient of viscosity, the heat capacity at constant volume and the coefficient of
heat conduction respectively. The condition (1.5) is called stress-free condition.

Kazhikhov showed the global existence of a unique solution to this problem in [2]. He con-
structed the solution (u,v,6) in the Holder class (5., {B3'® x H** x H2**} (0 < a < 1)
provided (ug, vo,fo) belongs to H** x H2?+® x H?*e (For the definition of the Hilder spaces
H™*e etc., see [3]). We call this solution classical in this paper.

More recently Okada [5] and Kawashima [1] showed the asymptotic behavior of the solution.

The problem has a trivial solution
1 _
(1.7) u(z,t) = 4(1 + t), v(z,t) = @ (z - E) , 0(z,t) = 6,

with the initial data

wo(2) = 8, vo(z) = @ (z - %) , 6o(z) = 7,

where # and # are positive constants satisfying the relation

In [5] and [1], they proved any classical solution which satisfies some restricted assumptions on the
initial data and/or the ratio between R and cy converges to the state like (1.7).

On the other hand, the author has already investigated other asymptotic properties of the
solution in [3] without the restricted assumptions, which says the growth of u and f 01 udz.

In this paper the author attempts to show the convergence of the classical solution and its

rate without any restricted assumptions. We have the following result.

2
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THEOREM 1.1. Let (4,8) be a positive root of simultaneous equations (1.8) and

/01 (%.,g(z) + cvao(z)) dz = /01 %{/01 vo(z)dz + @ (.1: - %)} dz + cvb.

Then there exist positive constants A and C which depend on R, u, cy, x and initial data but not

on t such that the classical solution (u,v,8) to the problem (1.1) - (1.6) satisfies the estimates

‘ (u(z,t) — &, v(z,t) — ./01 vo(z)dzr — @ (z _ %) , 0(z,) — 5)

1+t
Here || - ||1,2 8 the norm of Sobolev space W*2(0,1).

2
<o+t
1,2

Remark. A positive root (&,8) of the above simultaneous equations exists; @ and § are given

by

= % N 36cy u? + 3R3 {2143o - (/01 vo(m)dx)z} - chp] ,
(1.9) 15 % N 36c3u? + 3R? {2}30 ~ (/;1 vo(z)dz)z} i ecw] |

= /01 (%vg(z) + CV()O(-'C)) dz.

We shall show the convergence (u/(l +1),v— fol vo(z)dz — @ (z — 1), 0) to (,0,0) in

&
|

Section 2, and its rate in Section 3. The idea of proof is that we transform the original problem

(1.1) - (1.6) to the reduced problem (2.5) - (2.7) with (2.9) - (2.11) below by the changes of unknown

functions and the time variable. We shall study the asymptotics of the latter problem.

2. Convergence of solution.

In order to prove Theorem 1.1, it is convenient to transform the problem into the one somewhat
similar to the outer pressure problem which was discussed in [4]. First we change an unknown

3
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function ¥ — @ = u/(1 + £), and then change a variable t — { = log(1 + t). Thus we can

rewrite (1.1) - (1.3) as

(2.1) G + i = o,
. b b
(22) § = (— Rz + I"zj) ,
u u
z
o " R
(2.3) evly = —R52 + p 2 + & (T’) .
u u u z

Here we use the notation f to mean
f= f(z’i) = f(=z,t(}) = f(:c,ef -1)

for a function f(z,t) of z and t. However, to avoid complicated notation, in what follows, we write

again (4, 9,0,%) as (u,v,0,t). Moreover we introduce a new unknown function

@O wd =) - [ @i~ ["uwende+ [ [ utninde

Remark that w belongs to ¢ H2* if (u,v) does to Nrso {BFt* x H;ﬁ'“} . Using w(z,t), we

can deduce (2.1) - (2.3) as follows:

(2.5) U = Wy,

(2.6) w +w = (— Rz + p-‘”—x) ,
u v/,

2.7 0, = —~ RS
(2.7) evly = pw, + pu + . -

(pwy + pu — RO)w, r (0_;) .
z

In rewriting (2.6), we use the identity

(2.8) /;1 v(z,t)dz = /: vo(z)dz

4
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which follows easily from (1.2) and (1.5).

Initial and boundary conditions (1.4) - (1.6) are deduced

(2.9) (u,w,ﬁ)(:c,O) = (uo,wo,ﬁo)(x), ug > 0, 0y > 0, /1 wodz = 0,
0

(2'10) (_ R% + I“'%) (O:t) = (—' R% + I‘%) (l’t) = — K,

(2.11) 0.:(0,t) = 8.(1,t) = 0.

Since the original problem (1.1) - (1.6) has the solution in (., {Br™* x HZ*® x HZt*},
the reduced problem (2.5) - (2.7) with (2.9) - (2.11) also has a global solution in the same class.
Moreover both u and 8 are positive ({2, 3]). In the sequel we shall investigate the asymptotic
properties of the solution (u, w, ) to the reduced problem. In this section we shall prove

THEOREM 2.1. The classical solution (u,w,8) to the initial-boundary value problem (2.5) -
(2.7), (2.9) - (2.11) converges to (6,0,8) in W12(0,1) as t — + oo.

This theorem says, by use of the terminology of the original problem (1.1) - (1.6), that
(u/(l +1),v — fol vodz — @ (z — 1), 0) converges to (4,0,0) in W12(0,1).

The proof of Theorem 2.1 is divided into three steps. Firstly we show that the uniform (with

respect to z) convergence of u to @, secondly the convergence (w, 6) to (0,8) in L?(0,1), lastly the

decay of derivatives of the solution in L?(0,1).

1st Step. Uniform convergence of u to @.

Since # is a positive root of the quadratic equation
2
24 !
a? + %a + 12 (/ vo(w)da:) —~ 24Ey = 0,
0

in order to show the convergence of u, it is enough to see

5



KSTS/RR-87/004
May 6, 1987

PROPOSITION 2.1. u(z,t) satisfies

u?(z,t) + 24;V"u(z,t) + 12 (/(;1 vo(z)dz>2 — 24E, = o(1),

where o(1) denotes the function which converges to zero uniformly in z € [0,1] ast — +oo.

Because the proof of this proposition is lengthy, first we mention its outline and then give it
by some lemmas.

Outline of Proof. We integrate (2.6) over [0, z] by use of (2.10) to get

z z — RO -
(2.12) s [ weae + / w(e, g = —RLE Bee Tn

Multiplying both sides of the result by p~'u(z,t) and using (2.5), we have
ue(z,) + u(z, ?) (1 - 13/’ w(é t)df) = Boe,t) + Lue,1) /, w(é, )de
Ly » » ot o ’ u H u ’ o ’ .

Therefore we have

(2.13) .
wmt) = e oxp {1 [w(e,) - wo(@)de } vl

t x z
+o [Cron{l e - ue, e} (Ro,n) + Luten) [ wie, r)de) dr.
0 BJo ® b o
On the other hand, it is easy to see that our problem has the energy identity

(2.14) fo ' (%v’(z,t) + ey d(z, t)) dz = E,

(see [3]).

Thus, we get the proposition if we show the following facts:

(2.15) Cc~! < y(z,t) < C,

(2.16) /: w(§, t)d¢ = o(1),

6
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(2.17) et /: e’ 0(x, 1) — /; 0(z, t)dz|dr = o(1),
t 1
(2.18) e“‘/(Z e'./(; w(z, r)dzdr = o(1),
(2.19) /0 u(z, )dz — u(z,t) = o(1),

(2.20) et /0 Yo ( /0 'z, r)da:)zdr - ( /0 ' u(a:,t)d:c>2 — of1).

Hereafter C (> 1) denotes a positive constant depending on R, u, ¢y, x and initial data but not

on t. Indeed, we have

®

u(z,t) = et /0 e /o "By rydzdr + o{1)

% {Eo - (/01 vo(m)d:t>2 - % 0' e (/01 u(z,r)dz)zdr} + o(1)

g,
- o2 (x,t)} + o(1). ]

I

<
':‘:v
——
-]

|
D =
/7~
o~
-

<
S
—~~
8
N
u
8
~—

LEMMA 2.1. We have (2.15).

Proof. By use of the expression due to Kazhykhov [2]

—t

u(z,t) = #x,t')- {uo(z) + /ot %e’@(z, T)B(z,'r)dr} R
where
Bzt = e {1 [wol®) - w(e0)ae],
it is crucial to show
(2.21) clx< /01 6(z,t)dz < C,

7
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t p1 g2
=z <
(2.22) /0 -/(; w02 dzdr < C

(for detail see [4, Lemmas 4.1 - 4.2]).

Dividing both sides of (2.7) by ¢, and integrating with respect to z over [0,1}, we have

2.23 -‘i/l log 0d —1:(t)+i§f1/z (&, t)d¢dz
(2.23) dtocVOg zr = dtlloov’ .

Here we also use (2.6), (2.10) and (2.4). Integrating over [0, t] and using (2.14), we have
t

(2.24) u) +/ V(r)dr < C,
0

where U(t) and V(t) are non-negative functions of ¢ defined by

u(t) = /0 ' {%vﬁ(z,t) + ey (6(z,2) — log 8(z,t) — 1)} dz,

V(i) = /: {(pw, +:::;— RO)* (=,t) + %(z,t)}dx.

Thus we get (2.22). In a similar way to the proof of [4, Lemma 4.1], (2.21) follows from (2.14) and

(2.23). 1

By similar arguments to [4, Lemmas 4.1 - 4.2], we have the following estimate which we need

to prove (2.16).

COROLLARY. We have

(2.25) 0(z,t) < C(1 + V(¢).
LEMMA 2.2. We have (2.16).
Proof. From (2.15), (2.4) and (2.14), we have

(2.26) /0 ' wi(z,t)dz < C.

8
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Therefore it is sufficient to see

/ol A ""f’t)"f)zdz = o(1).

After multiplying both sides of (2.12) by foz w(é,t)d€, we integrate with respect to z over [0,1].

Taking account of (2.14), (2.25) and (2.26), we have

4 01 (/: w(E,t)df)zdz + /01 (/oz w(f,t)df)zd:c < V().

Consequently the integrability (2.24) of V(t) yields the desired assertion. I
(2.24) gives (2.17) also.

LEMMA 2.3. We have (2.17) - (2.19).

Proof. It follows from (2.15), (2.26), (2.21) and the definition of V(t) that

1 02 1 3
——”-—dz-/ 0(z,t)dz - su u(z,t)0(=,t
/(; uf? 0 ( ) (z,t)€[0,1]§[0,+oo) (=,8)6( )

€ + Ce)V(2)

’/01 0(z,t)dz — 0(=, t)l

IA

IA

for any ¢ > 0. Thus we have (2.17).

Next we shall show (2.18). Making use of (2.13), (2.15) and (2.16), we have

T (2.27) ./;1 pu(z, t)de — et /: e /01 Rb(z,7)dzdr = o(1).

Therefore (2.18) follows if we show

1 t 1 t 1
/ pu(z, t)dz — e“/ e"/ Rb(z,r)dzdr = e"/ e'/ w?(z, r)dzdr + o(1).
° 0 0 0 o
To prove this we multiply both sides of (2.12) by u(z,t), and integrating over [0,1], we have

1 = 1 - L
%/0 “("’:t)/(; W(f;t)dfdz+/o u(z,t)/° w(f,t)dfdx+/o (w? + R#)dz

d /1 1
= — pudz +/ pudz.

(2.28)



KSTS/RR-87/004
May 6, 1987

Here we perform integration by parts with helps of (2.5) and
1
(2.29) f w(z,t)dz = 0
0

which follows from (2.8) and (2.4). By use of (2.15) and (2.16), integration of (2.28) yields the

desired fact.

(2.19) is valid by (2.13) and (2.15) - (2.17). §

To prove (2.20) we need

LEMMA 2.4. We have
1
(2.30) / (%w’(z,t) + evb(z,t) — %u(z,z)) dz = o(1).
1]

Proof. Multiplying both sides of (2.6) by w(z,t), adding to (2.7) and integrating with respect

to z over [0,1], by use of boundary conditions (2.10), (2.11) and the equation (2.5) we have

d /1 1 d 1
(2.31) 7 (sz + cv0) dz + / (w? + RO)dz = E/ pudz + / pudz.
) ) ) 0

From (2.28) and (2.31), by a similar manner to the proof of (2.18) we get

1 t 1
) / (%w’(z, t) + cvﬂ(z,t)) dz — e“'/ e'/ cvl(z,r)dzdr = o(1).
0 o 0
Here we use (2.18). From this and (2.27), we get the assertion. I

LEMMA 2.5. We have (2.20).

Proof. By use of (2.5), we get

et /O Cer ( /0 ' u(z,r)dz)zdr - ( /0 ' (o, t)daa)2
= et ( /0 ' uo(:z:)da:)z 2ot /0 e /0 (e, )z /o " wa(z, r)dzdr.

10
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Clearly, the first term of the right-hand side tends to zero as t — + co. Since u is bounded, the

second term is majorized as

t 1 1
e_’/ e'/ u(a:,r)dz/ wy(z, 7)dzdr
0 0 0
t 1 1
SCe-f/ cr{/ ([pw,+pu—-R9|+ u——/ udz
0 o 0

1
‘/(; (-;-w2 + eyl — %u) dz }dr.

The right-hand side tends to zero as ¢t — + oo because of (2.24), (2.15), (2.21), (2.19), (2.17),

1
+}9—‘/‘ 0dzx
o

+ w2) dz

+

(2-18) and (2.30). I

2nd Step. L*(0,1) convergence of (w,8) to (0,5).
Since we have shown the uniform convergence of u, the L2-decay of w implies the convergence

of fol 8 dz to 8 by virtue of (2.30). Thus our aim of this step is accomplished if we show

PROPOSITION 2.2. For any k > 0,
/0 ' [{ Lwi(ed) +ev (0(1:, ) - /o e t)d:c) }2 + wi(z, t)] dz
(2:32) +em /0 S { /0 (02, r) + WPz, Yz, 7)) de
+ /0 " Wiz, r)de- /0 ' w;(z,r)dz} dr = o(1)
holds,

Before proving this proposition, we must show the following lemma which is extension of

(2.18).
LEMMA 2.6. We have
t 1
(2.33) e’“/ e'"/ w?(z, r)dzdr = o(1)
0 0

for any k > 0.

11
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Proof. 1t is clear for k > 1 because of (2.18). To prove for 0 < k < 1, we multiply both
sides of (2.12) by u(z,t) [y w(¢,t)d¢, and perform integration by parts with respect to z over [0,1]

with helps of {2.5) and (2.29). Then by use of the estimates in the previous step, one gets

% 01 u(z,t) (/: w(f,t)df)z + 2/01 u(z,t) (/: w(f,t)d{)z + 2;;/: w?(z,t)dz
[ wenae

Therefore the integration of the above differential inequality yields the assertion for 0 < k& < 2.

< C max
z€[0,1]

Here we use (2.16). I

Proof of Proposition 2.2. By use of (2.6), (2.7), (2.10) and (2.11), we have

9 L N 9_/10,1 + w?
2t 12% cy A z

_ 9 fw ww, 0,
= pwy + pu R0+E[—RT+;1“ +;1w+:cu]

1
— / (pwap + pu — RO — Rowz
° u

w?
+ p—= + ;Lw,) dz.

u
Remark that terms in brackets vanish at z = 0 and 1 by (2.10) and (2.11). We multiply both sides

by w? + cv (0 - fol 9d:c) and integrate with respect to z over [0,1]. Thus we get

1d 1ot te 9—/10d 2d +/1 2(1yr 4 cvo)a
2dt ), 12 v A z z A wi{gw eyl | dz
1 1 1
(2.34) +c? (/ 0:dz+/ w’d:t-/ w:dx)
. ° 0 0
1
< C{v(t) + / (w?w? + wz)dz}.
)

Here we use several estimates of integration which follow from the aforementioned step, for example

1 1 1 1 1
/ 0*dz / w?dz < max_ 6(z,t) / 0d:z:-/ wldz < C (/ wdz + V(t)) .
o 0 z€(0,1] o [} 0

Similarly we multiply both sides of (2.6) by w®, and integrate with respect to z over [0,1].

The outcome is

1d 1 wlw? 1 1
(2.35) ——/ wdz + / (w* + 2 ’) dz < e/ 02dz + C(e) (f widz + V(t))
4dt 0 0 u o 0

12
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for any € > 0.

Combining (2.34) and (2.35), we find that
d [y, 1 : .
ao {Ew +cv(9—/(;0da:)} + Cw*| dz
1y 1 3
+k'/ {—w’+cv (0—/ Gd:c)} + Cuw?| dz
0 2 0
1 1 1
+ 0! {/ 62 + wlw?)dz + / wzdz-/ widm}
0 0 0
1
< C(‘V(t) + / w’dz)
0

holds for some k* > 0, which gives the assertion for 0 < k < k* by (2.24) and the previous

lemma. The assertion for k > k* follows from that for £ = k*. I

3rd Step. L?(0,1) decay of (uz, Wz, 02).

In a consequence of the foregoing result we have only to show the following proposition.

PROPOSITION 2.3. We have

1 2
/ {(w - ;4“—’) + 22 + 01}11:: = o(1),
0 u

where
(2.36) #(n,t) = (o) + [ (uu(e,0) - RCE,D)dE.

Proof. By the help of (2.5), we can rewrite (2.6) as

2o-n) vu-

uz (RO — pu)u, 0,
at ba = By

u u? u’
Multiplying both sides by w — pu,u~!, we integrate with respect to z over [0,1]. By Schwarz’s
inequality we find that there exists a ' > 0 such that
d [t Uz \ 2 1 uz\ 2
@l (o) d”/o (v-wy) de
1 ug 2 1 2 2
< c{v(t)/ (v - u22) dz+/ (w? + 02)dz + V(t)}.
0 u 0

13

(2.37)
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holds for t > T. Here we use (2.27) and the fact that for any ¢ >,0

1
+ ’R/ bdz — pu| < e+ C(e)V(t)
0

1
|RO — pu| < R‘o —/ fdx
0

holds for ¢ > T = T(e) (see the proof of Lemma 2.3). We integrate the above differential
inequality. Because of the (2.24) and (2.32), application of Gronwall’s lemma gives the L?-decay
of w — puzu~! and thus that of u,.

In order to derive the L3-decay of (z,,8,) rigorously, we approximate initial data smoothly
such that the solution has derivatives z,;, 8, in the classical sense, and then pass to the limit.

However, since this procedure is rather routine, we shall not give it here.

From (2.5) - (2.7), (2.10) and (2.11), we find that z satisfies the equation

R Zz R [® z,w, kKRG, R
(2:38) ot o= ”(7)3 "ol Tu (§,t)d¢ - vl w(0,1),
and the boundary condition
(2.39) 25(0,8) = z,(1,¢) = 0.

We multiply both sides of (2.38) by z,,, and integrate by parts with respect to z over [0,1] with

the help of (2.39). Then it is easy to see that

1d R ! 1 1
(2.40) ——/ 22dz + — 23dz + C‘I/ 22 dz < C/ 92dz  for t>T
‘ 2dt Jo ¢v Jo o o

holds for some T (> 0), if we note that for any ¢ > 0
! 2pZaats
+ / ——z—d:c
] u )

holds for some T = T'(g) > 0. To see this estimate, we perform integration the left-hand side by

1
< e/ 22 dr for t>T
0

1 z ZpWa
‘ fo 2ea(2,1) /o 22V (¢, 1)dedz

parts appropriately and use the L%-decay of (w, us). By virtue of Proposition 2.2, (2.40) gives the

L2-decay of z, and thus that of w, and

t 1
e'“/ e’"/ 22 dzdr = o(1)
0 0
14
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for any k > 0.

Finally we prove the L2-decay of §,. We multiply both sides of (2.7) by f,, and perform a

similar procedure to the above argument to have

1 1 1
(2.41) % / 2dz + C* / (62 + 62,)dz < C / (22 + 22, + 6%)dz for t>T,
o 0 0

from which the disired fact follows. I

Now we complete the proof of Theorem 2.1, and therefore Theorem 1.1 is partially proven.

3. Rate of convergence.

In this section (u,w,#) is a classical solution to the problem (2.5) - (2.7), (2.9) - (2.11), and

z is a function given by (2.36). To prove the remainder of Theorem 1.1, we shall show

THEOREM 3.1. The rate of convergence of (u,w,8) to (&,0,0) in W12(0,1) is exponential,

i.e., there exist positive constants C, X which depend on R, p, cy, k and initial data such that
1 -
/ {(u—a)? +w?+(8-0)7+ ul +w?+62}dz < Ce™
0

holds.

Outline of Proof. In a consequence of Theorem 2.1, we have
1
/{(u~—ﬁ)’+w2+(0——0_)2+z2+u:+w:+0:+z2}(z,t)dzs5
0

for some § > 0, and, without loss of generality, may assume that § is as small as necessary.

For positive constants C; (i = 1,---,4) define £(t) = £(t;C1,C3,Cs,C4):

15



KSTS/RR-87/004
May 6, 1987

where
60 e =we)+ [ 6 - dae - [ [ ) - aande.

Since both u and @ are strictly positive and bounded by Theorem 2, £(t) is equivalent to
[|(4, w,8)||3 ;. Consequently we have only to prove that under suitable choices of C;’s there exists

a positive constant A such that
d
(3.2) -‘Eé‘(t) + Aé(t) <o

holds for ¢ > 0 if § is sufficiently small. We shall give the proof of (3.2) by two lemmas. 1

LEMMA 3.1. If§ is sufficiently small, then there exist positive constants C; (f = 1,2,3,5,6)

such that
(3.3)
d [1(1w? cvp RO RO uz\?2 2 2
E o {ET cv+R(p_u—l°gp_u_l)+Cl(w_"-u—) +Cgpz+03zm}d$

! RY RO w2
2 — = _ _ 2=z 2 2 2 2
+Cs~/(; {w +(pu log“u 1)+(w pu) +wz+za:+0zz+zzz}dx
1
< Ce/ 02dz
[}
holds.

Proof. We multiply both sides of (2.6) by u~'w, and integrate with respect to x over [0,1] by

use of (2.10). Then we get

d 1 1 w? 1 w? w2

d il 1 d v Yz

a Jo (2 ” +“°““) e+ [ (u +“u’)""
Y 0w,  wugz, 1wiw,

- ,/(; {Ru_3 tTe T e }dz.

Here we use also (2.5). On the other hand, (2.5) and (2.7) yield

(3.4)

u u©

1 1 1 2
Ow, d [} 1 2y fw, w3 Wy 0. 1
0 —u_zd dt 0 udz cy 0 { Ru_2 + ”F + K u + ® ( )x }dz'
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By the helps of (2.2), (2.4), (2.36) and (2,12), we write u™'z, as (f;’ vdf), and v~ w, as (log u),.
And by use of (2.7) we perform integration by parts of the last term of the above equality. From
this result, (3.4) and (2.23), we get
d [*(1w? cvp RO RO
- —— — —log— —1])¢d
dt0{2u+cv+R(pu ngu “
1.2 2 2 2
W _ovE W L oz = 0,
+_/;(u+cV+Ru’+cv+Ru9+cV+Ru03)x

1 wuyz 1wiw kR 6.u
3.5 = e -2 ZZ\1d
(35) _/(; ( ul 2w T ¢y + R ud ) e

1 2
§05%/ {(w—uu—’) +w2+w:+z:}da:
0 u

1 2 1
+ s/ {(w - piz—) + wg} dz + C(e)/ 02dz.
] u 0

On the other hand, since Rf/pu is strictly positive and bounded,

R# Re
. < —_— = - - < - 2 < 2 2
(3.6) 0< o log o 1 < C(RI - pu)® < C(22 + wl)

holds.

Moreover (2.37), (2.40) and (2.41) hold for ¢ > 0 if § is sufficiently small. Combining these

estimate and (3.5) - (3.6), and taking § and e sufficiently small, we get (3.3) for some C’s. I

If an inequality Cs < Cj holds, then we can easily show the exponential L?-decay of (w, R§ —
WY, 2, Uz, Ws, 0z, 2;) by use of (3.3). The inequality is true when R/cy is sufficiently small, see [5,

1]. In general, however, one cannot expect it. Therefore we need a more delicate analysis.

LEMMA 3.2. We have

d ‘(1 , (8 0 [t 2 A
(3.7) a—t- o {§¢' +cV9(§—logE—1)}dz+0./; (m-{-&m)dz—o,
(3.8)

L 1 2
/ {¢2+¢:+(g—logg——l)}d1:$0f {wz-t-(w—ﬂk) +W:+9:+z:}d""
o ] [ 0 u

Proof. Calculations similar to the proof of (2.24) yield (3.7).
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Recalling (2.29) and (3.1), we obtain

Al¢dx50.

Therefore, if we note that

pYr = z, + R(0 — 5)

holds, we get
1 1 1 .
/ iz < / Vidz < C/ {z_: + (6 - G)Z}dz.
5} 0 o

Moreaver, since 4 is bounded and strictly positive,

0< =—-log=—1< C( - §)?

D
I D

holds. Consequently to prove (3.8) we must estimate § — 4.

oo o) )]

holds by (1.9). We insert (2.14) into the right-hand side. Because of (2.4)

1 1 1 3
v=w+/ vodz+<z——)u+0 (/ uzdz)
0 2 o

holds. Hence after some calculations one gets
B 1
(6 -8)?°< c{(Ra — pu)? + /0 (w? + u? + 0;)dx}

1 2
SC’[z:+w:‘;+/ {w2+(w—pu—’) +02}dz].
0 u

Thus the lemma is valid. J

It easily follows from Lemmas 3.1 and 3.2 that (3.2) is valid for some C;’s. Therefore we
complete the proof of Theorem 3.1. By use of the original time variable and unknown functions,
Theorem 1.1 is completely proven from Theorems 2.1 and 3.1.
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