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Abstract
Unknotted ring defects in ordered media are classified in
terms of the homotopy theory. it is also investigated what itype

of point defects will appear when 2 radius of the ring defect
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theory of defezets in ordered media has been

the field of ¢cndensed matter physics {(see [1-31 for
a2table defects can be olasgified

parameter spacel. In ths
theory, the configuraticns with defects which can be transformed
into each other by continvcus deformatiion are regarded as ths
same. For example, the topoloegical types of line defects are

-

ses of the first homoiopy group

{fundamental gr of point defects by auiomorphism
clasges of the second homotopy group by the action of the first
homotopy group. In this paper we develop the mathematical
foundation te clasgsify defecis of circvlar shape, ar unknotted
ring defects which are not penetrated by line defecits (Fig.l). We
call the defects of this shape the ring dofects for shert in this

paper.

in physical situationg, ring defecis apvear when

e

by mutually inverse elemenis of

defects which are charszscieri

the first homotopy grogp combine. If 211 the parts of the two

s

I
i3

e defects approach sach cther aveniy, they disappear at the

same time when ok : it 14 they approach unsevenly sand ii

happens

while the others

Although the

finite volume and does not exXtend to infinity like a line defect

st sense it can be categorized as a tyvpe of point defects
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In fact, some of ring defects are found to become point defects
when their radii tend to zero.

The problem on the classification of ring defects has been
explored by Gareli4], who studied the problem by means of the
homoiopy sets of mappings from tori to crdep parameter spaces.

Bui these sets do not have group structure dnd are difficult to
analyze. Besides all the elements of the sets de not necessarily
correspond to ring defects themselves but some of them represent
rings which are penetrated by line defects.

In the present work, we investigate the topological types of
order parameter configurations with ring defects by using the
homotopy theory. The order parameter configurations with a single
ring defect are represented by c¢ontinucus mappings, R4~ - X,
where RY denotes the three dimensional Euclidean space and %
denotes an unknotted ring, e.g. $ ={ (x,v.2)€ R7; x2+y2=1, 2=0 }.
Since R3~Z is easily shown to be homotopically egquivalent to the
topological space W which is defined as the spherical surface with
the iwo points N and 5 (2.g. the north and south poles) shrunk

into a point

W= 82/ (N, s) = rS - 3, N, S€82, N %3 (1)

(Fig.3), the homotopy set of the continucus mappings from 33»2 to
X, which is denotzd by iRst 3 X1, is eguivalent to [W;X] as a
set. Therefere we can study the isolated ring defscts by studying
the continucus mappings from the space W to the order varapeter
space X. Note that W is also homeomorphic to the surface obtained

by rotating the cirele { {X,y,z)EERB; (y~1)2¢22=1, x=0 } around
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the z-axis, which encloses £ (Fig.3(c)). If a base point *€X is
fixed and we consider onily mappings which send the base point
*yEW (to which N and S shrink) to *, a group structure can be
introduced inte the set and we call the set the second torus
homotopy group 7T 2{¥, %) after Fox(5). Note that this is not the
homotopy set of mappings from the torus te the order parameter
space and is different from the one Garel has studied[4].

The paper is organized as follews. In Sec.2 the definition of
the second torus homotopy group and its relation with the
classical homotopy group are given and it is shown that the second
torus homotopy group is a semidirect product of the first and
second homotopy groups

TolXy#y 2 om (X, %) K om 40X, %),

whose multiplication rule betwsen two elements of ¥ 2 (X, %) is
given using the usual action of n 1{(X,%) on = 2(X,%)., In Sec.3,
the mapping T 2 (X %) =1 5 (X,#*) which maps a ring defect to the
point defect that the ring turns into when it shrinks, is studied.
In Sec.4, the correspondence between the elements of 1 2 (X, *) and
the physical types of iszolated ring defects is examined and it is
also studied what would happen if another ring or peint defect
goes through the ring defect. Some physical examples are
presented in Sec.5 and the summary of the paper and discussiocns

are given in Sec.6.

N
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§ 2. Second torus homotopy group

Definitions: Let (X,%*) be an arcwise connected topological space
with a base point *€ X, We define a family of mappings Fou 2 (X, %)
as the totality of continuous mappings f: 12~%X which satisfy the

condition

f(u, 0 = f(u, 1> , £4¢0, v) = £(1, v) = % ,

where u,v&I=1[0,1]. The second torus homotopy group 7 o(X,*) is

defined as the homctopy set of F,. 5(X,#%), namely,

[
~

T ,X, 5 B om0 By 5 (X#) ) . ¢

Equivalently, T 9(X,*) is the guotient space of F, 5(X,*) under

the eguivalence relation =~ , @ f ~ . £' means we can connect them by
a homotopy hy (t &1, ho=f, hy=£f') with hy €F, o(X,%). It is alse
shown that 7 ,{X,%*)=[W,*,; X,%], i.e. the homotopy set of mappings
W= X which map %> =x. The multiplication in 7 o(X,%) is

introduced by the multiplication in F, ,(X,#), which is defined by

a

h=f - g &  hiu, v) ={f{2u, V) 0= us1/2 )

A
A

L g2u~-1, v ( 1/28uf1 ¥,

and we use the notation £71¢ Fyp(X,%) to denote

7 u, vy = £41-q, v .

We also introduce a family of continuous mappings Fﬁ 2(K,*> as the
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totality of continuous mappings £: 125 % which satisfy the

condition

flu, 0) = f(u, 1) = £(0, v) = £{1, V)

[}
%

and Fn 1 {X,%) as the iotality of mappings f: I—= X which satisfy

the condition

Note that Fﬁ E(X,*)(: FT Z(X,*) and that the first and second

homotupy groups are obtained by

it

MoK, ) = oW g Fg (K% ), 3

Moy (X, %) = ;g Fp o(X,%) ) . (4)

Hereafter we use Feas T 3 ete, to denote Fop(X,%), T 5 (X, %)

in case the abbreviations would not cause any confuszion.

Now we define a projection p: F. » > Fyq o8s

p(£yCu) = f(u, 0) , tE€F,,,

then there exists a section s: Fa - F. 9 defined by

s(gy(u, v) = g{u) ,

)
M
!
“
~
&n
~—

which satisgfies

(0]

]



KSTS/RR-87/003
May 1, 1987

We use the symbols *; and #*, to denote constant mappings

I->» %€ X and 12->*+ €Y respectively, namely,

*q(u)y = % and *a (U, V) = &,

where u,v&1Il, and they are related by p and s as
plrg) = %9 and s(ky) = %, .
We state the result first.

Theorem. The second torus homoiopy group T 2(X,*) is isomorphic

to the semidirect product of = (K, %) and 7 Q(X,*):
T (K,x) For (X,%) K om 5K, %) , 7

by the usuval action of =n 1 (&%) on X 2(X,*%). HNemely, every
element of ¢ 9(X,%) can be represented uniguely by a pair of
7€® 1(X,%) and n&n o(X,%) as (7 , n) €7 5(X,*), and the

multiplication is given by
(7 40 090°(7 o, Mpd = ( 7 17 o0, T o +(Rqi*n, ) , (8)
1 1 2 2 1 2 2 1 2

vhere 7 gml(nz} denctes the image of niéfx 2 (X,*%) by the

automorphism inftroduced by 7 zhléfn I(X,*),

-1
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We have usad the symboi + to denote the multiplicaticon of 7 2

since 7 2 is Abelian. To prove this theorem, we show the

follovwing lemma first.

Lemma. There exists an exact sequence

Ly Py
0= Wy, #) = 75X, %) 2 7 (X, %) > 0,
Su

where i., p,, and S4 are homomorphisms, i, and S, are injective,

Proof:
(Fr 2y D, Fn 1} forms a fibre space, where FT 2

space and Fn 1 is a base space (see Appendix). The

has the section & given by (8) and the fibre on *Ié

Then we obtain the homotopy exact sequence for this

Py A
T3 Fy ga#p) @& 7 (Fy, 10%1) > g (Fy )
*

i*

which becomes

1o

is a total
projection p

FTEl is

fibre space,

Dy
e
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Py 1Al Ty Py
(XY T (X% 2w 1 X, x) (1)
S 5% )

n 1(}71 2,*2} {_'f T 2(){,*}

duve io (2), (3), (4) and

%oy (Fy 1y #*y) = % o (XL, %) .

The mappings p,, Sg. and A are shown to be homomorphisms although
they are not necessarily so for homotopy exact sequences since
M p's are not groups in general. The eguation (6) leads to (103,

which implies p,

% 15 surjective and s, is injective, From the fact

that the segquence (11) is exact, we obhserve Iim(A ) = 0O then we get

(8) and i, is found to be injective (Fig.4). H

Now vwe give a procf of the theorem.

rroof of Theorem: Since Sy and i, are injective homomorphisms,

=]

7y and # 5 are isomorrhic to the images Im(s,) and Im(i,), which

are denoted by = 7’ and = 9 Tespectively;
Tyt E Imsy) ¥owog o, Tt B OIm(iy) ¥ o, o,

The subgroups =« 1‘ and n 2' have the following properties.

1Y my'N oy ={e), vhere e denotes the unit element. in fact, if
: 2

M

aecm "N ow 5", then there exist 7 7, and n&7n 5 sutch that
835, (7 J=i,(n). From {10) we obtain p,(a)=p,es,{(T J=7 , while
3 % *® EAE

Pelad=pyeig(nd=e since the sequence (9) is exact. Then 7 =e and
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any element a&€ 1 2 can be expressed as a=y '-n' as follows, where
y'emy', n'Em,'. Let ¥ p,(a)€my and bss, (7 YE T 5, then
b"l-a €mn o' because p*(b'1~a)=r “l.y =e. From the exactness of
{9), there exists an element n& 7, such that b“1~a=i$(n), which
leads an expression of a,

a4 = beig(n) = s, (y 2-ig(n) = 7 '-n' (127
From 1), this expression is unigue.
3) m4,' is a normal subgroup of T , because it is a kernel of p,.
1y, 2), and 3) imply that v , is isomorphic to a semidirect
product of n 1 and X 2.

Since the expression (12) is unique, any element of <7 o can be

represented by v and n as
(7, n)Y B s, (r )-i(n) . (13
The multiplication of elements is given by

(7 1, np) (7 90 M) = 8,07 1)-ig(ny) 5,(7 2 ig(ng)

= 5,07 105407 92 85, (7 o) Tl i (N s (7 9)tig(ng)

1}

Se(7 "7 901 (ny )iy

5.(1 975

where ny'=i,(ny) and I,(b) denctes an inner autemorphism by a;

Ia(b)=a-b~a“l, The explicit expression of the inner automorphism

is given by
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In fact, the left hand side and the right hand side of (14) are

[

and (&) re

0
@®

represented by Fig.i{a pectively, and thev are clearly

hemotopic in F, 5. Then we geti,
(7 1 M) LT 9, Rg) = 8,07 157 2)i,(7 57 )y i, (ngd
= S*(T ]‘?’ 2)"1*(?' 2“‘1(1'!1)*1’12)

= (7 1°7 9, 79 Nap+ny ),

0
o~
0
~r
[+

which 1

[#79]
o

Mapping from 7 2 to my
To investigate what type of point defect the ring defect
becomes when its radius goes to zero, we define a mapping
T o9 W, This mapping should correspond to the operation that
separates the poinis N and 3 which were shrunk into the point *o
of W (Fig.3).
We define a family of mappings Fﬂ 2 (X,%) as the totality of

mappings f: 12">X which satisfy

f(u, 0) = £(u, 1) , £(0, v = % | £, v) = £(1, 0) .

Note that F” 2 > E«ﬂI 9 o Fﬂ 9 » and there exists a homeomorphism

72 Frao

11
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which is defined as follows. Let
by
g: (u, v) = (u’, Yo (172
where
ro= (1-w-A (0 , 6 = 2mn -
(Fig.8)>. A (& ) is the length of

center {u'=1/2, v'=1/2) and the ci

w'-v' plane in the direction of 6

G (£XCu’, £(u,

Vi,

where gq{u,v) Although g

the mapping

2) - 7 E(X,*) s

and the mappings to be examined is
@t T 9K, 8) > w5 (K, %)
which is induced by the restriction of w to Fy g, or Q=w i

Now we have the explicit expr

12

Therefore ihere exists

q be the mapping 1%2-> 12 defined

(1=-v)

the segmen! connecting the

reumference of the sguare in
. Then & 1is defined by
is not injective, this defines

a bijection

ession:

Fr 2-
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QL (v .0y ) =7 (m) , (15)

which can be shown as follows. Recalling (i3), first we see

[

N

1) Q ¢ (e,ny > = Q . C i ,{(n) 3 n&E 1 {X,%), since Q ( 1{f) > i
% % * 2

o

homotepic with £ in Fn 5 where f beiongs ic the homotepy class

that n represenis (Fig.7). Mocre generally, we have

2) R0y ,m) ) = Q (s, (7 Joiglny ), and it is easily seen to he

v (n) (Fig.8). Remark that Q , is not a homomerphism in general.
The equatien (15) means that the ring defect represented by

(r .m)ET 5 becomes the point defect 7 (ny & n 5 when it shrinks to

a point,

§ 4. Physical interpretation of T 2
The second torus homctopy group 7 2 (X,#%) is defined as the

homotopy set of FZ.Q(X,*) with a fixed base point % €X, while the

continuous deformation we consider in the physical situations is

not restricted to such a2 space. This implies that each element of

7 9 does not necessarily correspond wiith a distinct type of ring
. defects. The situation is analogous to the situation that occurs

when we consider the correspondence hetween line defects and

elements of =n 7 and also between point defects and those of it 2.

4.1 Order parameter configurations with a single ring defect

The tovological types of the order parameter configurations
with a single ring defect correspond to the elements of [W:X]. To
investigate the correspondence between the elements of [W;X] and

T s (K, %)=[W, x5 X,%], we define a family of mappings F'r 2 (X} as

13
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the totality of mappings f: 12~>X which satisfy,
£(0,0) = £(0,v) = (1, vy | fu,0) = feu,1) 5 u,v,v'& ]

then = o(F"y 53=[W;X1, Since Fr 2(X,$)C:F‘T 2(X2, the inclusion
mapping k: FT g = F'_

2 C2n be defined.

We show the following proposition,

Froposition 1. The mapping K: n 0F ¢ 9) = 7 o(F', 5) which is
induced by k is 1) well-defined, 2) surjective, andl3) ﬁ“l([gj)
coincides with pne of the automorphism classes of 7 5{X,%) by an
action of x 1 (X, %) for any gé;F'? 2 (XD, where we have introduced
the notation [g7 to denote the homotopy class which g belqngs to.
The action of T e 1(X,%) on the element (r , mye&r 2 (X, %) is

denoted by 7 '¢ (7 ,n) ) and given by
Oy ) =y, 00ty nye(p D T (163
¥here 7 € m {(X,*) and ne& x 9 (X, %)

proof;

1) This isg obvious because "hoemotopic in Fz »" implies "homotopic
3 i 2

in ¥ T 92

2) We show that for any ge F'.Z 2 there exists t& Fo o which
satisfies %(ff})x[k(f)]ﬁtg], In fact, b»y introducing a path c¢: [-»

X with c(0)=% and ¢(1)=g(0,0), f can be constructed as

14
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flu, v =( ¢ (3w { 0ZF usf 1/3
J g£{3u~1, v  1/38 u= 2/3 )
1
|
i ¢(3~3u) ( 2/38us 1)
3y It is easily seen that [k{(s(d)-f-2(3a"'3)3I=l{gl fsr any dEF,y 1.
where [K(£)1={g]l. We have used the notation d"]éF?t 1 to denote
d"l(uy=d(1-u) (W€I). We have to show that for any £ and '€ F, ,
with [K(£)I={k(f')])=[g], there exists d&Fy 1 which satisties
£s(d)~f"s{d'1)}$Ef3. There exist the homotopies g, and g',
(L&, Bo=E' 78, &1=k(f), g'y=k{£') ) with gy, ', €F', 5. If
d€Fy, ¢ is defined by
du) = { £7.9,(0, 0) (0 us1/2
&'gy~3(C, O (1728 w1 ),
it can be shown [s(d)-f'-sd " 1)i=[¢f1. B
From the proposition 1, it is seen ithat two configurations
with a ring defect can be transformed into each other if and only
- if they are characterized by the same automorphism class of

T 9(X, %) by the action of = 1(X7$) given by (16).

Point defects are alsc represented by elements (e, n) of 7 2
which form & normal subgroup = 5'. This is asxpected because the
closed surface ¥ can also enclose point defects. The fact that
the ring defects are classified by the automorphism classes ¢f 7 2
by X 7 is consistent with the fact that the point defects are

classified by the automorphism classes of = 2 by ® 1
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4.2 Ring defects in the presence of other ring or point defects
The rving defects has the feature which either the line or
point defects do not have, i.e. other ring or point defects can EC

through the ring defect. This transformation is continuous but

Iy o

cannot be treated as a continucus path in the space Fro o(X0

because this continucus itransformaiion can be

2]

onsidered only ona

the surface of the iorus which encioses the ring

o

efect but not on
the space W. Therefore we introduce a family of mappings F@ 2 (XD

which is the totality of continuous mappings f: 12— x that satisfy

with u,v €1 and define an eguivalence relation =~ in F. as

cans

follows. For the elements f and f°' of Fr Z(X,*), f~ £° means that
they can be connected by a homotopy hy (1 &1, hcxf, hlzf’) with
htéiFQ 2(X). Note that f~£' if f and f£' belong to the zame

homotopy class of Fyo. i.e. [£1=0£'1, but the reverse is not

necessarily true.

Proposition 2. The quotient space of ¥y o(X,#) under the above
equivalence relation Foa Z(X,*)/'ﬂ- is isomorphic to the set of

conjugacy classes of 71 3(X,%) as a set.

proof: If [f) and [£°1 of 7T 5 where f, f'é&FT 2 belong to the

same conjugacy class, there exists géEFT o such that [f7]=

tg~f-g“1]. The homotopy hy can be defined by

16
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hedu, vy =7 g( 1-t+3u, v C0Eus t/3 )
J £ (Bu-13/7/(3-2%), ¥ (/3% us 1-t/3 >

|
{ 80 4-3u-t, v ) C1-t/3sus1 ) ,

which satisfias hQQETg 5 hQ:f and {h;J={f'] therefore £~ g~ £
On the cther hand if f~ £', then there exisis the homotopy hy
with h0=f, hy=£f*, and hte'Fe 2. The element g of FT 9 which

satisfies [g~f’-g‘1]ztf] can be defined as g(u, v)=hy{0, v). H

The proposition 2 shows that two types of ring defect can bs
transformed into each other by continucus deformation allowing
ancther ring or point defect to go through the ring if and only if
they are characterized by the same conjugacy class of ¥ 2 (&, %),

In Fig.9, the two pairs of filled and open circles denote
¢ross section of the ring defects denocted by 1 and 2 respectiively,
and the heavy and light lines (the dotted lines) denote the cross
sections of closed surfaces W which enclose the ring defact 1 (the
ring defect 2). The arrows indicate the pasitive direction of
u-axis. a, B, and 7 denote the elements of 7T o vwhich represent
the configurations on the closed surfaces indicated by heavy,
light, and dotted lines, respectively. From Fig.8<(b), it is

obvious that

o =787y~ (17)
and 1% can be seen that there are two elements ¢ and 8, which
characterize the ring defect 1. They may belong to different

automorphism classes and Q ,(a ) may not equal to Q «(8 ). If the

17
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ring 1 moves upwards and shrinks (Fig.9(a)), then it will become
the point defect characterized by Q (2 )& n 5. ©On the other

hand, if the ring 1 moves downwards and shrinks (Fig.9(c)), then

it will bpecome the point defect characterized oy @ ﬁiﬁ 7 in this

-~

b

&

sense, it mighi be roughiv said t the ring defect 1, which is
originally characterized by &« is transformed intop the ring defect
characterized by £ by means of beinz penetrated by the ring defect

¥ (Fig.9 (a)=> (b)=> (c)J.

o

S 5. Physical examples

The list of systems of phvysical interest, their order
parameter spaces, and the first, second, and second torus homotopy
groups is given in the table. Since the second torus homotopy
group T 9 is a semidirect product of =n 1 and W ,, ¥ 2 i8
isomorphic to =n ;1 (o ) if = 220 ( x 10 ). Noting 71 o C XX Y,
Gryudy) ) = 1 5K, %g) X 7 2{Y, %y}, there are only two systems
with non trivial 7 2 in the table; the nematic phase of liquid
crystal and the dipole free A-phase of superfluid 3He; We give
T 9 for these systems as examples. We use the same notation for

groups with that of re#f.1l.

§.1 DNematic liguid erystal

The order paremeter space X, its = is and w 2 &re given by
X=RPZ, m, =2Zy=(0,1), mg =z

Since the automorphisms of =7 2 by =n 1 are
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The eXpression 7 197 g {med r) means the sum

sense. The automorphism classes by =  are

A(m,n) = { (m,n), (m,-n) }, m=0,1; n

and the conjugacy classes are

Cio,ny = A0, ny n o= 0,1,2,3, -

[

The class A(O\ zives the classification of

i

s take

n in the mod r

1,2, (18)

point

(19)

defects.
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5.2 Dipcle free A-phase of 3He
For thiz system
v w? .
X = ( 50{33x 8 \/42 .
Wy = Ly = 00, 1, 2, 2}y, %= Z
and the automorphisms of = 2 by n 1 are
O(n) = 2{(n) = n , 1{n) = 3(n) = -~n
The multiplications and jnverse elements are given by
(7 15847 5.1m9) =4 ( 7 1¥7 glmod 43, ny+ng ) for
! C 7 9+7 o(mod 4),~ni*ny ) for
and
0, 7 = 0, -ny, <, w1 = (3, 0,
z, 7t = 2, -, 3, 7t = 1, 0.

The autcmorphism classes by n 1 are

Atm,my = ¢ m M, &, =) ¥}, m=0,1,2,3 ;

n=0,1,2,3,«--

and the conjugacy classes are

=

7

(20)
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~

Cco,ny f Acp,ny + om0 0,1,2,3,-
00
Ca,o = Uy Aoz
[s20]
- 1] )
Ceryiy = Moy A 2nenn
C(2,n) = A(E,"ﬁ} y no= 0,1,2,3,--- {21)
>0
3,00 T Yoy Aa3,2m
©0
C3,10 = Vg As,2nen) -

The class A(Onn) gives the classification of point defects.

8 6. Summary and discussions

We have invesiigated the topological clasgification of ring

defects by analyzing the homoiopy set 71 g of the mappings from the

space W, which is homotopically equivaleni to RB-E , to the order

paranmeter space. It has been shown that 7 3 is a semidirect

product of w 1 and @ 2, which is the manifestation of

the duajiity

of the ring defects, namely, the local structure of the

singularity is identical with that of the line defects, while the

defect is confined in finite volume like a point defect. The

topological types of isolated ring defects correspond to the

automorpnism classes
the ring defects can
characterized by the
presence of other

through the ring defe

of 7 2 by the n lmaction, whereas

be transformed

conjugate element of the first

ring or point defects

ct.

into another

if they are

which

ane

one

is

type of

in the

allowed to go
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The multiplication of itwo automorrhism classes of ¥ o gives
the type ofi ring defect which is obtained when the two ring
defects merge in the way shown in Fig.l0(a’. ¥hen the
muitiplication of two automerphism classes does not result in a
single auvtomerphism class, the result of the defect combination
will depend cn the path along which they merge in the presence of
other line defects (Fig.10(b)).

Scme of the ring defectis leave point defects when they shrink.
The theory predicts that the elements which beleng to the same
conjugacy class can result in different pecint defects ( see (15),
(19), and (21) ). However, this is not a contradiction and
similar situation occurs for the point defects in the presence of
the line defects, i.e. the point defects can be created or
annihilated by being brought around the line defect. Similarly in
the presence of another ring defect or point defect, the ring
defect results in different types of point defects depending on
whether it shrinks directly or after the ring or point defects
pass through the ring defect.

In conclusion, we have found that the ring defects have richer

topological structure than either point defects or line defects.
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Appendix

In the appendix we show that ( FI 2, P, Fpq1 ) is a fibre
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space., It is ebvious that p is continuocus and surjecitive. Ve

have to demonstrate that it has ihe cover nomotopy property for

any topological space Y, l.e. for any homotopy £;: Y[, 1 where

t &1, and for any ~, which satisfies Pogsig,

T o

1ift of £, g ¥
g

there exists a 11ft of £, 10 ¥ F. o which satisfles gg=g (and

DoZy=ty). Actually if we dafine g, as

gy (y)(u,v) = £iogy (Y)W (0% vS t/3)

J g(y)(u, (Jv~t)/(3-2t))  (t/3F vE 1-t/3)
i

£5(ya1y+¢ (V) (W (1-t/335 vE 1)

then gy is a 1ift of f,, and satisfies gn=g. H
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Table
Physical systems Topological T oo T,
space
Planer spin L 0 z
Heisenberg spin g? Z Z
Nematics RPZ z ZyiX Z
Biaxial nematics $0(3)/ Dy 0 Q
Dipole free A-phase(3He) (s0(33x 82 /2, Z Z4X Z
Dipole locked Awphase(gHe) SO3) 0 Zy
Dipole free B-phase(SHe) soc3)yx st 0 ZX Z,
Dipole locked B-phase(SHer | 82x sl z ZX Z
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The first, second, and second torus homotopy groups of the
topolegical spaces for the systems with physical interest. The

notations for Eroups are the same with ref.l
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Figure captigns

Fig.l An unkneoited ring defect.

Fig.2 (a) Two line defects characterized by v and v “15 A
approach unevenly. {(b) Scme of their parts combine tgo disappéar

({he dotted lines) and a ring defect is left.

Fig.3 (a) The spherical surface $? and (b) the closed surface ¥

P
4

with the north pele N and south pole S of 5% shrunk into a point.
(¢c) The surface obtained by rotating the circle {(x,v,2)€& RB;

(y»1)2+22=1, x=0} arocund the z-axis.

Fig.4 The homotiopy exact sequence of the fibre space (FT 2, P,

Fig.5 The diagrems which illustrate that {(a) 5,07 ) -n-s,(7 ~1
and (¢> 7 (n) represent the same element of ¥ 2 The heavy lines
denote the regions ¢f I% which are mapped into the base point % of

X.

Fig.8 The mapping g from 12 9f the u-v plane to 12 of the u'~v"
plane. The left side of the sguare in the u-v plane (the heavy
line) is mapped into the circumference of the square in the w’ -v'
plane (the heavy line) and the right side of the sguare in the u-v
plane (the dotted line) is mapped into the center of the square in

the uw'-v’ plane.
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Fig.7 The diagrams which illustrate that (a) f of Fﬁ 5> and
(b)Y Q (i1(f)) are homotopic. The heavy lines indicate the regions

which are taken into the baze point * of X.

Fig.8 he diagrams which illustrate O 0y ,nid=y (). (a), (b

and (¢) represent (v ,n), @ =((7Y ,n)), and 7 (n), respectively,

Fig.9 The ring defect 2 whose cross section is denoted by the
rair of open cireles goes through the ring defect 1 dencted by the
pair of filled circles; (ad> (b)—=> (¢). The heavy and light lines
{the dotted line) denote the ¢ross section of the closed surfaces
W, which encliose the ring defect 1 (the ring defect 2>, o, 3 .
and 7 denoie the elements of 1 92 which represent the order
parameter configurations on the surfaces dencted by the neavy,
light, and dotted lines, respectively. The arrows indicate the

direction of u-axis.
Fig.10 <(a) Two ring defects combine into one. (b)Y Two different

paths along which two ring defects combine in the Presence of a

line defect.
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