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Abstract.

The classical occupancy problem is extended to the case where
two types of balls are thrown. In particular, the probability
that no urn contains both types of balls is studied. Let N

1
and N2 denote the number of balls of each type when the first
collision between the two types occurs in one of m urns. Then
NlNz/m is asymptotically exponentially distributed as m tends to

infinity.
This problem 1is related to the security evaluation of

authentication procedures in electronic message communication.
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1. 1Introduction.

Suppose that balls are thrown at random and independently into

one of m urns with the same probability 1/m. Further, suppose that

there are two
n, red balls.

2
without white

types of balls to be thrown, say, n; white balls and
As the result there are four types of urns with and
and red balls.

disregarded, and the numbers of urns of these types are represented

The number of balls in each urn is

by a 2 x 2 contingency table (Table 1).

Table 1. Numbers of urns of four types.
red

white with without sum

with S R1 T1 =S + R1
=m-R, - - T

without R2 R3 m R1 T2 m 1

sum T2 =8+ R2 m -~ T2 m

1= Ti < min (ni ,m, i =1,2.

The purpose of this report is to first study, in Section 2,
the joint, marginal and conditional distributions of these numbers.
Of utmost concern is the number S of urns with balls of both colors,
and the probability that S = 0.

in Section 3,

This probability is also expressed,
in terms of the number of "collisions" of balls of
different colors within a single urn. If balls are thrown one by
one, the numbers N1 and N2 of white and red balls, respectively,
at the first occurrence of collision are "waiting time" for the
collision, and the probability that S = 0, which depends on m, ny
and Ny, is the probability that N1 > n, or N2 > n,.

after the evaluation of this probability, it is shown that N1N2/m is

In Section 4,

asymptotically exponentially distributed.
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This study started from a problem of cryptography. To authen-
ticate a message to be sent through an electronic communication
network, the sender compresses the sequence of fragments of the
message into a short message, called a digest, wusing a hash
function. The digest 1s encrypted and sent with the original
message as a signature. An opponent, knowing the original and
the digest tries to tamper with the original by changing some parts
of the fragments at random to attempt forgery keeping the signature
unchanged, Davies and Price (1980), and Mueller-Schloer (1983). The
urns are possible hashed fragments of texts, and the balls are
randomly modified and hashed texts. The two types represent forward
and backward compression starting from the ends to meet in the
middle. The modeling 1s discussed in an accompanying note,
Nishimura and Sibuya (1987).

Occupancy problems have been extensively studied. See, for
example, Johnson and Kotz (1977), Kolchin, Sevast'yanov and
Chistyanov (1978), and Fang (1985), among others. However, the
generalization of the above-mentioned direction has not been
thoroughly studied. Popova (1968) obtained 1limit distributions of

the joint distribution of R, , R, and R, in the more general case of

1 2 3
nonuniform throw-in probabilities.

The Stirling numbers of the second kind which are denoted
by { E }, 1smsn, are defined by the polynomial identity

n
(1.1) " = > {;} x(m) , where x(m) = x(x-1)... (x-mtl) .
m=1
They are also expressed by using the difference operator A as
ny _ ,m.n; ,
{m} = AO /m!,

and satisfy the recurrence relation
1. = =50+ Gab

{8} being one by convention. See, for example, Jordan (1950),
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Riordan (1958), Johnson and Kotz (1977) and Knuth (1967-1981).
The notation of the Stirling numbers differs in the literature.
Here the notation of Knuth, which emphasizes the similarity to
binomial coefficients, is followed. Univariate discrete distribu-
tions including the Stirling numbers of the first and the second
kinds have been surveyed by Sibuya (1986).

2. Distributions of the number of urns.

In Table 1 the marginal distributions of Tl’ T2 and S+R1+R2 =

T1+T2—S follow the classical occupancy distributions;

Pr[Ti =t] = { :i} —EEEZ-,

0

(2.1) "

1 st s min (m, ni) , i=1,2;

(u)
PrlS+R1+Ry = ul = {“1+n2} LM
u mnl 2

(2.2)

1 2u s min (m, ny+ny) .

Under the condition that the marginals m , T1 and T2 , and therefore

m—T1 and m—T2 are given, the entries of the 2 x 2 table follow the

hypergeometric distributions. For example,
(2.3) PrlS=s|T;=t;, To=t,]
()M - () )
s to-s to s t,-s ty/
max (0, tj+tr-m) £ s £ min (t;,t3) .
There are several models leading conditionally to a 2 x 2 table,

with different joint distributions, and the above-mentioned is just

another type of the models.
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Combining (2.1) and (2.3) the joint distribution of (S’RI’RZ)’
which can be called a "2 x 2 occupancy distribution", 1is obtained

as follows:

Pr[(S,Rl,Rz) = (S,rlyrz); manlsnzj

(2.4) -1 ny ny m! (r1+s)!(ro+s)!
JRIEPS r1+s}{ r2+s} sirylro!l(m-ry-ro-s)! °’°

0 S s,ry,rp; rytrpts s my 1 £ ry+s £ nj; 1 £ rp+s £ np.

From the joint distribution the other marginal and conditional

distributions are also obtained:

Pr[S=s; m,n;,ny]

= 1 ny n2 (s) . (s) (tj+ty-s)
(2.3) mn1+n2 ! E% 2 {tl}{ tz} t1 t2 n

0 £ s £ min (ny,ny,m) ,

where the summations run over s £ t; S n;, 8 £ tp S ny , and t1+ty =

m+ s .,
Prl(S,R1,Ry) = (s,r1,r2)|S+R1+Ry = ul
n) ns
- (2.6) _ {ryre) { are]  (r148) () (rpts)
{ nﬁ‘ﬂz} ) ’
u !
0 £ s,r;,rp 3 s+r; £ min(nj,u), s+ry £ min(ny,u),
u £ min(n;+no,m) .
Pr[S=s|S+R;+Ry = u]
(2.7)

3, (BE s

{nl 2} s! ti1,to t2
u
0 s

<€ min(n;,np,u) , u £ min(n;+ny,m),
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where the summation runs over 1 £ t; S n; , 1 Sty $ny; and t)+ty -

= stu .

=
]

Since the exponential generating function of { ; } s
ml, ... , 1is

m,

{n} _§_I_l__ - (ez—l)m

m=1,2, ...
n! m! ’ *ee ’

the exponential generating function of the family of joint probabil-
ities of (2.4), for n, = 1,2, ..., 1is

o (w1sW23 Z0s21522)

® o (mwp) ™! (mwp) ™2
=5 5 ——————3 35 z°21 122
- n! ns! s 1) I

(2.8) x PrL(S,Ry,Rp) = (s,15T2) ]

{1 + zl(ewl—l) + zz(ewz-l) + zo(ewl-l)(ewz-l)}m .

The generating function of the probabilities of (RI’RZ’R3) for
nonuniform throw-in probabilities was obtained by Popova (1968).

The exponential generating function of the family of the
marginal distributions (2.5) of S 1is obtained by putting zl=zz=1
in (2.8):

(2.9) ¢(wy,wp32z) = {ew1+ew2—1 + z(ewl—l)(ewz—l)}m

Further, by differentiating (2.9) the moments of S are obtained:

ELS] = m(1-(1- 2 )™ (1-(1- 2)™) ,
(2.10)

B2

ELS(s-1)] = m(m-1){1-2(1- )" + (1- 2)™1)

+

x {1-2(1- é 2 4 (1- é yh2y
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Of particular interest is the special value

Pr[S=0 ; m,n;,n5]

(2.11)

]

-1 55 {ftli}{nZ} ptrte2)

mn1+nz t ty to

£ qmyn)

mn1+'n2 v=2 t1t+to=v t1 t2

of (2.5). In the following section another aspect of (2.11) 1is

discussed.

3. Distribution of the number of collisions.

In the previous sections we discussed the numbers of the four
types of urns, disregarding the number of balls in the urns. 1In
this section we study mainly the balls disregarding the details of
the urns.

Suppose that the balls are thrown one by one. If a ball
enters an urn already occupied by other balls we say "a collision
occurred”! The term has been used in the "hashing table technique"
for computer-search of data. In our set-up of Section 1 we are
concerned with collisions between balls of different colors. Let
the number of urns occupied by the white balls be T1 =t . Under
this condition, Y2 among n, red balls collide with white balls,
that is they enter one of t, urns occupied by white balls, with the

binomial probability

3.1) Prltpmy|m=t] = ( 22) (-;—1—)},(1- :1_1)n2—y .

and T1 follows (2.1).
Thus, the unconditional distribution of the number Y2 of
red balls which collide with white balls follows '"the binominal

distribution compounded by the occupancy distribution" :
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ngy) 1

T % (PO,
m

PrlY,=y] = ¢

(3.2)
0sysnp,

where the summation runs over 1 £ t S min (nl,m). The number Y1 of
white balls which collide with red balls has the distribution

(3.1) with the roles of n, and n, exchanged, which is different

1

from (3.1) unless n, = n The conditional r-th factorial moments

1 2 °

of Y2 in (3.1) are known to be

E[Ygr)lTl = tl:] = nér)(tl/m)r ,

and those of T, in (2.1) are

1

3.3 e 1= @@ iy,

where V denotes the backward difference. Therefore unconditionally,

(r) &D)
(r)q _ np rym j.m
(3.4) E[Y;"7] = i jz{j}mnl V'm .
For example,
(3.5) E[Y,] = np(1-(1 - 1/m)"Y) ,
(2)7 - (2 1y lym Sl 2\m
E[Y52] = 03P (1-(2- ) (- )™ + (- $) - 2)™)
and
Varl¥,] = np(1+ 2221y (1= L) 4 ny (mp-1y 1- 2y (- 2™
2 1 \2nm,
- n2 (1- E‘) .
The event S = 0 is identical with the events Y2 = 0 and Y1 = 0,
and
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(3.6) PrlY,=01 = ELI[(1 - T;/m)"2]

1
ni

PR P

n
™M

m

12} G Sy

- L

mn2

~M

To see the equivalence of the last two expressions and (2.11),

develop (m—t)n2 or (m--t)nl using (1.1).

It is intuitively true that n; + n, being fixed Pr[sS > 0] will

be maximized when n, and n, are equal? The following proposition
confirms this. The proof is given in Appendix.

Proposition 1. The probability Pr[S=0; m,ni,np] of (2.11) or (3.6)
with m and n, + n, fixed decreases when lnl-nzl decreases.

4. Bounds of Pr[S=0] and the asymptotic distribution of the waiting

time.

Lower bounds.
Since h(t) := (1 - t/m)n2 in (3.6) is a convex function of t ,

a simple and good lower bound is

ETl[h(Tl)] 2 h(ELT;])
(4.1)
= (1 - 1/m)"1™2 =: 1y (m,n;,np) .

Further, since h(t) is bounded by the tangential parabola a stronger
version of (4.1) is

h(E[T, 1) + % h"(E[T,]) Varl[T;]
(4.2)
= L1(m,n1,n2) x [1 +-n—2—§%_2:1_).(1_ T:T )nl x {1-(1- mil )I‘ll

+m((-=L™ - (- 2)™))3 =: Lo(m,np,ny).
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This is a complicated but excellent bound and max(Lg(m,nj,ny),
Lo(m,ny,n;)) further improves the bound.

If nn, is larger

(4.3) exp(—nlnz/m)

is also a better bound than L but (4.3) exceeds Pr[S=0] for

1 H]
smaller values of nn, . The expression (4.3) 1is a lower bound if

nn, is larger than m . It was only possible to check the range
numerically. A modification of (4.3)

. mny nj+ny
(4.4) exp{ - (1 + 7 )}

is smaller than (4.3), but is a lower bound in wider range m > 2 and
n1+n2 > 2.

There are other rough evaluations. Suppose T1 in (3.6) takes

the largest possible value with probability one, and
-1 yn2 _ D2 ym
(4.5) (1 o ) or (1 = )

or the maximum of these two is smaller than L1 . Taking a part of

the summation in (2.11), we have

(4.6) p(M1t02) fp mitn

The bounds (4.5) and (4.6) are not satisfactory.

Upper bounds.
It is difficult to obtain a good and simple upper bound., It is

known that the number of collisions is asymptotically Poisson, and

this fact suggests a way.

Proposition 2 The Poisson distribution with mean A=n;2/2(m-n;)
is stochastically larger than the distribution of the number of

collisions C = n, - T1 R

m(nl—C)

Pr[C=c]={n1 }——‘—"‘— >

mnl

(cf. (2.1)).

- 10 -
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The proof is given in Appendix.
Using this fact, take the expectation of h(Tl) = h(nl-C) <
exp (- nz(nl-C)/m) and replace C with the Poisson variable to get

(4.7) exp{ -%+ A(exp(-%z—) - 1)} =: U;(m,ny,ny) .

This expression is asymmetrical in (nl,nz), and the minimum of
Ul(m,nl,nz) and Ul(m,nz,nl) can be chosen. Notice that h(t) < 1
and evaluate

E[h(n; - C)] s h(nm;)Pr[C = 0] + PrlC > 0]

replacing C in the last or both probabilities with the Poisson

variable. Then, a simpler bound is

(ny) np
4.8 n -A
( ) :nl (1 - El ) +1-e " =: Up(m,nj,ny)

n2_ _
s -0y R

Rough upper bounds are also obtained by using the Chebyshev-
type inequality on the distributions of S or Yi .

Asymptotic distribution of waiting time.

Suppose that white and red balls are thrown one by one accord-
ing to some rule of choice fixed 1in advance. For example, one
white ball after five red balls; two white balls and two red balls
alternately; only white balls after ten red balls; and so on. Let

N1 and N2
when the first collision between the two colors occurs. That is,
N1 + N2 is the waiting time of collisions, and Pr[S=0] is the

probability that "N1 2n; and N, 2 n, and one of the inequalities

is strict." The evaluation of the preceding subsections leads to

denote the numbers of the white and red balls respectively

the following theorem.

- 11 -
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Theorem. Let N1 and N2 denote the numbers of white and red balls
respectively when the balls are thrown one by one according to a
rule and the first collision befween the two colors occurs. For any
positive number M > 0 , as m +»

Pr[N;No/m s w] = 1 - e’ , for 0<w<M,

Proof. The upper bound (4.7) is written as

Uy (m,n;,np) = exp{ - n1:2 1+ 5(;“%%;7 + 0((-£l')2)} ,

and as m > ®
min(U; (myny,ny), U;(m,np,n;)) + exp(-niny/m)

since min(nj,ny)/m + O . On the other hand the lower bound (4.1)
Ll(m,nl.nz) > exp(-nlnz/m)
as m>®, Thus Pr[N;N, > mw] tends to e for any fixed

w>0 as m=+»,

In the case where white and red balls are thrown alternately,

N1 = N2 and the distribution of Nl//ﬁ.is asymptotically the Rayleigh

distribution with the probability density
2we . 0O<w<o,

Refer to Hirano (1986) for the Rayleigh distribution.

- 12 -
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Appendix

Proposition 1 is straightforward from Lemma 1.

Lemma 1 The convolution of the Stirling numbers of the second kind
nj n2 =
%‘ {t } {v—t} s V=2,3,004

with nj;+ np = n fixed, decreases when |n1—n2‘ decreases. That is,

v-t v-t

vz < ()

if |n—2k| < |n—2j| ,» provided that the right-hand side is positive.
Proof It is sufficient to prove (Al) for the case j = k-1 < k < n-k
< n-k+1 = n-j. Apply the recurrence formula (1.2) to { i} of the
left-hand side and {“;l:l} of the right-hand side. Then (Al) is
equivalent to
k-1 f n-k k-11 { n-k

(a2) % t{t}{v—t}<‘tzt{v—t}{ t}'

Now, it is shown from (1.2) that the Stirling numbers of the
second kind are TP2 (Totally Positive 2), namely,

f TN

and the strict inequality holds unless the right-hand side is zero.

n) nz
{ml}{ mz}' if nj<ny and mj<my ,

Therefore, 1if t < v-t

S B B G R b ¥
SECASR Rl ¥ Bt B (ol il O

and (A2) 1is proved.

For proving Proposition 2, another lemma is needed.

- 14 -
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Lemma 2 For any positive integer n 2 3 ,

) { % Y /{0 s m=0.12,..., 02,

is a strictly decreasing sequence.
Proof Proceed induction on n. If n = 3 , the sequence is 3, 2/3.

To advance the induction step from n to n+l, compute

n+l
n-m

2 - () { n+l }{ n+l }

n-m+1 n-m~1

(m+1) {

2 ny 2 n n
= (n-m) [(m+l) {n—m} - (wt2) {n—m+l}{ n—m—l}]
+ (n-mtl) [m {nfm} {nEm-l} - (m+2) {nfm+l}{ ngm_z ]
#2 {2 ataen) * @2 () {oln )

+ [(m+1) {ngm-l} i - (m+2) {nfm}{ ngm-Z}]'

All the terms are positive and Lemma 2 is proved.
To prove Proposition 2, put

m(n-X)

£(x) := {ngx} _t;T_—” ’

and define the Poisson distribution function
g(x) := e-x A x!

with
A2 £(1)/£(0) = n(n-1)/2(m-n+1) .

Due to Lemma 2,

GG /100 = ey {00 ]/ {al)

is decreasing in x , and

(xt1) _
g(x)

£(1)
£(0)

f(x+1)

g
(x+1) HORE

A2

> (x+1)

- 15 -
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Since g(x)/f(x) nis increasing, g(x) is stochastically larger than
f(x) and the proof is complete.

- 16 -



