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Abstract. We are concerned with closed C'* riemannian manifolds of negative
curvature whose geodesic flows have C* stable and unstable foliations. In particular,
we show that the geodesic flow of such a manifold is congruent to that of a certain closed
riemannian manifold of constant negative curvature if the dimension of the manifold is

greater than three and if the sectional curvature lies between —9/4 and —1 strictly.

Introduction

The geodesic flows of negatively curved manifolds have been investigated for a long
time as a main subject in dynamics and ergodic theory. In particular, in 1960’s, Anosov
[2] introduced the notion of so-called the Anosov flows by abstracting the hyperbolic
behavior of the geodesic flows of negatively curved manifolds, and showed that they
possess a lot of beautiful properties such as ergodicity, the structural stability and the
existence of periodic orbits. By definition, a smooth flow ¢;: on a closed riemannian
manifold V is called an Anosov flow, if there exists a ;-invariant linear splitting
TV = E~ + E°+ E of the tangent bundle of V that satisfies the following conditions:

(i) E° is the 1-dimensional subbundle of TV spanned by the vector field on V
that generates the flow ¢;;

(ii) The subbundles E~ and E* of TV are characterized by the inequalities
ldpi€™| <er-e ®é7| and  |dp_s£F| <oy -ePET|

for £~ € E~, ¢t € ET and t > 0, where ¢; and ¢z are positive constants.
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The splitting TV = E— + E® + E+, which we call the Anosov splitting associated with
the Anosov flow ¢, is uniquely determined by ¢;, and is continuous on V. Furthermore
it is known that there are foliations £~ and €+ of V, called the (strongly) stable and
unstable foliations of ;, which integrate the subbundles E~ and E™ of TV respectively.

For a closed riemannian manifold M of negative curvature, it is easy to see that
its geodesic flow ; defined on the unit tangent bundle Vas = {v € TM : |v| = 1} of
M is an Anosov flow. The Anosov splitting TVas = E~ + E° + E* associated with
the geodesic flow p; of M is sometimes called the Anosov splitting of M in brief. As
was already mentioned, the Anosov splitting of a closed riemannian manifold M of
negative curvature is continuous on Vas. In addition, Hirsch-Pugh [10], [11] and L.
W. Green [8] proved independently that the Anosov splitting of M is of class C! if the
sectional curvature K of M satisfies the pinching condition —4 < K < —1 or if M is
of dimension two. However we have no example of negatively curved manifold whose
Anosov splitting is of class C2 other than the locally symmetric spaces, and this leads

us to propose

Conjecture 1. For a closed riemannian manifold M of negative curvature, if its

Anosov splitting is of class C2, then M should be locally symmetric.

Actually, E. Ghys [7] recently proved that the conjecture is true provided dim M =
2. (See also Hurder-Katok [12] for related topics in the case of dimension two.) Our
purpose in the present paper is to adduce another evidence which supports the plausi-

bility of the conjecture. More precisely we will prove

Theorem. Let M be a closed C™° riemannian manifold of dimension greater than
three. Assume that the sectional curvature K of M satisfies the inequalities —9/4 <
K < —1, and that the Anosov splitting of M ts of class C®. Then the geodesic flow
o+ of M 1s congruent to the geodesic flow P of a certain closed riemannian manifold
M of constant negative curvature in the sense that there is a C>® diffeomorphism ® of
Vs onto Vi such that @opy = @10 ® for allt €R.

In [12] Hurder and Katok especially proved that the C2-differentiability of the
Anosov splitting of a negatively curved surface always implies the C°°-differentiability,
while Ghys has emploied this result in the proof of her theorem mentioned above.
It seems that the “regularity theorem”of Hurder—Katok is also the case with higher
dimensional negatively curved manifolds, though we are not able to prove it. This is
the reason why we have assumed the C°°-differentiability of the Anosov splitting in

our theorem above. Also we do not know what happens in dimension 3.
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With regard to the theorem together with Conjecture 1, it seems to be reasonable
to put forward

Conjecture 2. For a closed riemannian manifold M of negative curvature, if
the geodesic flow of M is congruent to that of a closed locally symmetric riemannian

manifold M of negative curvature, then M is isometric to M.

It should be noticed that a diffeomorphism ® : Vas — V4 commuting with the
geodesic flows of M and M necessarily preserves the Anosov splittings of TVas and
TVy, and the canonical contact forms of Vs and Vi (cf. §2.2). Therefore, under the
assumption in Conjecture 2, the geodesic flows of M and M are completely isomorphic
to each other as hamiltonian systems. In particular, the topological entropy h:op(M)
and the measure-theoretic entropy Ameas(M) = Ameas(M;u) of the geodesic flow of

M (with respect to the Liouville measure u = © A (d®)", where n + 1 = dimM
and © denotes the canonical contact form of Var) coincide respectively with those
entropies htop(M) and humess(M) of the geodesic flow of M. In consequence, we have
Rtop(M) = hmeas(M) since hiop(M) = hmeas(M). Thus Conjecture 2 will follow from
Mostow’s rigidity theorem [18] (see also [16] in the case of dimension two) and the
conjecture of Katok [13] which claims that M is to be locally symmetric provided that
hiop(M) = hmeas(M). It is in fact proved by Katok [13] that a closed surface M of
negative curvature for which hop(M) = Ameqs(M) holds is of constant curvature, and
it follows that Conjecture 2 is valid in the case of dimension two. See also Burns—Katok

(4] for further informations about related topics and problems.

Now we exhibit here an outline of the proof of the theorem mentioned above.
Throughout this paper, all manifolds, maps and so forth are assumed to be differen-
tiable of class C° unless otherwise stated. We will begin the proof of the theorem
with the symplectic geometry. In particular we will concern ourselves with a symplec-
tic manifold (P, 1) equipped with lagrangian foliations ¥~ and F* transverse to each
other: We call such a quadruplet P = (P,Q, 7, ¥ %) a bipolarized symplectic manifold.
Among the symplectic manifolds, bipolarized ones have the advantage that they have
canonically defined affine connections as we will see in §1. In addition, bipolarized
symplectic manifolds naturally appear in geometry of negatively curved manifolds in
the following way. Suppose that X is a simply connected complete riemannian man-
ifold with sectional curvature K < —1. Then, as we will see in §2, the unit tangent
bundle V = Vx of X is fibered over the space P of the geodesics in X so that each
fiber is an orbit of the geodesic flow of X. Furthermore, the exterior derivative d© of

the canonical contact form © of V, which is invariant by the geodesic flow, is pushed
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forward to a symplectic form 2 of P by the fibering V — P, and the foliations ¥~
and 71+ of P, obtained by projecting the stable and unstable foliations £~ and £t
of V associated with the geodesic flow of X, are lagrangian. In consequence, we are
in the presence of the bipolarized symplectic manifold P = (P,Q, 7, 7 1) associated
with the negatively curved manifold X. Moreover, in the case when X is the universal
covering of a closed riemannian manifold M of negative curvature whose Anosov split-
ting is of C®°, the lagrangian foliations ¥~ and F+ of P are smooth, and therefore the
canonical connection V of P is well defined. The most crucial part of the proof of the
theorem is the fact that P is locally symmetric with respect to V provided that the
sectional curvature of M satisfies the pinching condition —9/4 < K < —1: This fact
will be proved in the last paragraph in §2. This observation naturally leads us to the
- algebraic studies of affine (locally) symmetric spaces of a certain kind. In particular in
§3 we will be interested in a real Lie algebra g equipped with a linear decomposition
g =h +p~ + pT such that
(h,h] C h, (h,p~]Cp~, [h,pt]cCpt,
[p~,p7]=0, [p*,p*]=0, [p7,p*|Ch,
and in the corresponding affine symmetric spaces. By T. Nagano and S. Kobayashi
[19], [14], the simple Lie algebras g = h+p~+p™ equipped with linear decompositions
satisfying the above conditions are completely classified (cf. §3.4)." Appealing to their
classification together with some preliminary lemmas obtained in §3, we will be able
to show in §4 that in the case when dim M > 4 the bipolarized symplectic manifold P
that is locally symmetric with respect to its canonical connection V is isomorphic to
the bipolarized symplectic manifold P associated with a certain riemannian manifold
X homothetic to the hyperbolic space. Moreover it is possible to lift the isomorphism
between P and P to a diffeomorphism between the unit tangent bundles V of X and
V= Vg of X which are fibered over P and P respectively, so that the resulting
diffeomorphism of V onto V commutes with the geodesic flows of X and X. This will

prove the theorem.

The author wishes to express his thanks to Prof. M. Obata and Prof. T. Nagano

for their valuable suggestions.

1. Canonical connections of bipolarized symplectic manifolds

In this section, we will see that for a bipolarized symplectic manifold we can

always introduce an affine connection in a canonical way, and we begin it with making
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our terminology for symplectic geometry precise (cf. [24], [1]). First of all, recall that a
symplectic manifold is an even-dimensional manifold P equipped with a non-degenerate
closed 2-form (1, which is called a symplectic form of P. For a 2n-dimensional symplectic
manifold (P, 1), its n-dimensional submanifold L such that ¢*{1 = 0 for the inclusion
t : L — P is called a lagrangian submanifold of (P,Q), and a lagrangian foliation
of (P,Ql) is an n-dimensional foliation of (P,11) all of whose leaves are lagrangian
submanifolds. A symplectic manifold endowed with a lagrangian foliation is sometimes
called a polarized symplectic manifold. By a bipolarized symplectic manifold, we mean
a quadruplet P = (P,Q1,7,F1) consisting of a symplectic manifold (P,2) and of
its lagrangian foliations ¥~ and F1 transverse to each other. Obviously the tangent
bundle of a bipolarized symplectic manifold P = (P,Q,F~,F 1) carries the linear

- splitting TP = F~ + F* into the tangent spaces F~ and Ft of the foliations ¥~ and
Ft respectively such that Q|F~ = Q|F+ =0.

Another necessity in defining the canonical connections of bipolarized symplectic
manifold is the notion of connection along a foliation, which is defined as follows. Let
P be a manifold, 7 a foliation of P with tangent bundle F, and E a vector bundle over
P. A connection V of the vector bundle E along the foliation ¥ assigns a section V¢n
of E to each pair of smooth sections ¢ of F .a.nd n of E in the following manner, where

f denotes an arbitrary smooth function on P:

(i) Ven is bilinear in ¢ and n;
(i) Vsen=fVen, Ve(fn)=(Efn+ fVen.

1.1. To begin with, suppose that P is a manifold and ¥ is a foliation of P: Denote
the tangent bundle of ¥ by F, and the normal bundle of ¥ by TP/F. We can always
find local coordinates (p,q) = (p1,**,Pm,q1,°**,¢n) of P such that ¥ = {g = const.}
locally, i.e., each leaf of ¥ is locally of the form {g; = const;,---,qn, = const,}, and,
using these coordinates, we can define a connection V of the dual bundle (T'P/F)* of
TP/F along the foliation 7, by Vdg; =0 (¢ = 1,---,n). It is clear that this definition
does not depend on the choice of the coordinates (p, g), and therefore, the connection
V is globally defined on P.

1.2 (cf. Weinstein [23]). Next, let (P, 1) be a symplectic manifold, and ¥ be its
lagrangian foliation with tangent bundle F. Then the symplectic form  yields the
isomorphism F = (TP/F)* given by ¢ € F — Q(¢,-) € (TP/F)*, and therefore, we
obtain a connection V of F along 7 from that of (TP/F)* along 7 defined in §1.1. It

5
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is easy to see that V is torsion-free and flat in the sense that Ven — V, & — [£,79] =0
and [V¢, V] — V(¢ = 0 for any smooth sections ¢ and n of F.

1.3. Now suppose that P = (P,, ¥, ¥1) is a bipolarized symplectic manifold:
Denote the tangent bundles of 7~ and ¥t by F~ and F*, respectively. As was
indicated in §1.2, we have a connection V=~ of F~ along 7~ in a canonical manner,
which also induces a connection V—~* of the dual bundle F—* of F~ along ¥~. On
the other hand, the lagrangian splitting TP = F~ + F¥ gives rise to the isomorphism
Ft=F~* ¢te Ft— Q(¢,-) € F~*. Thus V™ —* induces a connection V—+ of F+
along ¥~. Similarly, connections V*++ of F* along 7+, and V*+~ of F~ along 71, are
defined. Combining these connections linearly, we obtain an affine connection V of P;
(1.1) V=V "4+Vtivt-4 vt
(This means that, for arbitrary smooth vector fields ¢ and 5 of P, the connection V
of P is given by V¢n = Vg:n_ + ng'n"' + Vg’:n_ + V;’fn"', where £~ and n—
(resp. (€t and nt) denote the F~-components (resp. F*-components) of ¢ and 7).
We call the affine connection V of P defined in (1.1) the canonical connection of the
bipolarized symplectic manifold P. It is easy to see that the canonical connection V of
P is characterized by the following three properties among all the affine connections of
P: (i) V is torsion-free; (ii) The symplectic form 1 is parallel with respect to V, i.e.,
Vil = 0; (iii) If f is a smooth function defined locally on P so that it is constant on
each leaf of 7~ (resp. 1), then Vdf = Oforany £ € F~ (resp. £ € F *). Furthermore
the curvature tensor R of the canonical connection V possesses the following properties
forany ¢—,n~ € F~, ¢t,pt € F+ and ¢,9,¢1,60 € TP:

" 12) R((™,m7)=R(¢",n*) =0;
Q(R(&n)s1,62) + D1, R(E,m)¢2) = 0.
In particular, each leaf of the foliations 7~ and F* are totally geodesic and flat.

2. Symplectic geometry of the space of the geodesics

We now turn to the study of manifolds of negative curvature from the viewpoint
of symplectic geometry. Our aims in the present section are to construct a bipolarized
symplectic manifold from a negatively curved manifold (§2.2), and to show that it is
locally symmetric with respect to its canonical connection under certain conditions

(§2.3): This is the most crucial part in the proof of our theorem.

2.1. In studying non-compact spaces, it is often helpful to take their compactifi-
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cations into consideration. In particular for manifolds of negative curvature their imag-
inary boundaries are introduced in concrete forms to construct their compactifications,
and has been playing significant roles in geometry, topology and dynamics of negatively
curved manifolds. In this paragraph, we will briefly review the notion of the imaginary
boundary at infinity of a negatively curved manifold (see, for details, Eberlein—O’Neill
[8]). Suppose first that X is an (n+ 1)-dimensional simply connected complete rieman-
nian manifold with sectional curvature K < 0. By the Cartan-Hadamard theorem,
the exponential map exp : T X — X of X at each point z € X is a diffeomorphism,
and in consequence, X is diffeomorphic to the euclidean space R**!, A ray in X is
a geodesic of X parametrized by the arc length ¢t € [0,00), and two rays r; and r; in
X are said to be asymptotic if dist(ry(t),r2(t)) is bounded in ¢ > 0: The asymptote is
evidently an equivalence relation between rays in X. Intuitively speaking, each ray is
directed towards a point at infinity, and two rays will reach the same point at infinity
if they are asymptotic. Hence the smaginary boundary B of X at infinity is defined as
the set of the asymptote classes of the rays in X:

B = {the rays in X}/(to be asymptotic).

Let V; be the set of unit tangent vectors of X at £ € X, and for each v € V,,, denote
by Az(v) € B the asymptote class represented by the ray exp,tv, t > 0. From the
assumption on the curvature, it is derived that the map A, : V, — B is bijective, and
that A;l oAz : Vy; — V is a homeomorphism for any z,y € X. Thus we can give
B a topology by identifying B with any V, (z € X) through the 1-1 correspondence
Az : Vy; — B. With respect to this topology, all of the maps A, : V; — B (z € X) are
homeomorphisms, and in particular B is homeomorphic to the n-sphere. Moreover B is
attached to X to form a compactification X U B of X homeomorphic to the (rn+ 1)-ball
so that the map e; : Vz x (0,00] — (X U B) \ {z}, defined by e,(v,t) = exp,tv for
t < co and ez(v,t) = Az(v) for t = oo, is a homeomorphism. It is easy to see that each
isometric transformation of X has a natural extension to a homeomorphism of X U B

onto itself.

Especially, for the hyperbolic space H**! (i.e., the simply connected complete rie-
mannian manifold of constant curvature —1), which is realized by so-called the Poincaré
model as the open unit disc {|z| < 1} in the euclidean space R"*! equipped with a
conformally deformed metric, the boundary sphere S® = {|z| = 1} in R®*! is nat-
urally identified with the imaginary boundary B of H™t! at infinity. Furthermore,

in this case, the imaginary boundary has the following nice structures which can not
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be expected in general for the imaginary boundaries of manifolds of variable negative
curvature. One of them is the differentiable structure. In fact, for the hyperbolic space
H"t! the family of maps 4; : V, — B has the property that Ay’ o A, : V, — Vy is
always C® for any z,y € H"t!, and this gives the imaginary boundary B a natural
differentiable structure. It is easy to see that this differentiable structure of B coincides
with that of B induced by the identification of B with the sphere S in R*t! in the
Poincaré model, and that the extension of every isometric transformation of H**+! to
a homeomorphism of H**! U B is actually a diffeomorphism. In addition, in the case
of n + 1 > 3, the imaginary boundary B = S™ C R"t! of the hyperbolic space has
a canonical conformal structure induced from that of the euclidean space R"t!, and
for each isometric transformation of H"1!, its extension to B is a conformal transfor-

- mation. Furthermore, every conformal transformation of B is obtained in this way;
that is, the conformal extension of each isometric transformation of H™t! gives an
isomorphism of the isometric transformation group Iso(H™*!) of the hyperbolic space
H™*1 onto the conformal transformation group Con(B) of the imaginary boundary B.
These facts were extensively utilized in the proof of Mostow’s rigidity theorem [17],
[18].

2.2. Assume further that X is of curvature K < —1. Next we are going to
construct a bipolarized symplectic manifold P = (P,Q, ¥, %) from X. LetV = Vx =
U.ex V= be the unit tangent bundle of X, and put P = {(b=,b*) € Bx B: b~ # bt}.
Note that the assumption on the curvature implies the “convexity”of the imaginary
boundary B of X: More precisely, the curvature assumption guarantees that for any
distinct points b~ and bt of B there is a geodesic line ! of X, unique up to the
reparametrization, such that I(¢) — b* in XUB as t — +oc0. Thus the map 7 :V — P,
defined by 7(v) = (Az(—v), Az(v)) for v € V; and z € X, constitutes an R-fibering of
V over P. In other words, P can be considered as the space of the geodesic lines in
X. We can also explain this by saying that the additive group R of the real numbers
acts on V as the geodesic flow, and P is identified with the orbit space R \ V with the
projection 7 : V. — P = R\ V. In particular, P has a unique differentiable structure
for which the projection 7 : V. — P is smooth. Moreover we can introduce a symplectic
form Q2 on P in the following way, so-called the symplectic reduction. Denote by ©
the canonical contact form of V: © is the pull-back of a 1-form ©¢ on TX by the
inclusion V' — T X, while, in the local coordinates (z;,%;) of TX induced from local
coordinates (z;) of X in which each tangent vector v € TX of X is represented by
v = ) ;(d/9z;), O is given by O = Y gi;Z:idz;, where g;; = (8/dz;,8/dz;) with

8
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(-, -} being the riemannian metric of X (cf. [1]). Then Liouville’s theorem claims that
both © and its exterior derivative d© are invariant by the geodesic flow, and therefore,
dO is pushed forward to P by the projection w : V — P so that the resulting 2-form ()

on P, which is characterized by d® = 7*Q, is a symplectic form of P.

Now let v be the geodesic flow of X defined on the unit tangent bundle V of

X. Although X is non-compact, the Anosov splitting TV = E~ 4 E° + E+ associated

with the geodesic flow ¢ is canonically defined in a geometric manner, and it satisfies
|dp:(€)| < const-eTt|€], for( € E—, t>0;
|dp—_:(€)| < const-e¥|¢], for € ET, t>0.

Since the subbundles £~ and E* of TV are invariant by the geodesic flow ¢;, and are

(2.1)

transverse to the orbits of the geodesic flow ¢;, they induce the continuous splitting
TP = F~ + F7 of the tangent bundle of P into the n-dimensional subbundles F~
and F*+: The differential dr, of the projection 7 : V — P at each point v € V maps
E* C T,V onto F, ;E(u) C T(v) P isomorphically. It is easy to see that this splitting of
TP corresponds to the product structure of P C B x B. Furthermore, through the
projection 7 : V — P, the stable and unstable foliations £~ and £+ of V tangent to
E~ and E* descend respectively to the C° foliations ¥~ and % of P which consist
of the Cl-leaves (B x {b*}) N P and ({6~} x B) N P (b* € B) respectively. For these
foliations ¥~ and ¥+ of P, we have

(2.2) Lemma. Both ¥~ and ¥ are lagrangian foliations of (P,Q), and in consequence,
P=(P,N,7,7%) is a bipolarized symplectic manifold.

Proof. To see that 7~ is lagrangian, it is sufficient to prove dO|E~ = 0, where,
as before, © denotes the canonical contact form of V. By Liouville’s theorem and the
first inequality in (2.1), we immediately have

|dO (&1, &2)| = |(vidO) (&1, &2)| = |dO(dpié1, dp:é2)
< const - |dO| |dps&1| |dpiéa] < const - |dO| &1 |€2] - ™2t
for 1,62 € E~ and t > 0. As |dO| is bounded on V, we obtain dO(£;,£;) = 0 by
letting t — co. I

One should notice that the argument employed in the proof of the lemma also
implies that ©|(E~ + E*+) = 0 for the canonical contact form © of V. On the other
hand, for the geodesic spray ¢’ = (8/3t)|t=op: on V, which is by definition the vector
field on V generating the flow ¢; and spanning the subbundle E° of TV, it is clear
that ©(p’) = 1. Thus the canonical contact form © of V is completely determined by
the Anosov splitting TV = E~ + E° + E* and hence only by the geodesic flow ;.
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By virtue of Lemma (2.2), the canonical connection of the bipolarized symplectic
manifold P is defined provided that the Anosov splitting TV = E~ + E° + Et of X
is of class C°°. Further in this case the foliations £* of V and F* of P are C*, and
the imaginary boundary B of X at infinity has a C°°-differentiable structure so that
the projections of P = B x B\ (the diagonal set) onto B are smooth.

2.3. Now suppose moreover that X appears as the universal covering of a certain
closed riemannian manifold M of negative curvature: Of course we may assume, with-
out a loss of generality, that the sectional curvature K of M satisfies the inequalities
(2.3) -AM2<K<-1 (A>1).

The fundamental group T' of M acts on the universal covering X of M by the isometric
deck transformations, and it induces smooth actions of T' on V and on P in a canonical
way: Note that this is possible because the action of T' on X preserves all of the
structures of X. In particular, the action of ' on P preserves the symplectic form 2 and
the transverse lagrangian foliations ¥~ and 71 introduced in §2.2: In other words, T
acts on the bipolarized symplectic manifold P = (P, 2, ¥, ) by its automorphisms.
In this situation, we have
(2.4) Proposition. Assume that the Anosov splitting of M ts of C™ and that A <
3/2. Then the canonical connection of the bipolarized symplectic manifold P is locally
symmetric; that 1s, VR = 0 for the canonical connection V of P and tts curvature
tensor R.
Proof. First, note that the pinching condition (2.3) yields the following estimates
— for the hyperbolicity of the geodesic flow p; of X which improve the previous ones
(2.1):
const™! - e M|¢| < |dps(€)| < const-e7t|¢|, for E€ ET, t >0;
const™! . e M|¢| < |dp_t(€)| < const - et|E], for &€ ET, t>o0.
Furthermore, since the splitting TV = E~ + E® + E+ is p;-invariant, (2.5) implies
const™! - et|€] < |dp—s(€)| < const - e*t|¢], for £€ E~, t >0,
const™! - t|¢] < |dpi(€)| < const-eM|¢|, for ¢ € ET, t>0.
Now define a (0,4)-tensor field B on P by R(¢1, &2, £3,84) = Q(R(&1, &2) €5, &4) for
€1, 8&32,83,€64 € TP: Then R and its covariant derivative VR are tensor fields on P

which are invariant under the action of T, since I acts on P = (P,1, ¥, 1) by its

(2.5)

(2.6)

automorphisms, and to prove the proposition it suffices to show that VR = 0 since
VQ=0. Let S = w*(Vﬁ) be the pull-back of VR by the projection 7 : V — P, which

10
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is a (0,5)-tensor field on V. Suppose that &7, ¢;,€5 € E~ and nf,n5 € E*. Since
S is p¢-invariant, (2.5) and (2.6) imply
S(&1s €25 & 1>l = [(VES) (€7, €75 &5 0T m3)|
= |S(dpt &7, dpi €7 , dpe s ,dipeny , doend)|
< const - |S| - |dps7 | |dpi€s | |dpeés | |dpent | |doens |
< const - |S| - |&1 | €5 | 1€5 | Ini| Ing| - €A="
for t > 0. Since S is smooth on V', and is invariant under the action of I' on V for which
the quotient T' \ V is compact, |S| is bounded on V. Thus by letting ¢ — oo in the
above inequalities we have S(¢7,¢5,€5,n1,n5) = 0 in the case of ¢1,¢5,6; € E~
and n{,n7 € E* (recall that X < 3/2). The other cases can be treated in the same
way, and we obtain S = 0, which implies VR = 0. §
Note that in the case of dim M = 2 the proposition is valid without the pinching

condition on the curvature.

3. Algebraic studies of bipolarized symmetric spaces

Examining the symplectic geometry of a negatively curved manifold in the previ-
ous section, we found a bipolarized symplectic manifold which is locally symmetric with
respect to its canonical connection, and what we have to do in the rest of the present
paper is to determine its structure to conclude the theorem mentioned in the introduc-
tion. We will begin the proof of the theorem with arguments which are not require the
symplectic form of the locally symmetric bipolarized symplectic manifold under consid-
eration, and this leads us to the following definition. Suppose that P = (P,V,¥~, %)
is a quadruplet consisting of a manifold P, a torsion-free affine connection V of P, and
two foliations F~ and F* of P transverse to each other with dim P = dim ¥~ +dim 7.
Then P is called a bipolarized symmetric (resp. locally symmetric) space if the following

three conditions are satisfied:

(i) (P,V) is an affine symmetric (resp. locally symmetric) space;

(i) The tangent bundles F~ and F* of the foliations ¥~ and F* are closed
with respect to the covariant derivative by V, that is, for any vector field ¢
of P and a section n* of F*, Vgni is again a section of F¥;

(i) The curvature tensor R of V satisfies R(¢~,n~) = R(¢+,nt) = 0 for
¢ ,n~ € F and ¢+, € F+.

11
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A bipolarized symplectic manifold which is symmetric (resp. locally symmetric) with
respect to its canonical connection is obviously a bipolarized symmetric (resp. locally
symmetric) space because of (1.1) and (1.2). As we will see later, local geometry of a
bipolarized symmetric space is described by a real Lie algebra g equipped with a linear

decomposition g = h + p~ + p* which satisfies the following conditions:

(i) The splittingg=h+p~ +pt dbeys the bracket rules
(h,h] C h, (h,p~]Ccp, [h,p*] Cc p™,
p~p7]=0, [p*,p*]=0, [p7,p*|Ch;
(ii) The adjoint representation of the subalgebra h of g on p = p~ + pt is
faithful; that is, for £ € h, [£,p] = 0 implies £ = 0;
(iii) There is an element § € h such that [5, £] = 0, — ¢ or ¢ according to whether
£ €h, p~ or pt, respectively.

We call a real Lie algebra g = h + p~ + p* equipped with a linear decomposition
satisfying the above conditions (i)-(iii) a bipolarized symmetric Lie algebra, and the
purpose of this section is to study bipolarized (locally) symmetric spaces in terms of
bipolarized symmetric Lie algebras as preliminaries for the proof of the theorem. It
should be remarked that the latter conditions (ii) and (iii) are rather subordinate,
and are imposed to the bipolarized symmetric Lie algebras in order that we can treat
the non-semisimple case as well. In fact, they will be emploied only in the proofs of
Lemmas (3.5) and (3.6) in which we treat non-semisimple bipolarized symmetric Lie
algebras, while in the case when g is semisimple the condition (iii) is always derived
from (i), and more strongly in the case when g is simple the condition (i) implies both
of (ii) and (iii). Concerned with (semisimple) Lie algebras g =h + p~ + p* endowed
with linear splittings satisfying the first condition (i), we should refer to the works by
Berger [3]|, Nagano [19], Kobayashi-Nagano [14], Tanaka [21] and by others, which

had been done in other contexts, but some of them are still helpful in our discussions.

3.1. In this paragraph, we will reveal the fundamental relation between bipo-
larized symmetric spaces and bipolarized symmetric Lie algebras. First suppose that
g =h+ p~ +pt is a bipolarized symmetric Lie algebra, from which we are going to
construct a bipolarized symmetric space. Let o be the involutive automorphism of g
defined by o€ = ¢ for ¢ €h and of = —£ for £ € p =p~ + pt, and take an analytic
group G with Lie algebra g so that the automorphism o is integrated to an involutive
automorphism ¥ of G. Furthermore let H be the analytic subgroup of G corresponding

to the subalgebra h of g: H coincides with a connected component of the fixed point
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set of X, and consequently H is closed in G. Thus we can form an affine symmetric
space (P = G/H,V) (cf. [15]). In additioﬁ, the abelian subalgebras p— and pT of g
induce a G-invariant splitting TP = F— + F1 of the tangent bundle of P. Both F~
and F* are integrable, and yield G-invariant foliations ¥~ and ¥* of P tangent to
F~ and F* respectively. It is easy to see that P = (P,V,7~,¥71) is a bipolarized
symmetric space.

Next we conversely construct bipolarized symmetric Lie algebra from a bipolarized
locally symmetric space. Let P = (P,V,¥~,77) be a bipolarized locally symmetric
space, and p a point of P. Denote by p* the tangent space of the foliation #* at p,
and by h the space of linear automorphisms a of p = p~ + p* = T, P satisfying the
following two conditions:

3.1.1) ap~ Cp~, aptCpt;
(8.1.2)  aoR({n) — R({,n) o a= R(ag,n) + R(¢ an) for &9 € p.

In the latter condition, R denotes the curvature tensor of P at p: Note that
R(¢,m) € h for all £,7 € p. Now put g = h + p~ + p™*, and define a Lie bracket
operation [-, -] on g by [a, 8] = @0 —Boafor a,f € h; [a,&] = af for a € h, £ € p;
and [€,n] = —R(&,n) for &, € p. It is obvious that g = h+p~ +p™T is a bipolarized
symmetric Lie algebra. Moreover if P = (13 = G/H, v,7-,7 *) denotes a bipolarized
symmetric space constructed from g as above, then P is locally isomorphic to 13; that
is, P is covered by partially defined diffeomorphisms of P into P which send the affine

connection and the foliations of P to those of P.

3.2. Now we are going to consider the space of the leaves of the foliation ¥~
- or 1 of a bipolarized symmetric space P = (P,V,7~, 7). To begin with, let g =
h+p~+pt be a bipolarized symmetric Lie algebra, and denote by § the element of h
such that ad(6)|h = 0 and ad(6)|p* = +1. Associated with it, there is a 1-parameter
group of the inner automorphisms ¢; = Expt ad(6) (¢ € R) of g such that p:¢& = ¢,
e ¢ or e'¢ according to whether ¢ € g, p~ or p™, respectively. For every ideal a of
8, these automorphisms ; give rise to the splitting
(3.2) a=(hna)+(p~Nna)+ (ptna).
In fact, a is invariant by ¢, and for £ = €9+ ¢~ + ¢+ € a (¢° € h, ¢* € pt) it follows
that e % & = e3¢0 + e~ 2t¢~ 4 ¢t € a. By letting t — co we obtain ¢+ € a, and in
a similar way we have £~ € a, and in consequence £° € a. This shows (3.2). Now take

an analytic group G and its subgroup H corresponding to g and h as in §3.1. From

them we can form a bipolarized symmetric space P = (P = G/H,V,7~,7%) as we
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have already seen. Furthermore let HE be the analytic subgroup of G corresponding
to the subalgebra h* = h + p* of g. Then the coset space B¥ = G/H%* is naturally
considered as the space of the leaves of the foliation #*. It is the topological structure
of B that we intend to study in this paragraph, and it will be done by dividing the

arguments into two cases according to whether g is semisimple or not.

Semisimple case. First suppose that g is semisimple. In this case we can im-
mediately show that both H~ and Ht are closed in G: In fact H* coincides with
a connected component of the normalizer {g € G : Ad(g)p* C p*} of p* in G (<f.
Tanaka [21]). Thus B* = G/H% is a homogeneous manifold. Furthermore we have

(3.3) Lemma. The universal coverings of B~ and BT are diffeomorphic to a certain
compact riemannian symmetric space By. Furthermore Bg ts not irreductble unless g
's stmple.

Proof. As was indicated by Kobayashi-Nagano [14], it follows from the assump-
tion of semisimplicity that there exists a Cartan decomposition g = k + 1 of g with k

being a maximal compact subalgebra of g, such that
(3.4) h=(hnk)+ (hnl), p=(@nk)+ (N1,

where p = p~ + p* as before. Moreover it is not hard to see that for any Cartan
decompositions g = k; +1; and g = ka+1; of g satisfying the condition (3.4) there is an
automorphism of g which sends k; and 1; onto k, and 1, respectively and keeps h and
p invariant. Now let K be the compact analytic subgroup of G with Lie algebra k, and
as in §3.1 denote by o the involutive automorphism of the Lie algebra g characterized
by o/h = 1 and o|p = —1. Then by (3.4), k is invariant by o, and therefore the
- automorphism X of G that integrates o keeps K invariants and fixes K N H. Thus we
obtain a compact riemannian symmetric space K/K N H. Furthermore (3.4) implies
that all of the projections pNnk — p*, pN1 — p* into p~ and p* are bijective (cf.
[14] again), and, from this fact it follows that the restricted action of K(C G) on the
homogeneous space B+ = G/Hi of G is transitive, and that knh = knh¥, i.e., the Lie
subgroup KN H of K and the isotropy subgroup K N H* of the action of K on BT have
the same Lie algebra. Thus B¥ is diffeomorphic to the homogeneous space K /KN H*
which is finitely covered by the compact riemannian symmetric space K/K N H, and
in consequence the universal covering of B¥ is diffeomorphic to the universal covering
By of K/K N H. To prove the second assertion in the lemma, assume further that g is
not simple: Let g = g; + -+ + g, (v > 0) be a decomposition of g into prime ideals.
Recall that g, = (hNg,) + (P~ Ngyu) + (PT Ngy) by (3.2): This means that g, is
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a bipolarized symmetric Lie algebra in itself. Thus the previous argument shows that
each g, carries a Cartan decomposition g, =k, +1, withhng, = (hnk,)+ (hnl,)
and png, = (pnk,)+(pnl,). Nowputk =k;+---+k, and1=1;+---+1,. Then
g = k+1is a Cartan decomposition of g that satisfies the condition (3.4). In particular
(3.4) implies k = (kN h) + (k N p). Furthermore k N p admits the ad(k N h)-invariant
splitting kNp = (k;Np)+---+ (k. Np), and in consequence the adjoint representation
of kNh on kN p is not irreducible. Hence the riemannian symmetric space K/K N H

and its universal covering By is not irreducible. §

Non-semisimple case. Next we consider the case when g is not semisimple. In
this case we should assume that G is simply connected. Under this assumption the
automorphisms ¢; of g induce a 1-parameter group of the automorphisms &; of G

with (d®:)1 = ©¢. The fact we have to prove first is
(3.5) Lemma. Both H~ and H* are closed in G.

Proof. To see this, we first show that Ly N L{ = {0}, where 0 = H denotes
the origin of the symmetric space P = G/H, and LT the leaf of the foliation 7+
passing through o. Since the automorphisms ®; of G fix H, they descend to a 1-
parameter group of automorphisms ¥; of P which fix the origin o, keep Ly and Lg’
invariant, and contract Ly and expand Lg’ provided ¢ > 0. Thus, if there were a
point p # o in P lying in Ly and Lg’ simultaneously, then ¥;’s would move p along
Ly since p € Ly and along L{ since p € L{, in contradiction. Hence we have
Ly N L = {o}. Note that this implies also that for any leaves L~ of ¥~ and L+ of
F+ their intersection L~ N Lt contains at most one point. Now we turn to the proof
of the lemma. For this purpose it suffices to show that the leaves of the foliations 7~
and F* are closed in P. Assume in contrary that a leaf L~ of #~ is not closed in P.
Take an accumulating point p of L~ that does not belong to L—, and let U be a “flow
box”of the foliation pair (¥, ¥*) around p: By definition, U is a neighborhood of p
where local coordinates p7,--+,p;,, pi", -++,pf of P are defined so that each leaf of ¥+
is of the form {p¥ = const;} in U. Then L~ should intersect a leaf {p} = const;} of
F* infinitely many times, but this contradicts the previous assertion. Thus the leaves
of the foliations #~ and F7 are closed in P, and consequently, the subgroups H~ and
H are closed in G. |

The above lemma guarantees that B* = G/H¥ is a homogeneous manifold, and

concerned with the topology of B+ we have

(3.6) Lemma. Either B~ or B* is non-compact unless g is semisimple.
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Proof. Since g is not semisimple, g has an abelian ideal a # 0. Recall (3.2):
a = (hna)+(p~Na)+(p*Na). First we prove that p~Na # 0 or ptNa # 0. Assume
in contrary that p~ Na =p* Na=0. In this case, we have hna,p |]Cp Na=0
and similarly [h N a,p*| = 0, which imply that h N a = 0 (recall that the adjoint
representation of h on p = p~ + p¥ is to be faithful); but this contradicts a # 0. Thus
we have either p~ Na # 0 or pT Na # 0. For simplicity, assume pt Na # 0. Now
let A be the analytic subgroup of G corresponding to the abelian ideal a of g. Then
G/A is simply connected as we have been assuming that G is simply connected, and
its Lie algebra splits as g/a = (h/hna) + (p~/p~ Na) + (p*/p* Na) and satisfies
the first and the third conditions in the definition of the bipolarized symmetric Lie
algebras. In particular, the arguments in the proof of Lemma (3.5) fully work, and
imply that the analytic subgroup H~/H~ N A of G/A with Lie algebrah~/h~na =
(h/hna)+ (p~/p~ Na) is closed in G/A. Thus we can form a homogeneous space
(G/A)/(H~ /H~ n A), over which B~ = G/H~ is naturally fibered with fibers being
homeomorphic to A/ANH~. Hence, to show the non-compactness of B—, it suffices to
prove that A/AN H~ is non-compact. Recall that a = (hna)+(p~Na)+ (ptna)is
abelian, and therefore A is also abelian. Furthermore A is simply connected since so is
G. Thus A is isomorphic to a linear space, and the analytic subgroup AN H~ of A with
Lie algebraanh™ = (hNa)+(p~Na) is isomorphic to a linear subspace. Consequently
A/AN H~ = R™ with m = dim(p* Na) > 0, and A/AN H~ is non-compact. This

proves the lemma. [

3.3. Here we give two examples of bipolarized symmetric Lie algebras g = h +
p~ + pt and the associated bipolarized symmetric spaces (P,V, ¥, 7%) which will
play important roles in the proof of our theorem. In particular, we are interested
in “transversal geometry”of the leaves of the foliation #*, and to explain it more
precisely, we have to introduce a notion in the theory of foliations. Suppose generally
that P is a manifold foliated by two transverse foliations ¥~ and ¥t with dimP =
dim ¥~ +dim 7%, and let p; and p, be arbitrary points of P lying on the same leaf L~
of ¥~: Denote by L;-i~ (¥ = 1,2) the leaf of 7+ passing through p;. Then, (corresponding
to each homotopy class of curves in L™ combining p; and pz,) there is a diffeomorphism
¢ of a neighborhood U; of p; in L'{' onto a neighborhood U; of ps in L; such that
©(p1) = p2 and that p(q1) = g2 for ¢; € U; (¢ = 1,2) if and only if ¢; and g lie on the
same leaf of #~. We call such a partially defined diffeomorphism ¢ between leaves of
Ft a canonical transformation of ¥t along ¥~. In exhibiting examples of bipolarized

symmetric spaces (P,V,7~,7+) below, we will try to make clear what geometry of
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the leaves of ¥+ is preserved by the canonical transformations of ¥+ along ¥—. Of
course, as is expected from the definition of canonical transformations itself, this is
closely related to the G-invariant geometry of the space B~ = G/H™ of the leaves of
the foliation ¥~ introduced in the previous paragraph.

Example 1 (Projective geometry). First we give an example concerned with the

projective geometry. To begin with, let
g=s8l(n+1;R) ={a € gl(n+ 1;R) : tracea = 0}

be the real unimodular Lie algebra, where, for a positive integer n, gl(n; R) denotes the

Lie algebra of n X n matrices with real entries, and consider its linear decomposition

g=h+p~ +pt given by

h={(a 0) aegl(n;R), AER, trax:ea+/\=0},

0 A
p-={(‘;_ g):£‘=(€f---£;)€R"},
i Ei'-
Pt = (g §+)=f+= ;| ers
&

It is easy to check that g = h + p~ + p™ is a bipolarized symmetric Lie algebra. Now
let P= (P =G/H,V,F~,F%) be the associated bipolarized symmetric space, where
G = SL(n+1;R) and H is the closed analytic subgroup of G with Lie algebra h which
is isomorphic to the identity component GL, (n;R) of GL(n;R). In this case, we can
show that the corresponding homogeneous space B~ = G/H~ introduced in §3.2 is
" diffeomorphic to the n-sphere. To see this, first recall that G = SL(n + 1;R) acts
linearly on the euclidean space R™®*!, while the standard sphere S™ is considered to be
embedded in R"+! by $™ = {|z| = 1}. In addition, S™ can be identified with the space
of rays in R™*! starting from the origin, and this identification gives rise to an action
of G on S™ which is easily seen to be projective. Moreover we can immediately show
that the isotropy subgroup of the action of G on S™ at the point ¥(0,---,0,1) € S™
coincides with the subgroup H~ of G. Thus S™ can be considered as the homogeneous
space B~ = G/H~. These observations imply further that for the projection = of
P = G/H onto B~ = G/H~ = S™ its restriction to a leaf Lt of F*, which is a
totally geodesic flat submanifold of P, is a projective diffeomorphism of L* (with the
induced affine connection) onto B~ (identified with the standard sphere). Thus the

projective geometry of the leaves of ¥ 7 is preserved by the canonical transformations of
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F+ along F~ (note that, for two leaves L} and L7 of 7+, the canonical transformation
¢ : LT — LT between them is given by ¢ = (7|LF)~1 o (x|LT)).

Example 2 (Conformal geometry). The second example we are going to exhibit is
related to the conformal geometry and arises as the geometry at infinity of the space

of constant negative curvature. Consider the real simple Lie algebra
g=so(n+1,1)={acgl(n+2;R): *ac+ ea =0},

where

€= € gl(n + 2; R),
-1

which carries the linear decomposition g = h + p~ + p* with

0 0 X
h= 0 a 0]|:%a+a=0, AR},
A 0 O
[0 ¢ o
p = e 0 M | =(& - 6)ER ),
0 &0
[0 —te+ 0 &
pt= ¢t o gt |:¢t=] : |er”
0 *t o &+

Again it is easy to see that g = h+p~+p™ is a bipolarized symmetric Lie algebra. Now
put G = SOo(n+1,1), the identity component of the lorentzian orthogonal group O(n+
1,1) = {g € GL(n+2;R) : *geg = €}, and let H be the analytic subgroup of G with Lie
algebra h which is isomorphic to the Lie group CO(n) = {Ag: ¢ € SO(n), A > 0}. Then
the conformal structure of p* defined by the inner product (¢¥,n%) = 3°F_, &fnft
(¢t,nt € p*t) is Ad(H)-invariant; that is, for every h € H, there is a constant
k£ > 0 such that (Ad(h)¢F,Ad(R)nT) = k(¢t,nt) for all ¢t nt € pt. Moreover
it is easy to see that this is the unigue Ad(H)-invariant conformal structure of p+.
Hence, for the bipolarized symmetric space P = (P = G/H,V,7~,7%) associated
with g, the tangent bundle F* of the foliation ¥+ has a unique G-invariant conformal
structure, which automatically gives the leaves of ¥t conformal structures. Now we
show that these conformal structures of the leaves of #1 are preserved by the canonical
transformations of ¥t along ¥~. First recall the Minkowski space R**1:1 which is

, by definition, the (n + 2)-dimensional euclidean space endowed with the lorentzian
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metric ds? = dz +--- +dz2 —dz? ., where z = (zo,-*+,Zn+1) denotes the canonical
coordinate system. We regard the standard sphere S™ as being embedded in the
Minkowski space R®*1:! in the way that §» = {22+---+z2—z2, = 0}N{zp41 = 1}.
Each point of S™ corresponds to the light-like line in R™**1! passing through both the
origin and itself. On the other hand, the group G = SOy(n + 1,1) acts on R™+1:!
as linear isometries, and the action keeps the light cone {3 + --- + 22 — 22 | = 0}
invariant. Thus G acts also on the sphere S™, and the action preserves the induced
conformal structure of S® C R™*t11 and is transitive on S"™. Moreover the isotropy
subgroup of the action at ¥(1,0,---,0,1) € S™ coincides with the analytic subgroup H~
of G with Lie algebra h = h+p~, and therefore the homogeneous space B~ = G/H™,
which is identified with the space of the leaves of the foliation ¥, is diffeomorphic
~to the n-sphere. Now it is not hard to see that the restriction of the projection 7 of
P = G/H onto B~ = G/H™ to a leaf L+ of #% is a conformal diffeomorphism of
the leaf L* (equipped with the conformal structure described earlier) onto B~ (which
is conformally equivalent to the standard sphere S™). This shows that the canonical

transformation of #1 along 7~ preserve the conformal structures of the leaves of 7.

3.4. The proof of our theorem, which will be done in the following section, requires

the classification of the simple bipolarized symmetric Lie algebras, while in [19] and
[14] Nagano and Kobayashi gave the complete classification of them. In particular we
will make use of their classification in the following form:
(3.7) Proposition (see [19], [14]). Suppose that g =h+p~ +p™ is a simple bipolar-
1zed symmetric Lie algebra such that the associated homogeneous space B = G/H*
introduced in §3.3 ts covered by the n-sphere. Then g is tsomorphic to either of the
bipolarized symmetric Lie algebras given in Ezamples 1 and 2 of §3.9.

In deriving the proposition from the classification of Kobayashi-Nagano, recall
that B* is covered by a compact riemannian symmetric space Bo (Lemma (3.2)), for,
in the classification table of Kobayashi-Nagano, they describe the compact riemannian
symmetric spaces Bo associated with the Lie algebras in the same time: By picking up
from the classification table the bipolarized symmetric Lie algebras for which the as-
sociated riemannian symmetric spaces are homeomorphic to the n-sphere, we conclude

the proposition.

4. Construction of a congruence between geodesic flows
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In the preceding sections we have prepared for the proof of the theorem below
that is our main subject in the present paper, and we are now in the position where

the proof is to be completed.

(4.1) Theorem. For a closed riemannian manifold M of dimension greater than three,
if its sectional curvature satisfies the pinching condition —9/4 < K < —1, and if the
Anosov splitting of M s of class C™°, then the geodesic flow i of M ts congruent to
the geodesic flow p: of a certain closed riemannian manifold M of constant negative
curvature; that is, there exists a diffeomorphism ® of Vs onto Vi, such that ® o o, =
©ro® for allt € R.

Throughout this section suppose that. M is a closed riemannian manifold of di-
mension n + 1 which satisfies the conditions in the theorem, and let X be the universal
>overing of M on which the fundamental group I' = 71(M) of M acts by the deck
transformations. Denote by P = (P,2,#~,F7) the bipolarized symplectic manifold
constructed from X. Note that the foliations #~ and ¥+ have smooth tangent bundles
F~ and F* since the Anosov splitting of M is smooth: In other words, the imaginary
boundary B of X has a natural differentiable structure for which B is diffeomorphic to
the standard sphere $*, and the foliations ¥~ and ¥+ of P correspond to the product
structure of P = B x B (the diagonal set). Further recall that P is locally symmetric

with respect to its canonical connection V as was indicated in Proposition (2.4).

4.1. In §§4.1-4.2, assume that n + 1 = dim M > 3. Starting from the bipolarized
locally symmetric space P = (P,V,¥~, %), it is possible to construct a bipolarized
symmetric Lie algebra g = h + p~ + p* from P, and secondarily a bipolarized sym-
metric space P = (13 = G’/H,e,f'_,f*‘) from g (cf. §3.1): In the case when g is
not semisimple, take the 1-connected Lie group G in order that we can apply Lem-
mas (3.5) and (3.6). Then we can find a developing ¥ : P — P which preserves the
affine connections and the foliations of P and P. Note that this is possible because
P is locally modeled on 15, and is simply connected as we have been assuming that
n+ 1 =dimM > 3, while in the case of dim M = 2, P is not simply connected: This
is the reason why we should assume that dim M > 3. Now P is fibered over B with
the projection (b—,b%) € P = B x B\ (diagonal) — bF € B so that each fiber is
a leaf of the foliation ¥, while P = G/H is a fiber bundle over the homogeneous
space B = G/H?* whose fibers are the leaves of the foliation #% (cf. §3.2). Thus we
obtain an induced developing ¥* : B — ﬁi, which is actually a covering since B is

compact. This especially excludes the case that g is not semisimple: In fact, if g were

20



KSTS/RR-87/001
March 25, 1987

not semisimple, then either B~ or B+ would be non-compact by Lemma (3.6), in con-
tradiction to the fact that ¥* : B —» Bt isa covering. Hence g should be semisimple.
Furthermore g is to be simple, for B* is covered by a compact riemannian symmetric
space By, which is not irreducible in the case when g is not simple (Lemma (3.3)),
while B is covered by B which is diffeomorphic to the sphere. Thus we can apply
Proposition (3.7) to g = h+p~+pT, and conclude that we have only two possibilities
g =sl(n+ 1;R) and g = so(n + 1,1).
Now we show that g is never isomorphic to sl(n + 1;R). Assume in contrary
that g = sl(n + 1;R). In this case we can choose SL(n + L;R)/GL,(n;R) as P.
The canonical transformations of 7+ along 7- preserve the projective structures of
the leaves of F+ (recall Example 1 of §3.3). Note that this is also the case with
- P=(P,V,7,F*) since P is locally isomorphic to P. Thus the projective structures
of the leaves of 7+ can be pushed forward to B by the fibering P — B, (b=,6%) — b,
so that B is projectively equivalent to the standard n-sphere and that the action of
the fundamental group T of M on B preserves the projective structure. However, this
is a contradiction for the following reason. The action of each element v € T \ {1} on
the imaginary boundary B at infinity has the characteristic property that there are
distinct two fixed points b~,b% € B of ~ such that v¥b — b* as k — +oo for every
be B\ {b",b*}: In fact, for each v € T\ {1} there is a unique geodesic line ! in X
that is invariant under the isometric action of v on X , since X is closed (cf. [8]), and
the points b = I(+00) of B satisfy the above condition. On the other hand, we can
find a closed geodesic ¢ in B that does not pass through b—; this is possible because B
is projectively equivalent to the standard sphere. Then, by taking k > 0 large enough,
~ ~¥c is a closed geodesic of B enclosed in an arbitrarily small neighborhood of *: This

is of course impossible, and consequently, we can exclude the case of g =sl(n+ L;R).

4.2. The argument above shows that g = so(n + 1,1), and therefore we may
set P = SOo(n + 1,1)/CO(n) as in Example 2 of §3.3. Our next purpose is to show
that the developing ¥ : P — P is in fact ~bijective. First note that the model space
P can be constructed from the hyperbolic space H**! as in the manner of §2.2, and
especially is of the form P = §" x S» \ (diagonal), where the n-sphere S™ is con-
sidered as the imaginary boundary of the hyperbolic space H™+! at infinity. It is
obvious that the developing ¥ of P into P is given by Y(b~,b") = (U~b~,¥t+bt) for
(b=,b%) € P = B x B\ (diagonal), where ¥~ and ¥ are diffeomorphisms of B onto
S™. In particular, it is clear that ¥ is injective since so are ¥~ and ¥+. We are now

going to prove that ¥~ = ¥+ in order to show that ¥ is surjective. For each element
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~ of the fundamental group I' of M that can be simultaneously considered as an auto-
morphism of P = (P,V,¥,7t), Wo~yo ¥~ is a partially defined automorphism of
P = (13, @, F -, 2 *), which is uniquely extended to a globally defined automorphism
¢(v) of P (the extension is possible because P is simply connected). Thus we have a
faithful discrete representation ¢ of I into the automorphism group Aut(f’) of P. Put
I'= (T) c Aut(ﬁ).

On the other hand, it is easy to see that there are canonical isomorphisms among
the group Iso(H™*!) of the isometric transformations of the hyperbolic space H"+!,
the group Con(S") of the conformal transformations of the imaginary boundary S™ of
H™+! equipped with the standard conformal structure, and the automorphism group
Aut(P) of P;

(4.2) Iso(H™*') 2 Con(S™) = Aut(P).

The first isomorphism is introduced in accordance with the fact that each isometric
transformation g of H™*! is naturally extended to a conformal transformation of the
imaginary boundary S™ of H"*+! at infinity (cf. §2.1), while the second isomorphism
assigns each conformal transformation k of S™ the automorphism h of P defined by
h(b—,b%) = (kb—,hbt) for (b—,b+) € P. By means of these isomorphisms, the group
I' can be considered as a discrete subgroup of each of those transformation groups
appearing in (4.2).

Now put f = ¥+ o (¥~)~! which is a diffeomorphism of the imaginary boundary
S™ onto itself. Then we can show that
(4.3) fod=4of forall 4el cCon(S").

In fact, for 4 = 1(y) € r (v € T), it holds that

(467,4b%) = 4(b~,b%) =Wono \Il_l(b_,b+)
= (¥ oyo(¥7) 167, ¥t oyo (¥H)"1bY)
for (b1,67) € P, where 4 € T' is considered as an element of Con(S™) in the first
term, and as an element of Aut(ﬁ) in the second, while 4 € T is considered as an
automorphism of P in the third term, and as a diffeomorphism of B in the last: This
implies that
A=¥"oq0(¥7) ' =¥toqo(¥t)?

as an element of Con(S"), and in consequence, we have (4.3).

Next consider I* as a discrete subgroup of Iso(H"+1): I is torsion-free since so is T,

and therefore we can form a complete riemannian manifold M = ' \ H™*1 of constant
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curvature —1. Furthermore the manifolds M and M, which are both aspherical, have
the isomorphic fundamental groups I and T. Thus M is homotopy equivalent to M,
and we have Hn.,_l(M; Z,) = Hpy1(M;Zp) = Z,, which means that M is closed.
Hence we have proved that I is a uniform lattice of the Lie group Iso(H n+1) with
n+12>3.

In this situation, Mostow’s rigidity theorem claims that the diffeomorphism f of
S™ satisfying the condition (4.3) with the uniform lattice I' should be a conformal
transformation of S™ ([17], [18]; see also [22], [20]). Thus f induces an isometric
transformation f of H**! such that fo4 = 4o f for all § € ' C Iso(H™+'). On the
other hand, it is well known that there is no such isometric transformation of H"+1!
other than the identity map. Thus we have f = id, and f = Ut o (¥~)~! = ¢d. This
shows that ¥~ = ¥+, which immediately implies the surjectivity of ¥.

In a summary we have

(4.4) Lemma. Under the preceding assumptions, there exists an isomorphism ¥ of
(P,V,7~,7%) onto (P,V,F~,F1).

4.3. Recall that the affine connection V of the bipolarized symmetric space
(P,VA?,}'A' -7 *) is the canonical connection of the bipolarized symplectic manifold
(P,0, 7,7 *) that can be constructed from the hyperbolic space H"*1, while the
bipolarized symplectic manifold (P,Q,7 ~,7*) was constructed from the universal
covering X of M. Here we show that the isomorphism ¥ of (P,V,7~,7%) onto
(13, €7, 7 -, 7 +) also preserves the symplectic forms 0 of P and {1 of P up to multipli-
cation by a constant provided that n +1 = dim M > 4. We begin it with the following

~ algebraic lemma.
(4.5) Lemma. Let g =so(n+1,1) = h+p~+p* (n > 1) be the bipolarized symmetric
Lie algebra exhibited sn Ezample 2 of §3.3. If n # 2, then the non-degenerate 2-forms
w on p = p~ + pt which satisfy the following two conditions are unique up to the

multiplication by constants:
(i) The splitting p = p~ + p* is lagrangian with respect to w; that is, w|p~ =
w|pt = 0;
(ii) w is Ad(H)-fnvariant, where H = CO(n) denotes the analytic subgroup of
G = SO¢(n + 1,1) with Lie algebra h.

In the case of n = 2, the uniqueness of this kind does not hold, and this is the

reason why we should assume that dim M # 3 in Theorem (4.1). The above lemma
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follows from quite elementary computations, and the proof is omitted.

In the rest of the present section, assume that n + 1 = dim M > 4. Further, in
constructing the bipolarized symmetric Lie algebra g = h + p~ + p* from the bipo-
larized locally symmetric space (P,V,¥~,F7%) (see §3.1), put the following condition
together with the conditions (3.1.1) and (3.1.2):

w(aé,n) +w(é,an) =0 for all £, € p;

where w denotes the restriction of the symplectic form Q2 of P to p = T,P (p € P).
Under this additional condition, the resulting Lie algebra g = h+p~+p™ is still a bipo-
larized symmetric Lie algebra, and the arguments in §3 and §4.1-4.2 work fully without
any change to yield the same conclusion, Lemma (4.4). Moreover, by this modifica-
tion, it follows that the symplectic form w on p satisfies the conditions in Lemma (4.5).
Meanwhile, the symplectic form € of the model space P is invariant under the action
of G = SOo(n + 1,1) = Iso(H"*) on P = G/H, and, in particular, the restriction &
of {1 to the tangent space at the origin of P is Ad(H)-invariant. Thus, by Lemma (4.5)
together with the fact that the symplectic form of any bipolarized symplectic manifold
is parallel with respect to its canonical connection (cf. §1.3), the pull-back U*{} of the
symplectic form 1 of P by V¥ should be a constant multiple of the symplectic form 0
of P. On the other hand, the bipolarized symplectic manifold P = (ﬁ,ﬁ, F 2l 2 *) is
constructed from the hyperbolic space H**!, Thus, a suitable homothetic change of
the metric of H"+!, which also has the effect of the change of the symplectic form 0
by multiplication by a constant, ensures that ¥ is an isomorphism between the bipo-
larized symplectic manifolds P = (P,Q,7~,7+) and P = (P,0,7~,#71). Let X be
the riemannian manifold homothetic to H»+! whose associated bipolarized symplectic

manifold P is isomorphic to P under .

4.4. Let V =Vx = {v € TX : |v| = 1} be the unit tangent bundle of the universal
covering X of M, which is fibered over P so that each fiber is an orbit of the geodesic
flow : of X. Also let V= V4 be the unit tangent bundle of the riemannian manifold
X. We are now going to lift the isomorphism ¥ : (P,Q, 7, Ft) - (P,0,7, ) to
a diffeomorphism & : V — V which commutes with the geodesic flows p; of X and
@t of X. For a while, identify P = (P,Q, ¥, F+) with P = (P,Q, 7—, #+) under the
isomorphism W.

To begin with, recall that the connected component G = Isog(X) = SOo(rn+1,1)
of the isometric transformation group Iso(f( ) of XactsonV andon P =P naturally.

These actions give rise to natural embeddings of the Lie algebra g = so(n + 1,1)
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of G into the Lie algebra X (V) of the vector fields on V, and into the Lie algebra
X (P) = X(P) of the vector fields on P = P: For each ¢ € g, denote by £ € X (V)
and £ € X(P) = X(P) the corresponding elements. On the other hand, let TV =
E— + E° + E* be the Anosov splitting associated with the geodesic flow @; of X.
We introduce a function « : g X V — R which is characterized by the following
condition: For each ¢ € g and 9 € V, a(£, )@’ (9) is the EQ-component of () €
ToV = Ey + EJ + EF, where ¢' = (3/8t)|t=0®: denotes the geodesic spray on V
which spans the 1-dimensional subbundle E° of TV. It is easy to see that for each
¢ € g the function (¢, -) on V is constant along each orbit of the geodesic flow @
of X, and therefore a is reduced to a function on g X P = g X P, which is denoted
by the same symbol . For each £ € g, let a¢ be the function on P = P defined by
- ag(p) = (€, p) for p € P.

Now let TV = E~ + E°+ E* be the Anosov splitting associated with the geodesic
flow p: of X: Note that with respect to the R-fibering 7 : V. — P, E° is the vertical
subbundle of TV that is spanned by the geodesic spray ¢’ = (8/8%)|t=0p:, while
E = E- + E? is horizontal. For each ¢ € TP = Tﬁ, denote by ¢* € E the horizontal
liftof ¢byn:V — P.

(4.6) Lemma. The mappingg — X(V), € — & = £*4(agom)p’ of the Lie algebra g of
G into the Lie algebra X (V') of the vector fields on V is a Lie algebra monomorphism.

Proof. Recall that the symplectic form 2 on P is the push-forward of the exterior
derivative d© of the canonical contact form © of V by the projection = : V — P,
Moreover, as we have seen in §2.2, ©(p') = 1 holds for the geodesic spray ¢’, and the
subbundle E = E~ + E+ of TV is characterized by ©|E = 0. Thus a standard formula
for the R-fibering V' — P yields

(4.7) [67:65] = [, ¢2]* —Q(1,02)0"  for 61,62 € X (P) = X(P).
Furthermore the equation of the same form holds also for the fibering Vo P = P,
and it implies

(4.8) day(§) — dag(n) — agem = 0(6,7)  for §neg,

since the mapping g — X (f’), & — E is a Lie algebra homomorphism. Now it follows
easily from (4.7) and (4.8) that the mapping g — X (V') defined by & — € = £* + (¢ o
7)¢' is actually a Lie algebra homomorphism. I

One should notice that it has been possible to prove the lemma because the

isomorphism ¥ of P onto P preserves the symplectic forms of P and P.
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It is also easy to see that for each ¢ € g the corresponding vector field £ on V
is complete. Thus the embedding g — X (V) of the Lie algebra g obtained in Lemma
(4.6) induces an action of the Lie group G on V, and the action satisfies the following
conditions:

(4.9.1) The action of G on V is transitive;

(4.9.2) The action commutes with the geodesic flow ©; of X; that is, gop; = 1 04g

forallge Gandt e R;

(4.9.3) The Anosov splitting TV = E~ + E® + E* is invariant under the action.

Of course the original action of G on V satisfies the corresponding conditions, and

especially by (4.9.1) we obtain a diffeomorphism ® of V onto V which possesses the
_ following properties:

(4.10.1) & is a lift of ¥; i.e., # 0 ® = ¥ o 7 for the projection 7 : V — P and

#:V > P.

(4.10.2) @ is G-equivariant; i.e.,, Pog=go® forallgc G;

(4.10.3) @ commutes with the geodesic flows of X and X; i.e., ® o p; = By 0 ;

(

4.10.4) & maps the Anosov splitting TV = E— + E° + E* of X to the Anosov
splitting TV = E— + E° + E+ of X.

4.5. By means of the isomorphism ¥ of P = (P,Q, 7, ¥1) onto P= (ﬁ,ﬁ,f‘,
2 *), the fundamental group I' of M, which acts on P by automorphisms, has a faithful
representation ¢ into the automorphism group Aut(f’) of P defined by t(y) =Tonyo
U1 € Aut(P) for 4 € T C Aut(P): Put I' = o(T'). The isomorphism ¥ : P — P is
clearly t-equivariant in the sense that ¥ o 4 = ¢(y) o ¥ for all 4y € T'. Furthermore,
it is not hard to see that the automorphism group Aut(ﬁ) = Aut(ﬁ,fl, 7=, *) of
Pis canonically isomorphic to the isometry group Iso()z' ) of X , where X denotes, as
in §§4.3-4.4, the riemannian manifold homothetic to the hyperbolic space H™*! for
which P is the associated bipolarized symplectic manifold (cf. (4.2)). Thus I' can be
simultaneously considered as a discrete subgroup of Iso(X ), and therefore acts on the
unit tangent bundle V= Vi of X in the canonical way. On the other hand, the group
T, which acts on X by the isometric deck transformations, has a canonical action on the
unit tangent bundle V = Vx of X. Our purpose here is to deform the lift ® : V — V'
of ¥ constructed in the previous paragraph to an t-equivariant diffeomorphism of V'

onto V so that it still commutes with the geodesic flows of X and X.

Let I be the involution of V defined by Jv = —v for v € V, and let I be the
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V

corresponding involution of V. It is clear that
(4.11) Top_so0l=¢p; and fo Pp_to i= Dt fort e R,
where p; and ; denote the geodesic flows of X and X respectively. First we are going
to deform the diffeomorphism & : V — V so that
(4.12) $1od=8op; and [o®=&ol.
Note that I is a lift of the involution J of P = B x B\ (diagonal) defined by J(b~,b%) =
(b%,57) for b—,b* € B with b~ # b*. Similarly I is a lift of the involution J of P =
S§™x 8™\ (diagonal) defined in the same way, where S™ denotes the imaginary boundary
of X at infinity. Furthermore, the diffeomorphism ¥ of P onto P is the “product”of a
diffeomorphism of B onto S™ by itself (see §4.2 again), and in consequence, ¥ commutes
with the involutions of P and P; i.e., J o ¥ = ¥ o J. Since ® is a lift of ¥, there is a
function f : V — R such that
(4.13) Tod(v) = Gry o @ol(v) forveV.
Now together with (4.10.3), (4.11) and (4.13) we have
Prw)—toBoI(v) =P_t0@suyoBol(v)=p_so0 Io o(v)
=fopo o(v) = To®o (pt(v)lz P fope(v) © B oI opi(v)
= Prope(v) © @ 09—t 0 I(v) = Pfop,(v) © Pt 0 B o I(v)
= ‘ﬁfotpg(v)—t odo I('U):
and therefore we obtain fop(v) = f(v) for all v € V and t € R; that is, f is constant
on each orbit of the geodesic flow p;. Secondarily we will show that f is constant on
each leaf of the stable and unstable foliations £~ and £+ of V which integrate the
subbundles E~ and E* of TV respectively. Fix v € V and put a = f(v). For the
diffeomorphisms [ o ® and @, 0 ® o I of V onto ¥7, we have
d(fo®)(€) = d(Bao®oI)(8) +df(§)¢) for €T,V
by (4.13), where ¢’ denotes the geodesic spray on V. Further, by (4.10.4), both of these
diffeomorphisms To® and Pao®ol of V onto V send the subbundles E~ and E+ of TV
to the subbundles £+ and £~ of TV respectively; that is, d(fo ®0)(£),d(Pao®oI)(¢) €
ET whenever ¢ € EF, and therefore df(¢) = 0 for ¢ € EX. This means that f
is constant along the leaves of the foliations £~ and £7, and in consequence, f is
constant on V. Set f =T on V, and replace ® by 7/, o . Then it is obvious that
this ® satisfies the condition (4.12).

Next we prove that the diffeomorphism ® of V onto V which satisfies (4.12) is
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t-equivariant. Since ® is a lift of the t-equivariant diffeomorphism ¥ of P onto 13, there
is a function f : ' X V — R such that ¢(v) o ®(v) = B¢(y,0) © ® 0 y(v) for v € T and
v € V. However, for each v € T, we can prove, by using (4.12) and (4.10.4) as before,
that the function f(«, -) on V is constant. Put f(y) = f(~, :), and consider f as a
function on I'. It is obvious that
(4.14) t(7)o® =@py)o Doy fory €T,
and our purpose here is to show that f = 0. Take v € T\ {1}. Then there is a vector
v €V and T > 0 such that
(4.15) v =prv, (-v)=p-r(-v),
since M =T\ X is a closed manifold: In fact, it suffices to take a unit vector v tangent
~ to the geodesic line in X that is invariant under the isometric action of v on X. The
action of v on P fixes the point w(v) of P, where 7 : V — P denotes the projection,
and therefore the point ¥ o 7(v) of P is fixed by the action t(y) on P. Therefore, for
4 = t(v) and for % = ®(v), there is a constant T such that
(4.16) A0 = @30,  A(=9) = _p(-9).
From (4.14)—(4.16) and (4.12), we have
P2(0) = 4(6) = 1(x) 0 () = B ) 0 B 0 (v)
=@s(n) 2 opr(v) = Sp(y) 0 P © B(v) = P(v)47(D),
and in consequence it follows that
(4.17) T=f(y)+T.
Similarly (4.12) and (4.14)—(4.16) imply that
- B_p(~0) = 4(=8) = s(x) 0 Fo B(v) = u() 0 B 0 I(v)
=Ps(m 20 (=v) = Ps(y) © @ 0 p-1(-v)
= @s(y) © P-1 ° B(—v) = Sf(y)-1(-9),
and we have
(4.18) —T=f()-T.
It is an immediate consequence of (4.17) and (4.18) that f(4) = 0 for v € T, and this
shows that ® is t-equivariant.

Now Theorem (4.1) follows immediately. In fact, consider I* as a discrete subgroup
of the isometric transformation group Iso()z' ) of X , and put M=T \ X: M is a closed
riemannian manifold of constant negative curvature (cf. §4.2), and I'\ V coincides with

the unit tangent bundle V,; of M , while Vs = I'\ V obviously. Thus the t-equivariant
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diffeomorphism ® of V onto V descends to a diffecomorphism of Vs onto Vi that
commutes with the geodesic flows of M and M. This proves Theorem (4.1).

4.6. Here is a digression on another topic on the geodesic flows of negatively
curved manifolds. First of all, recall that the geodesic flow ¢ of a riemannian manifold
M is said to be smoothly conjugate (resp. topologically conjugate) to the geodesic flow @,
of another riemannian manifold M if there is a diffeomorphism (resp. homeomorphism)
® of Vs onto Vi, such that each orbit of p; is mapped to an orbit of $; by ® with
orientations preserved. In spite of the fact that smooth conjugacy is in general a
weaker notion than congruence between geodesic flows in the sense of Theorem (4.1),

the previous arguments in §§4.3-4.5 yield

~ (4.19) Proposition. For a closed riemannian manifold M of dimension n+1 # 3 with
negative curvature, if the geodesic flow p: of M is smoothly conjugate to the geodesic
flow §; of a certain closed riemannian manifold M of constant curvature —1, then p;

s congruent to P provided that the metric of M s changed suitably homothetically.

Note that, modulo Conjecture 2 we posed in the introduction, M is to be ho-
mothetic to M under the assumption in the proposition. In contrast, M. Gromov [9]
proved that the fundamental group of a closed riemannian manifold determines its
geodesic flow up to topological conjugacy: More precisely, his result claims that, for
two closed riemannian manifolds M and M of negative curvature, their geodesic flows
are topologically (but not necessarily smoothly) conjugate to each other whenever the
fundamental group of M is isomorphic to that of M. Thus, in Proposition (4.19), the

assumption of the smoothness of the conjugacy is never removed.

Proof. First note that the fundamental groups of M and M are isomorphic to each
other. Put T’ = my (M), FP=m (M), and let » : T — T be an isomorphism. The smooth
conjugacy between Vas and Vy, is lifted to an t-equivariant smooth conjugacy from the
unit tangent bundle V' of the universal covering X of M onto the unit tangent bundle
V of the hyperbolic space H™+! which covers M isometrically. Thus, by denoting
by P = (P,Q,7~,7+) and P = (P,}, 7=, #+) the bipolarized symplectic manifolds
associated with X and H™*! respectively, we have an t-equivariant diffeomorphism
¥ of P onto P which maps the foliations ¥~ and F+ of P to the foliations #~ and
Frof P respectively. Now let V and ¥ be the canonical connections of P and 13,
and let h = (¥1)*V — V be the second fundamental form of the diffeomorphism
U~!: P — P: his a [-invariant (1,2)-tensor field on P, and therefore an argument

employed in the proof of Proposition (2.4) implies that & should vanish on P. Thus ¥
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is an t-equivariant isomorphism of (P, V,7~, 1) onto (13, v, 7,7 *). Then it follows
from the arguments in §§4.3-4.5 that the geodesic flow of M is congruent to that of M
provided that the metric of M is changed homothetically so that P = (P,Q,7~,F%)
and P = (13, ﬁ, 2 - 7 +) are isomorphic to each other under the diffeomorphism ¥. |
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