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Introduction

In the study of isometric emtedding problem of a Riemannian n-manifold
into Euclidean space, the following has been studied as an old and debated prob-

lem ([Y]):

Problem. Given a Riemannian n-manifold (M",ds?) , is there exist a local

isometric embedding (M”,dsz) into Euclidean space RN, where N=n(n+1)/12 ?

In particular, Jacobowicz [J] showed that there always exists a local isometric
embedding (M",ds?) into R¥, if (M",ds?) is real analytic. In contrast to the
above, it would be an interesting problem to consider the above problem in the

smooth category. Namely, the problem which will be discussed here is to obtain
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an existence of the smooth local isometric embedding for n=2,3. As a typical

result, the following theorem is well-known (cf. Jacobowicz [J]) :

Theorem A. Let (M?,dsz) be a C* Riemannian 2-manifold and p ,€ M a fixed
point such that the Gaussian curvature does not vanish at pg. Then, there exists a

local C® isometric embedding of a neighborhood U,of p, into R3,

In this paper, we shall generalize the above theorem for n=3 as follows :
Theorem B Let (M3,ds2) be a C® Riemannian 3-manifold and py€M a fixed
point such that the curvature tensor R(p) does not vanish. Then, there exists a

local C® isometric embedding of a neighborhood U,of p, into RS,

We remark ‘that Bryant-Griffiths-Yang [BGY] proved the special case of

Theorem B under the assumption :

(*) Sig R(x,) # (0,0), (0,1)

Here the signature SigR(xg) of R(x,) is defined by considering R(xg) as an sym-
metric linear operator acting on the space of 2-froms (cf. § 2).

They proved the Nash-Moser type theorem for a non-linear PDE whose
linearized PDE is either symmetric hyperbolic or strongly hyperbolic, and as an
application, they solved the local isometric embedding problem under the
assumption (*). On the other hand, without the assumption (*) the linearized
equation of the isometric embedding equation is merely real principal type (cf.
[BGY], and § 1). Therefore, the key to the proof of Theorem 1 is to establish
the local solvability of the non-linear PDE whose linearized operator is a system
of real principal type.

In our scheme, we can also recover the result of Lin [L] :

Theorem C. Let (M2,d:2) be an Riemannian 2-manifold and fix a point p ,€M.
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Assume that the Gaussian curvature K of M2 satisfies

K(p,) = 0 and dK(p,) # 0 .

Then, there exists a local C* isometric embedding of a neighborhood U,of p, into
R3.
As an application of the following local solvability of the real principal non-

linear PDE, we shall give a unified proof of Theorems A-C.

Theorem D. Ler ®(u) be a RN valued non-linear partial differential operator
of order m applied to a C* map u : R"-RY with appropriate smoothness and
boundedness conditions. Assume that ®(u) is Frechet differentiable in any Sobolev

space of order greater than m + -g- and denotes its derivative by ®'(u). Let x,€R"

and uDGC”(Uo,RN). Assume that ®'(u,) is an N XN — system of real principal type
at x, (see § 1 for the precise definition). Then, there exists a neighborhood UiCU of
Xy, $o€Z,, and >0 such that the following property holds: For any g€C™(Uy)

satisfying

(0.1) g — (D(uo)IIH,o(U‘) < 7,

there exists u€ C*(R",RY) such that

(0.2) ®(u)=g in Ujg.

As in § 3, our proof of Theorem D is based on the Nash-Moser type impli-
cit function theorem. Since the linearized equation
(0.3) D'(u)y = h
in an open neighborhood U, of x, does not have the uniqueness property for the
solutions, we can not obtain the higher regularity estimate of the solutions in a
certain space of functions by differentiating (0.3). To avoid this difficulty, we
construct an exact right inverse Q(u) of ®’'(u) with the so called tame estimate,

and modifying the Nash-Moser’s iteration scheme, we get a smooth solution u of
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Although the construction of Q(ux) can be done by following the arguments
of [H] and [DH], it is troublesome to prove Q(u) is a right inverse of ®'(x) in a
certain common neighborhood Uj; of x for any 4 and get the tame estimate for
Q(u). For these proofs, we have made a device on the arguments of [H] and
[DH] so that the dependency of Q(u) on ®’(u) can be easily seen. If we push
our argument on the local solvability of non-linear P.D.E. a little further, we can
get various kind of local solvability theorems on non-linear P.D.Es whose linear-
ized equations are locally solvable with the aid of Fourier integral operators, and
these theorems are expected to have applications to some geometrical problems.

We shall write them in the forthcomming paper.

$§ 1. Linearized PDE for the isometric embedding equation

Let U(ul,u2, . . . ,u") be a coordinate neighborhood around the given point
xg€M which we take as the origin. Then, to obtain an isometric embedding of
(M ,g) into RV is to show the existence of the solution of the following non-linear

PDE in an open neighborhood Uy C U of xq:

axA  ax4
1.1 N o=
a1 24=1 aul  sul

where (g;;(u)) is the component of the Riemannian metric g in U.

= gij(ul’---run) i,j= 1,...,n ,

We shall consider the linearized PDE corresponding to {1.1), that is, let

xA(u) be a local C® embedding of U into RY and consider the following PDE for

the unknown functions (y4(u)):

axA . ay“ + ay" X axA
aul oul aul  gul

(12) i, = k() i = le.,n

where (k;;(u)) is a smooth symmetric contravariant 2-tensor on U.

Choosing a unit normal frame field {N,(u)}\ = p+1,.. 5 00 U, we set

axA .
yAu) = Ef'=1yi‘;7,-" + SV N
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Denote the covariant derivatives and the second fundamental tensor for the
isometric embedding (1.1) by V; and H;;(u), respectively. Here, V; is defined

for a contravariant 1-tensor §;(u) on U as follows:

(1.3)  ViEi(u) = 3,8;(u) - 2;=1{5‘}(")§k(")

where {:kj} is the Christoffel tensor defined by

1
{5'} = E"{aulgjk + 8,8x — 9.8}
Also, Hy;(u) is defined by the following Gauss- Codazzi equations associated

with (1.1):

gxA
(1.4) v atu" = S\H)NE

axA

Vi) = - SEPE
u

where the lifting and lowering the index are done by the given Riemannian

metric.

Rewriting (1.3) by using (1.4), we easily get

Lemma 1.1
(1.5) Viyj + VJ}’! = 22£’=n+1y)\H1«)}(u) + kU(u) i,j == 1,...," N

Definition 1.2. (i) The second fundamental tensor (H,-)‘;-(xa)))\zl’__”n is called
non-degenerate at x, if {(Hi)}')(xo)} are linearly independent in the vector
space of all contravariant symmetric 2-tensors at x,.

(ii) An isometric embedding is called non-degenerate if the corresponding second
fundamental form is non-degenerate at each point of U.
Although the second fundamental teasor #;,(u) depends on choosing the

normal frame N4(u), the above definition does not depends on their choice.
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Now, we review the terminology of PDE. Let T*M denote the cotangent
bundle of M. For a positive integer N, let P be an NXN system of classical
pseudo-differential operator on M with principal symbol p (x,£).

Definition 1.3. (i) P is called a system of real principal type at
(xo,go)ET*M—{O} if there exists a conic neighborhood I' of (xg,£(), an NX N clas-
sical symbol p (x,£), and a real valued classical scalar symbol g(x,£) such that
(1.6)  p(=E)p(x,§) = q(x,&)ldy in T ,
and the principal part g(x,t) of g{x,f) satisfies the condition that d¢g and 6=

Ei=1§idxi are linearly independent on I'N{(x,¢t) ; q(x,£)=0},

where Idy is the NX N identity matrix.

(ii) P is called a system of real principal type at xy€ M (resp. over an open set U
of M) if P is a system of principal type at each point of w"l(po)—{O} (resp.

w~}(U-{0}), where w:T"M M is the projection.

Remark. (i) The condition for ¢ in (1.6) obviously holds if gradgg+#0 on
I'N{(x;t);q(x,£)=0}. We refer this by saying P is a system of real principal type
at (xo,go)ET'M—-{O} in the strong sense. By modifying Definition 1.3, (ii) in an
obvious manner, we obtain the corresponding definitions at a point xg¢ M and on
an open set U of M.

(ii) As we see in Lemma 1.7, it should be remarked that only in the case of
Theorem C, the linearized PDE of the isometric embedding equation is not real

principal type in the strong sence.

Corresponding to Definition 1.2, we define as follows:

Definition 1.4. The isometric embedding (1.1) is called a real principal type
at x,€M ( resp. on U) if the linearized equation (1.3) is real principal type at x,

(resp. on U).
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Before constructing a non-degenerate, principal type embedding in § 2, we
study a second fundamental tensor at a fixed point x,. First, we recall the Gauss-
equation for the isometric embedding:

(L7 Ryy(e) = SHHJW)H)(w) — H)u) H)(w)
which is a restriction in seeking an isometric embedding.

Now, we have the following:

Proposition 1.5. Ler (M",ds?) be a Riemannian n-manifold (n=<3), which
satisfies the assumptions in Theorems A-C. Then, there exists a (N—n)—tuple of
nXn symmetric matrix (H,-’_})(O))F,,_,_IM_WN such that
(i) for (Hij)\)(O))‘ = n+1,..N» (1.5) is real principal type at the origin 0€ER™,

(ii) (Hi)})(o)x=n+l,...,N satisfies (1.7) at the origin 0.
Furthermore,

(iii) (H,-Z‘-)(O))\ = n+1,..N» is non-degenarate at the origin 0€ R”™ under the assumptions

in Theorems A-B

To prove Proposition 1.5 we need several lemmas. For simplicity, we put

Hh() Hy() 7 g, 2000 T oy
)

which is the determinant of the symbol of the operator (1.5). Then, we construct

( )
I El 0 .. 0 52 :
I 0 £2 .. . 51 I
(18) a8 = det | e b
I 0 . . . gn . .. gn— I
[ o
I
\

a (n+1)xX(n+1) symmetric matrix (H,{,‘-)(O) which satisfies Proposition 1.5 for

each dimension n=2,3. First, we get

Lemma 1.6 Under the assumption of Theorem A, Proposition 1.4 is valid.
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Proof. Denote (H;;)(0) simply by (H ;). Then, (1.8) can be rewritten as
( ]
I &1 0 f2
(1.9)  q(x,€) = det | 0 & £ |
I Hii Hyy 2H )
22
\ )

which clearly satisfies dg‘l(x,ﬁ) # 0.
Lemma 1.7. Under the assumptions of Theorem B, Proposition 1.4 is valid.
Proof. Since dK(x)#0 on a neighborhood U, we may assume that K(x) = x1
in U, by a change of coordinate. Now, put
(1.10)  Hy(x) = x1 ,Hpp(x) = 0 Hp(x) = 1.
Then, we have K(x) = Hyj(x)Hy(x) — Hyp(x) = x1. By considering q(x,£) in

(1.9), we have

g(x,8) = - (.1 + 24D ,

and

(1.11) dq = (aelq,aezq,axlq,dx,q)

= (28, —2x1,,—-£%, 0) ,

which gives Lemma 1.7.
Next, we shall consider the case n=3 (cf. [BGY]) :
Lemma 1.8. Under the assumptions of Theorem C, Proposition 1.5 is valid.
Proof. Consider the following symmetric 3X 3 matrix :

(1.12) G = (Ggp) a,b = 1,2,3.
where we have set
G11 = Ra33, G2p = R3131, G33 = Ryna s
Gip= Gy = Ry331,Ga3 = G313 = Ra31p» G13 = G31 = Ragpp -
Then, G can been seen as a linear mapping from the space of curvature like ten-
sors into the space of symmetric 3X 3 matrices. Notice that GL(3,R) acts on both

spaces naturally. Therefore, given the signature of the curvature tensor , we get
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Lemma 1.8 if we can obtain the symmetric matrix (H;;) such that the signature

of the both side of (1.7) coincide.

To see this we seek the second fundamental form H in the following form

(1.13)  H = (H})(0)

I

where wy, wy, w3€ R3, A€R. It can be easily seen that, if {wgla=1,2,3 is linearly
independent, then (H;;(0)) is nondegenerate at 0. Denote by r(H) a 3X3 matrix
whose component G;; is defined by (1.6) for i,j=1,2,3. By a direct computation,

we get

(1.14)  r(H)

( )
| by—\2%a, —Xaz+A2by —hay+A%, |
= : —Xd3+ X2b3 bz"‘ }\242 —)\a1+ )\zbl :
{ -)\a2+ )\zbz —Xdl"" Xzbl bl_ )\2(13 JI

where a,-=<w,',w,->, b1=<W2,W3>, b2=<W3,W1>, and b3=<W1,W2>.
Now, for a given A€R, we set

(1.15)  L\(H)

|91 B3 b2
= Ly|b3ay b |
lb, b [
2by a3
{ )
{ )
| by—22ay —Naz+ A2y —hay+r?by |
= : —Na3+ A2 by—22a, —zag+A2by :
|~)\a2+xzb2 —hﬂl"‘)\zbl bl—x2a3 I
\ )

Note that L, is invertible for A= —1/2,0,1, because L;"1= (4- x)'lL)\.

To complete the proof of Lemma 1.8, we show the following :
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Lemma 1.9. Let G be a 3X3 symmetric matrix such that the signature of G is

different from (0,0). Then, there exist H of the form (1.13) such that L\(H) = G.
Proof. We seek H for all cases classified by the signature of G.
First, put

(155)
I |

H = Ib 15 I
lb b1 J
Then, the ecigenvalue of H are 1-b and 1+2b whose multiplicities are 1 and 2.

Varying A €(~-1/2,0)U(0,1), we obtain that for the cases that the signature of G

= (0,3),(3,0) (2,1),(1,2) and (2,0), there exist H—such that L)\(H_)=G.

We put

_{100‘I _{—111‘I _{1_11‘|

H=[0-10, , H= 111, ,H=,111,
L0 00 L1111y L111,

for sig(G)=(1,1), (0,1), (1,0) respectively. Then it is easily obtained that

sig(L,\(H—))=sig(G), which implies Lemma 1.8.

§ 2 . Construction of a real principal embedding
In this section we shall construct a real principal type embedding whose
induced metric is sufficiently closed to the given Riemannian metric ds2,

Namely, we prove the following:

Proposition 2.1. Let (M",ds?) be a Riemannian manifold and n=2,3. Under
the assumptions of Theorem A-C, given any m>0 and any positive integer s, there
exists an open neighborhood Uy of p,, (N-n)-tuple of local C* unit vector fields
(N\(#))r=n+1,..n on Ug, and non-degenerate C* embedding (xA(u))A=1,m,N of Uy
into RN with N=n(n+1)/2 such that

(i) (N\(u))r=n+1,.n is a unit normal frame field on Uy of the embedding
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(x*)a=1,... N
(ii) (H;»)(0) are the second fundamental form of (xA) at p o with respect to (N,(u)),

(iii) the embedding xA(u) is a real principal type on U,,.

axA _axA
aul  oul

(V) gy ) - SHoy Wary < M-

To prove Proposition 2.1, we expand the Riemannian metric g into the Tay-
lor series. Namely , let g(u)=(g;;(u)) be the Riemannian metric in the coordinate

neighborhood U(uy,...,u,). We put the Taylor expansion of g(u) as follows:

oy Oy

i oy o 1
(2.1) gl(jk)(u) = 8y + o7 SAijaa L R R TS Ay, e U

Now, we seek the mapping

i:UQl, ... ,u") RN

by the following form:

(2.2) il ... ,u") = (x4(x))

1 1
= S + -z—l—zlgbu“u" + o+ ?I—zzgh_”

al et y

satisfying

(H-1) i(0)=0 |,
(H-1I) di(0) Id. ( the identity)

(H - 1I) e,(0) = (0,...,(1),0,...0) (A=n+1,...,N)

I

(H-1V) Given non-degenerate (H‘?}‘-) which satisfies (1.7), we have H,?}(O) = H,-’}.

Now, we seeck (2.2) by the following relation:

ax ax

(2.3) 2,4—@)“—&)- = g;(u) mod O(xY)
aut  aul

Therefore, we have

(2.4) 1A = 54 (a=1,...,n)

By using {£.}(0)=0, we have

(2.5) I = HE (p=n+1,.,N), Ib = 0(b=1,..,n) .
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Substituting (2.1),(2.2) into (2.3) and equating the corresponding coefficients, we
can solve (2.3) formally. Note that the equations thus obtained for the unknown
IA's are underdetermined. So, we only have to restrict the symmetric part of
each I4's and choose the anti-symmetric part of those arbitrarily. Therefore, we

get Proposition 2.1.

§ 3. Local solvability of real principal type partial differential system.

We first give a general theorem on the local solvability of a non-linear par-

tial differential operator.

Let U,CR” be an open neighborhood of x,€R" and u, : U,~RY be a c*
map ( Hereafter we also denote by 4, a C* map from R”-R¥ obtained by cutting
off the support of u,.) Let ®(u) = ®(x,D™u) be a RY -valued nonlinear partial

differential operator of order m applied to u €C*(R",RY), where

o a

D™u = (D% ; |la|sm) ,D* = Dy*D ",
D; = —V—l—L sa=(ay ... ,0,) .
ax,-

Theorem 3.1. Under the above situations, we assume that ®(x,w)é€

B®(R"x{|w|swq}) for any wo>0, which assures the Frechet differentiability of ® (u)
with respect to u€H*(R") (s>m+—'21-), and the following condition is valid for
®'(u). Namely, there exist an open neighborhood UCU, of x,€ R" with a smooth
boundary, a>m + —’2'—, 8(0<8<1) and d=0 such that, for any u(llu—ugli,<8), s€R
and h€ H*(R™), the equation

(3.1) ®'(u)v = h in Uy

admits a solution vE€HS~9(R"™) with the so called tame estimate

(3.2)  livlig_g = C,(lIhl, + Nuillthliy)
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where C; is independent of u and h. Then, there exist sg€Z and >0 such that,

for any g€C®(Uy),

Hg—d)(uo)ll_?o=IIg-<I)(u0)II n o,

Hwy) =

the equation

(3.3) D(u) =g in Uy
admits a solution u€ C™(R",RY). Here B*(R"X {|w|=w}) denotes the set of all RN

valued C® functions with bounded derivatives.

Proof. Put

¥ = ®(utug) — ®(ug) , f = g — P(uy)

and try to scek a solution u € C°(R”,R¥) of the equation

(3.4) Y(u) =f in Uy

Then, u+ ug will clearly be a solution of the equation (3.3).

Rewriting the conditions (3.1) and (3.2) in terms of ®’'(u), we obtain that,

for any u (lutl,=<38), s=d and h€H*(R"),

(3.5) ¥'(u)v = h inU; ,

admits a solution v€ H*~9(R") with the estimate

(3.6)  lvlly_yg = C,(Hhily + lullhily)

where C; is independent of u and h. For the later reference, we denote this v by
¥ (u)" 1h.

In order to solve (3.4), consider a series of functions {u,} defined by

{

|u1 =0 »
G-7 iun+1 = u, + 59.Pp (n=1) ,
\
where sy (8=1) are the usual smoothing operators for the Banach scale H*(R")

+xg

with 7= 4

3 and large enough 8>1, ng5, and pn=\If’(un)—1eRgn

(s€R), 8,=07
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(3.8) g8n=f — ¥(u,)

Here

€ : H(Uy) - H'(R™) , R : H'(R") - H*(Uy)
are the extension operator and the restriction operator, respectively.

First of all, we prove the following inequalities (i)}, (it);, (iti)j—1 (j=1) by
induction on j. Namely, there exists an appropriately large integer sg=m and

small n (0<mn<1) such that, for any f (Ilfli_?n<1|) and nonnegative integer j,

(1); Myl = 8, (i1); lg;nd = Mejrifl

(iii);  lpjlly = Mej‘“llfll_?o
are valid for some positive numbers M ,p,a independent of f and j.
For j=1, the validity of these inequalities immediately follow by setting
(3.9) M = of
Assuming their validity for j=<n», we shall next prove that these inequalities also

hold for j=n+1.
Lemma 3.2. Suppose (3.10) az[-g—]+m+1 and (i), is valid. Then,

(3.11) g% = c diign? + 1Y, } for any s=0 .

Here, [-’21-] denote the largest integer which is not greater than n/2.

Proof. This follows from applying the Sobolev’s embedding theorem and the

following Moser’s lemma to
&n — 81 % -W(un) ="W(I:Dmun)
Lemma 3.3 (Morser’s Lemma). Let Q be a domain in R" whose boundary is a

compact C® hypersurface and F(x,v)¢€ Bw(ﬂx{vER’;ivisvo}) with the property

F(x,0)=0. Then, for any s=0 and vE€H*(Q), IivliL.,m)s vy, we have
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(3.12) HF(C,v()N = C(s,lFIB,,,)nvnH,(m ,

where |F lB'” denotes the maximum of all the supnorm in QX {lvi=vg} of all the
derivatives of F(x,v) up to order s+ 1.

Lemma 3.4. Suppose (3.13) a=m+d and (i)j is valid for 1=j=<n. Then, for
any integer s'2m+d, there exists > 1 such that
m+d+1
(3.14)  Nuyqil, = 6,577 1gn?
for any s (m+d=<s=<s").
Proof. For the rest of the proof of Theorem 3.1, we use a common symbol
K to denote several constants which depend only on s, 8 and m. By (3.6), (3.10)

and taking account of lleRg;ll, = Kllg,ll? for any s=0, we lave

(3.15)  Mugyqlly S Huglly + NSg e,
= Hully + KoPipt g
< ilully, + KOP+9(leRg; Iy, + leg;llgluglig_ )
< lluglt, + KoP+angnd_ + ngndnuh,_ )

=< KoMHaiu,il, + 1l

for any i(1si=<n). Then, using (3.15) recursively and taking 6 large enough

(3.16)  luyyqll,
= KM([[=18)™ 9nrnd{1 + (ko) ~m"9 + (Ko ~m d(Koy) ™ +
o+ IS T

m-+d
= K"6,53% 1fu?

mtd 4
=< 0,537 uri?
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holds for any s (m+d=<s=s").

Now, we assume (i);, (ii); (1=<j=n) are valid and try to prove (i),.1,
(it)p+1, (iii),. Note that, from this assumption which we have just made, Lemma

3.2 and Lemma 3.4 hold.

We first prove (ii), 1. From (3.8),
(3.17) Ent1 = 8n = —(¥(upeq) — ¥ (u,)).
Combine (3.17) with

(3.18)  W(upyq) — V(uy) — ¥ (up)(ups1—4,)

1
= J;] OF " (Bu,+ (1-0)uytq)(uyt1—u,)d0

Then, we have

(3-19) 8441 = 8n — ¥ (up)(upey — up) + O

where
(3.20) o,
1
= —J;) 0¥ " (Bu, + (1-0)ups1)(8psy — BpsUpsy — U,) 0O
Since

(3.21) Y'(u,)p, = 84 in Uy ,

(3.7) and (3.19) imply

(3.22)  gn41= ¥'()(L = Sg)on + Q, in Uy ,
From Lemma 3.2, Lemma 3.4 and (3.6), we have

mtd 4 opm—s,+2d+1

(3.23) W' (u,)(1 — Sg ot = K40," T ngd

(3.24)  N1Sgp,ily = ME02 Fligyll] < MK405 Hn
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Here and below in this proof of Theorem 3.1, X; and K, denote general con-
stants depending only on sg and a, respectively. If we take (3.25) p>a, a suffi-

ciently large 0 and a sufficiently small n such that

(3.26) MK{82 " Fn < 5 ,

the estimate
(3.27) 18w, + (1 — 8)u,,qll < 3 (0s0s1)
follows from (3.7),(3.24), (i),. Then,

(3.28) QN3 = K2 g

by taking account of (3.24),(3.27) and applying the well known fact :

For any integer sZ[%]+ 1, there exists C,>0 such that

IIv'wIIH,(n) = C,(IIVHL.(Q)IIWHH,(Q) + IIWHL..(Q)HVIIH,(Q))

for any v,w €H*(Q1), where Q is the one in the previous Moser’s lemma. There-

fore, from (3.22),(3.23), (3.28), we have

(3.29)  ligueql1d = K10Bligq1?

(3.30) B = max(

m*f +2m - sg+ 2d + 1,2(a—p))

-
These immediately yield (if),,q if we take 8 large enough and let 5o, p satisfy
(3.31) sg= S5(m+d) + 2(a—p) + 1,

(3.32) p > 3a

so that B < —p71 .

Secondly, we prove (iii),. By Lemma 3.2 , Lemma 3.4, (3.6) and (i),

(3.33)  lp,llg = K187 *ligyt)

e N
(3.34)  Npylly_g-m = K18, 0 ligghid)
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Suppose

(3.35) a<sg—m-—d

and interpolate (3.33).(3.34), then we have

(3.36)  lp,lly, = K302
with
—p.(so—m—d—a)+a(m—+1d+l)
(3.37) vy = =
sg—m—d

Here and below in the proof of Theorem 3.1, K3 denotes a general constant

depending only on a,5q. Now, suppose p satisfies

(Ba—2a)(m+d)+2aspt+a

sp-m—d—a

(3.38)
which is equivalent to y<—2a, (iii), is valid for sufficiently large 6.
Thirdly, we prove ({),41. By (3.7) and (iii); (j=n), we have
(3.39) ||un+1”a = 2;’=1I|uj+1 - ujllu
= K22}'=1||p1||a
= KMIlg 10371077 < KoMn

for sufficiently large 8. Hence, (i),4+ is true provided that

(3.40) K,Mn = b

In the above argument, the conditions which we have required are (3.10),
(3.13), (3.25), (3.31), (3.35), (3.38) and (3.40). It is easy to check the existence
of a, 59, @, p, m Which satisfy these conditions. Thus we have proved (i), (ii)j,
(11); (j=1).

Next, we show the existence of a solution u of (3.4). By(3.39),

3.41 Wuspq — ully, = KoMO7%g 1Y
j+1 jl'a 2 i s,y
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Thus, {x;} is a Cauchy sequence in H*(R"), because 6; monotonically increases to

infinity as j-. Consequently, there exists u € H*(R") such that

Hm u; = u in H*(R,).

]—.w
On the other hand, (ii); implies g;~ 0(j+») in H"(Ul)‘ Hence, reminding (3.10)
and letting n tend to infinity in (3.8), we can see u is a solution of (3.4).

Finally, we prove u€C®(R",RV). It is enough to prove that {u;} converges

in H*'(R") for any o’. by the same arguments which let to (3.15) and (3.34),

we have
(3.42)  lluyyqly, S KO0 i, + 1gn?)
(3.43)  lplly_py_g = K(lgql9_,, + Hu,lly) forany s=m+d .

Since 8+9=1, (3.42) implies

(3.44) 1+ lHuyyqlly, < K(1 + g™ +a(1 + tuyiiy)

Using (3.44) recursively and reminding u;=0,

(3.45) 1+ Nuppqhly = JI=1(K(1 + ngndep+d

From the definition of 8;, we can easily prove

(3.46) Hf=1912('n+d) = 9S(m+d)

Therefore, from (3.45) and (3.46), we have

(3.47) 1+ luyyqily = 0SOFI[IP( K + ||g1||9)e,-(m+tf))
Since 8;7 (910 (I-w),

(3.48)  J[F-1( K(1 + ligyn2)e; ™+ ) < k (az1)

Here, note that we are fixing g, and recall the convention about the general con-

stant K. Thus,

(3.49),41 1+ Huyyqlly < K0S+
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Combining (3.43) and (3.49),, we obtain

(3.50)  lpyliy_py_g = K8Sm+d)

Now, suppose s=zm+d, a'<s—m~—d, the interpolation of (3.33) and (3.50)

yields
(3.51)  Hp,llgr = K400 ,
(3.52) o = ~—p(s—m—d—a’')+6a’'(m+d)

s—-m-—d

where K, is a constant depending only on sg, s, 8 and . Clearly, by taking s

large enough in (3.51), (3.52), we have

(3.53)  llp,lly = K40,% for some b>0

By the same argument used before, we can prove that {"j} is also a Cauchy
sequence in H""(R,,). Since o' can be taken arbitrarily large, we can conclude
u€C®(R",RV) with the aid of Sobolev’s embedding theorem. This completes the
proof of Theorem 3.1.

Theorem 3.5. Let x,, U,, ®(u) be the same as those in Theorem 3.1 with all
the assumptions in Theorem 3.1 except those related to (3.1),(3.2). Suppose the
Frechet derivative ®'(ug) of ®(u) at ug is a system of real principal type at x,.

- Then, there exist an open neighborhood Uy C Ug of x, with smooth boundary,

5,€Z, and m>0 such that, for any g€ C®{Uy), tig — @ (u, )l <, the equation

HU)
(3.3) admits a solution u€C*(R",RV),
Proof of Theorem 3.5. From Theorem 3.1, it is enough to prove the

existence of Uy, a, 8, d which satisfy (3.1),(3.2),(3.3). To begin with we set

(3.54) L(e) = ®'(u) ,

(3.55) I(x,t;u) = the principal symbol of det L{x,E;u).

and

(3.56) M (x,Du) =L(x,D;u)°L{x,D;u)
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= I(x,D;u) + R(x,Dwu) ,R(x,D ju)esmN-1
where S™¥~1 denotes the usual Hormander class Si",’(\,’_l. Moreover, we have the

following lemma for the local solvability of the operator (3.56).
Lemma 3.6. Suppose there are an open neighborhood Uy C U, of xq,
m+§-<41, dy€Z,, d'= max(dy,dy))<a'€Z,, 8;>0 such that for any u

(Nu—u,tly=81), there exist an operator Q(u) and $;€CF(Ug) (1=j=3) with the

properties :

(3.59) d’l =1inUy ,

(3.60) $1C d3C ¢3,

(3.61) IlQ(u)hlI‘,_dl = C,(llhilg + llull,llhlldl) (diy=s€Z, ; h€H*’(R,),
(3.62) K@)l = —;-

(3.63) N - K@)~ i, s C (AN, + Null kil )(s€Zy 5 REH(RM))
where

(3.64) K(u) = éo(I = M(u)Q(u))d3,

11K (u)!l denotes the op erator norm of K(u):Lz(R")-Lz(R") and ¢1 C b, means that

$,=1 on supp ¢q. Then,
(3.65) M) ()1 - K@) M- 1} =0,
(3.66) 1@ )(1 — K(u)) 1dhll,_g = Cy(IAaN; + |lu||_,l!h||.dr)

(d'ss€Z, ; heH*(R™)),
and these immediately imply the followings. Namely, for any u (Hu—uylly=58,), we

have

(3.67)  &4L(w){ “CL()Q ()1 - K(u))"1}-1]1 =0
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and

(3.68) 1 L(u)Qu)(1 — K@) 1dohli,_g = c,(I1hIl; + Mullgllklly)
(d=se€Z, ; heH'(R™),

where

(3.69) a=a'+ [—'2'-] +1,

(3.70) d=4d' + max{mN—l,m+[§-] + 1}
The proof of Lemma 3.6 can be done by direct computations. So, we omit
the proof.

Now to complete the proof of Theorem 3.5, we only have to take v

appropriately large and set

(3.71) Q) = 3]-02;()4; ,

where v, A;, Q;(u) (0=jsJ) are those given in Theorem A.5 and Theorem A.6

and Q (u) corresponds to the one in Lemma 3.6.

§ 4. Unified proof of Theorems A-C.

- Finally, we shall make a brief comment on the unified proof of Theorems

A-C stated in the introduction.

Recall that we have already get in § 2 a real principal type embedding which
is approximately near to a given Riemannian metric g. Thus, Theorem 3.5
immediately implies Theorems A-C.

Appendix.

In this appendix, we shall construct a local right inverse of the real principal

type linear PDE of the form

M Pu = f
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by following the work of Hormander [H] and Duistermaat- Hormander [DH].
However, to use it to our iteration scheme, we have to estimate the dependence

of the local right inverse on P.

More precisely, in Appendix A, we shall shorten the proof of [H],[DH] by
using a geometrical idea based on the proof of Darboux’s lemma due to Moser
(cf [M],[W] and [AB]), because those proof are too long and complicated for the
purpose of analyzing the dependency of the local right inverse on P.

o
Let T*R” be the cotangent bundle of R” minus zero section and 6 the canon-
o . :
ical 1-form on T*R"™ which can be expressed by 8 = Y[ _;£'dx’, by using the
o o
coordinate of (x1, . . . JxmEL L ,E") on T*R", and TCT*R" be an open conic

set. Given p(x,£)€C®(T"'), we say that p(x,£) is a positively homogeneous symbol

of degree one if it satisfies
(2) p(x,\t) = Ap(x,t) for any A>0
o
and denote by S1(T*R") the set of positively homogeneous symbols of degree
one.
o
Take a point zg€ T*R" and fix it. Recall that p (x,£) €S is real principal type
o

at zg€ T*R™ if it satisfies
(*) dp and 6 are linearly independent at zq if p (z9)=0.

o
The above condition (*) is open in the class SYT*R™) in the topology

defined by the Frechet norms !ip Il ; for positive integers k>0,

(3)  lplly = sup et lello 2o Bp (x,8)]

(B TR al+ [Blsk
First, we prove the following :

o
Theorem A.l. Let p(x,g)é.‘&'1 be real principal type at zg€T*R". Given any
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positive integer m and any positive €, there exist r>0, yy>0 and k€Z_ such that
the following properties hold : For any p_ESI(;'*R"), satisfying
4) llp — plip =< vq ,
there exists a conic neighborhood I'(r) = {(x,£); |x—xg|+ |E—&pl=r} of zo =

(xgs£¢) which satisfies the following: There exist 2n-tuple smooth functions

{x10), . - - Xa(P), El(;),...,E,,(p_)} on I'(r) such that

() {Xm(p_),...,dX,,(I;-).B 1(1:),...,5,,(;)} are linear independent on I'(r)

Gi) X)), X;(0)} = {B;(p) , Bi(p)} = 0 , {X;(P), Ei(P)} = By

for all i,j=1,...,n.

(iii) B1(p)(x,8) = p(x,8) onT(r)

(iv) X;(p)(x,&) and E(p)(x,t) are positively homogeneous of degree 0 and 1

respectively.

(v) X(p) and B (p) satisfying the following :
( 1
PADNES A

aspl  _ t
) |u|+|[3lssunll,()sisn la‘aglﬁ,-(p) - E,’(P)|| <e
(£.6)€r(r)

\ )

To show Theorem A.l, we prepare some basic lemmas stated below. Let

[
p(x,£)€C™(T*R™) be a symbol of positively homogeneous degree one. Then, in

terms of local coordinate (x,t), Hamiltonian vector field H, is given by

6 H, = S op 8 _ _ n _a_L_Q_._
() P Zi 1 ae‘ axl EI 1 6x’ ot

o
on T*R". Thus, H, is real principal type at zg if H, is not parallel to the radial

9

vector field B = I &——
ZI 1 ae,

Let S*R” be the unit sphere bundle defined by the equivalent relation

Q)] (x,8)n (x',8)ex = x' § = A’ for some A>0
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o
and denote by w the projection w:T*R” ~ S'R”,

o
Fix a point zg€T*R", zy=(xg,£() and put w(zg) = 73. Now, take a conic
neighborhood I' of zy and an open neighborhood U of 7Z; such that n(I') = U. In
each r and U, introduce coordinates (xl,...,x",gl, o LED and

oL ... .y"m% ... .,n") around zg and £, respectively, such that 2z

o
=(0,...,1,...,0), £y =(0,..... 0), ' =UxR,, and the projection «:T*R" ~ S*R"
can be expressed by

(8) yi= x (i=1,...,n) , % = t%¢l (a=2,..,n)

Put §1=t, and consider the contact 1-form » on S*R", defined by

(9) o =dyl+ 2 _,m%dy°®

in terms of the local coordinate (y,m). Then, we have 6 = fw and w satisfies
(10) (do)'Aw # 0

Now, by the homogeneity of p, H, can be projected down by = and define
a contact vector field u on S"R”. Here, the vector field z on S*R™ is called the
contact vector field which satisfies
(11) Lo = d(oiu) + doau = fo
for some smooth function f, where L, is the Lie derivative with respect to u. We
also define a smooth vector field £, on S*R" by
(12) ("ng =1 ,d(l’_lew = 0.
which is called the characteristic vector field for the contact structure . More-
over, we define the subbundle E, by w=0. Let ﬁw be the annihilator of £, in
the cotangent bundle of S*R™. Then, we have
(13) T(S'R™) = R¢, + E, , T'(S'R")=Ro + E,
By (10), the mapping dw:v - dwyv is an isomorphism of E, onto ﬁm. So, we

denote by do =1 its inverse mapping.
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Given a pair (f,u) of a smooth function f and a contact vector field » on

S*R", satisfying L,o = fo, we write

(14) u = qt, + v ,veIr(E,) ,

where T(E,) is the set of smooth sections on E,. Then, we have

L+ fo =dq + doyw + fo =0
Thus, £,9 = f, and we see that dg — (£,9)0 is contained in I‘(ﬁm) for any

smooth function ¢g. Therefore, we have the following correspondence :

(15) g ~——~(—£49 , #g = (£u9)ky + do}dh — (£,9)0)

Putting
16)  q@,m) = p0GL...,y" 1M . .07
and
p(x,8) = Elq(xl, ..t —gi %)

e
for p(x,£)€eC*®(I') and q(y,m)€C>®(U) by using the coordinates in U and T', we

get the correspondence between the Hamiltonian vector field on I' and the contact
vector field on U. Using the local coordinates (y,n), it is easily seen that ug and

H_ can be written in the forms :

P
(17) ug
_ogn B4 _ ,ad9, 0 0948, qsnM® 30 _ 0
= = = q}
Ea 2{8)'“ 3y1}61]" E an® ay? Ea 2 2 gnd Byl
and

- 8g 8
(18) H, u, + ’ayl a1

Namely, by this correspondence, we easily get

Lemma A.2. Letp ESI(I‘) and assume that p (x,£) is real principal type at z.

Then, ug does not vanish at £g, (dyl_uq)(z“o)= 0.
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For a positive r, we shall denote D (r) by the open set of.z“o defined by
D(r) = {=(ym)€U | | + Inl<r}

Now, we put a topology in C®(U) by the Frechet norm liglly : for positive

integers k,

(19) Hglly = 8508 a(y,m)|

sug)
|a|+|B|S :()""I)GU
We denote Cg(U) by the set of q€C*(U) such that u, satisfies the conclusion of
Lemma A2.

Denote by V a 2n-2 dimensional subspace which is transversal to ug(2,).

— o
Remark that for any p (x,£) €SI(T*R") which is sufficiently close to p in the norm
3), ¢(y,m) =p_(y,1,1|2, . . ..m,) is contained in CF(U) and u;(z‘,,) is transversal
to V.

First, we get the following :

Lemma A.3. Let q(y,m)€CR(U). Given any m€Z ., and any €>0, there exist
positive constants ry=ry(q,m,e) ky=kqi(q,m,e), 8,="8,(q,m,e) such that the follow-
ing properties hold: For any q_E CR(U) which satisfies HE - qllkls 81, there exist

(2n-1)-tuple smooth functions on D (ry), {Yl(q_), . ,Y,,(E),El(qbar),...,El(q_)}

which depends on g€ CF(U) and satisfies

() {d¥y(q),...,dY,(q),dE5(q),...,dE(q)}  are linearly independent

on D(ry).

(iii) There exists a smooth function F(q) on D (ry) such that

© = F(@Y1(2) + 32erEa(3)dY (D))
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on D(ry).

(. R
1 Yi(q) - Y(9)|
(iv) sup |cr.|5m,25asn,1si5nIa&,fﬂ)rI E%(q) - E_a(q)}l < €
m)€ED iy -
(M) €D (ry(q,m,€)) 1 F(q) - F(q)}
for any q € CR(U) which satisfies
g — qll,',l = B;.
Proof. Since u,(Z) is transversal to V at 7,, any point z'€V can be written as
z' = (0,Y2, ... ,Y"E2, . E").

by a linear change of coordinates. Now, we define the mapping
<D(Y1,Y2,...,Y",E1, ... ,E") = (exp tuq)(z') = @G, .. ..,y”,'qz, R 59
where Z(t)=(exp tu,)(z') is the integral curve of u, which is defined by the solu-

tion of the following ordinary differential equation:

@0 E0 -y zw) 2@ =«

Then, we have

®(0,0,...,0)=0 ,d®(0,0,...,0)= id
Therefore, by using the inverse function theorem, there exists a positive constant
ri= ry(q) such that ®-1 ijs a C®- diffeomorphism on D(r;). Letting (y,m)
=® 1(t,ay, . . . ,a3,-7), we get (i)-(iii) of Lemma A3. If we take g €Cg(U) suf-
ficiently close to g, then the above V is also transversal to g at the origin.
Thus, by using the smooth dependency of parameter in the ordinary differential
equation, we get (iii) in Lemma A.3.

By Lemma A.3, we see that for g€CZ(U), {¥1(g),---,E,(2)} gives a local
coordinate on D(rq). In terms of this coordinate, we can rewrite the contact 1-

form o as

21) = 01(7) + YN0 (3)dY (@) + 3i-y0’4(9)dE*(q)
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Observing the proof of Lemma A3, we remark that w1()(0,0) = 0.
On the other hand, we have

(22) ;@) = 0(2)(0,Y%q),....Y"(4),EX(q),---.E"(q))

ri(q)

xexpf, R(@EYAD, - EN@RNE

(23) 0,(2) = ©,(2)(0,YXg),...¥"(a),E*Q),...E"(9))

Yy, - - —
xexpf " h(9)(1,Y*(g),. E(g))dt
because Lu’.m=h(¢;)m and uz = an(qT)— Put

Yi(q)

24 F = expf) CR@EYHD,EN@)d

and
(25)  ©@) = F@o'@)
Then, the coefficients of '’ does not contain the variable Yi(g).

From now on we shall reduce «’ into a canonical contact form by a contact
transformation. Denote by &,  the characteristic vector field for o' defined by
(11). Then, it is clear that the coefficients of £, does not involve the variable

vl Therefore, by the similar method in Lemma A.2, we get the following :

Lemma A.4 Let g€CR(U). Given any positive integer m and any positive €,
there exist positive constants ry, ¥4, k€Z and a new ( 2n-2)-tuple of smooth func-

tions dep ending on q (IIE—qus ¥3)

{Yl(q—),Yz(q_),...,Y"(q_),Ez(q—), ...,E"q)} on D(ry) such that
(i) {ari(q),...,dE*(q),...,dE™(q)} is linearly indep endent on D (r3)

d d
W Ty M e g

and

i aseplT @ - rw)
i) sup joftplsm izl 595) paqqy - po(q)) | ¢
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for llg ~ qli<nv,.

Furthermore, we write @’(g) in terms of the newly chosen coordinates
{ri(e), . .., ¥"(q),EXq). . . . ,E"(q)} as
(26) w'(Dk = dY(@) + Ny(@)dY*Q) + TP (@)Y () + 3 Fgmo(2)EX(T)
Again Ay, i=2,...,n and p,, a=2,..,n does not contain the variable Yz(q_). Since
(d(0'(9)))?" 2Aw'(q)#0, we see that

{arl(q), . . . ,d¥"(g),d\y(9).dE¥(q), . . . ,dE™(q)}
is linearly independent on D (ry). So, we substruct the coordinate E2(q) by 22(q)
and for simplicity denote it by Ez(q_) again. Moreover, since Lg.'(aw'(q_)=0, we
see that )\i(q_), i=2,...,n and p.a((;), a=2,...,n dose not contain the variable
Yl(g). Write d(w'(q)) =dE%(q)AdY%(q) + Q(q). Thus, 2(g) can be regarded as

a symplectic 2-form on a neighborhood of the origin of R2"~4 and L g do' =0.

art

Therefore, we apply Darboux’s Lemma. Namely, we consider the standard
closed 2-from on D"(r'y) ={(¥3,...,E") | |¥|+|E|<r')}
(27) Q4 = N 2-,dY°AdE®
By a linear symplectic transformation of (Y,E), we may assume that
Q(4)(0,0) = Q(q), and this linear symplectic transformation smoothly depend on
g in the topology of matrix.
Let Q,(¢)= Qs + (Q(g)—Q4),0sr=<1. For each ¢, £,(g)(0,0)=Q, is nondegen-
erate. Hence, there is a neighborhood D"(r'3) of (0,0)¢R2"~4 on which Q,(q)
is nondegenerate for all 0st<1. Thus, by the Poincare lemma, Q(q) = d(a(q))
for a 1-form a(q). Namely, define a(q)= > £I4a,(5)(u)du' by
28)  al@)(w) = [ 10 () (et
at a point u =(¥3, . .. ,E™), where ¢; is the unit vector tangent to the Y or E—

axis . Also, we suppose a(g)(0,0)=0. Define a smooth vector field Z(s) by
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ﬂ,(;)_lz(q—)(t) = —a(q), which is possible since ,(q) is nondegenerate. More-
over, since Z(t)(¢)(0,0)=(0,0) by the local existence theory, there exists a posi-

tive r'4 and a flow F, of Z(g)(s) on D"(r'y). So, we get
d - J— —

(29) - (F{2,(9)) = F{(-da(q) + 0{q)) = 0.

Therefore, Fiﬂl(q_) = dw’(gq). Now, putting

(30)  Y%(q) =Y?, EXq) = E%, (Y¥q),.....E"(q)) = Fy(Y%, ... ,EM)

we have

- (31)  dw'(q) = dE2AdY? + S 1_3dE°AdY?

Hence, there exists a smooth function k(Yl,Y,E) such that

(32) o

dy! + dk(YLY,E) + S I_,E%dY”®

Put

(33 rl=vl+x,

Then, {Y%?,E%}, a=2,...,n satisfies (i)-(iii) in Lemma A3. It is easy to get the

estimate (iv) by a direct computation in the above arguments. Notice that by

(17), we have q(Y,E) =E! on D(rs) for some positive rs. Put (X,E) on

=~ YD (rs5)). Then, by (8) we get the desired coordinate stated in Theorem Al.
Now, we will reduce the operator P in (1) to the canonical one given in

Theorem A5, which will be a direct and a routine computation by making use of

Fourier integral operators. Also, we will observe the smooth dependence in the

symbol function p(x,t) of P on these procedures. These arguments would be

similar to [OMY 1-2],[OMYK 3-7] in the technical stand point of view.

Now, we take a operator P in (1) which is real principal type and fixed it.
_ /]
Remark that the non-characteristic points of p €SY(T*R") over a certain open
o —
neighborhood of (x,,£,)€T*R" doesn’t diminish under any perturbation P of P in

o
S1(T*R™) with respect to the norm i1y, we can prove the following theorem by
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applying Egorov’s theorem (cf. [E]).

- 0
Theorem A.5. Let P, PESI(T*R”) be as (4). Then, there exist an open

neighborhood U, of xy and open conic sets l"j (0= j=J) which satisfy the following:
() R"={0} = U J_qT;

(ii) given a positive integer v, there exist ¥y3>0, By, 0,€Z (By>0,) and Fourier
integral operators V;, W; (1=j=J) such that, for any u (Hu—uollﬁlsyz), P # 0 in

N To,

(34) VW, =D, V;W;= W;V;=1 (mod %) inT; ,

(35) NVl g, SNIWikI_o = Cy(HRllg + Hhllg Hull) (o,=s€Z, ; h€H'(RT)),
where y; = Xj(p_), m; = Ej(p_) (1=j=n) is the canonical transformation given in

Theorem A.1 provided that T j=T(r).

Remark. (i) To derive the estimate (49), we don’t need anything new. It
follows from the expansion formula for D;’;j (Je|=s—a3), the boundedness
theorem of Fourier integral operators and a simple interpolation argument.

(ii) Moreover, if we apply the argument of [DH pp. 199-200] to M (x,D ;u) given
by (3.6), we can replace I;_ in Theorem A.1 by M (x,D ;u).

By integrating M (x,D;u) in 'y and Dyl in each Ij, we can easily prove the
following :

Theorem A.6. Let Uy, I'; (0s)=J) be the same as those in Theorem A.2 and
M (u)= M(x,D;u) be the one given by (3.56). Then, there exists a partition of unity
Aj(x;ﬁ)Gsl (0=j=<J) subordinated to U,XT'; (0=j=J) which satisfies the following

Given a positive integer v, there exist y3>0, B3, 03€Z, (B3>03) and linear

operators Q ;=0 ;(u) (0= j=J) such that, for any u (llu—ugllg <v3),
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(36) Mu)Qj(u)A; = A; (modS™") ,

(37) N (u)kl,_g, = C,(hN, + UhligHull,) (o3Ss€Zy ; hEH(R™))
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