Research Report

KSTS/RR-86/010 8 Oct., 1986

Discrete Part of L^p Functions on SU(1,1)

by

Takeshi Kawazoe

Department of Mathematics

Faculty of Science and Technology

Keio University

Department of Mathematics Faculty of Science and Technology Keio University

©1986 KSTS Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

Discrete Part of L^p Functions on SU(1,1)

Вy

Takeshi Kawazoe

§1. <u>Introduction</u>. Let G be SU(1,1) and T_n (n $\varepsilon \frac{1}{2}Z$, $|n| \ge 1$) the holomorphic (n > 0) and the anti-holomorphic (n < 0) discrete series representation of G (cf. [Su], p.237). Let $f_{\&m}^n$ (&, m ε N) denote the normalized matrix coefficient of 'n with K-type (-(n±&),-(n±m)), where "±" corresponds to the ± sign of n. Then the Fourier coefficients of f in L²(G) are defined by

$$\hat{f}(n; \ell, m) = \int_{G} f(g) \overline{f_{\ell m}^{n}}(g) dg \qquad (1.1)$$

for n $\varepsilon \frac{1}{2}Z$, $|n| \ge 1$ and ℓ , m εN . In the previous manuscript [K] we define the operator ϕ_m^n which maps the function f on G to the function $\phi_m^n(f)$ on D, the open unit disk in C, as follows.

$$\Phi_{m}^{n}(f)(z) = \int_{G} \overline{f}(g) T_{n}(g) e_{m}^{n}(z) dg \quad (z \in D)$$

$$= 2\pi^{\frac{1}{2}} (2n-1)^{-\frac{1}{2}} \sum_{\substack{g=0 \\ g=0}}^{\infty} \widehat{f}(n; \ell, m) e_{n}^{\ell}(z), \qquad (1.2)$$

where $e_n^{\ell}(z) = (\Gamma(\ell+2n)/\Gamma(\ell+1)\Gamma(2n-1))^{\frac{1}{2}} z^{\ell}$ ($\ell \in \mathbf{N}$). Then a characterization of $\Phi_0^n(L^p(G))$ ($1 \le p \le 2$) is obtained in [K], Theorem 8.1, actually, if $(n,p) \ne (1,1)$, it coincides with the weighted Bergman space $A_{p,\frac{1}{2}np-1}(D)$ on D (cf. [CR]), and if (n,p)=(1,1), it is given by the subspace $H_0^1(D)$ of the classical Hardy space $H^1(D)$ which consists of all holomorphic functions Fon D satisfying F' $\in A_{1,0}(D)$.

However, the approach and their proofs in [K] are complicated, and we treat only the case of m=0. Therefore, in this manuscript, we shall try to reform them and obtain the independence of m for $\phi_m^n(L^p(G))$. Moreover, we shall give some applications to the classical harmonic analysis on D.

2. Notation. We shall use the same notations in [K]. For the readers who read first we shall brief them.

2.1. L^p functions on SU(1,1). Let G be SU(1,1), the group of 2x2 complex matrices g satisfying det g =1 and $t_{\overline{g}} \begin{pmatrix} 1 & 0 \\ 0-1 \end{pmatrix} g = \begin{pmatrix} 1 & 0 \\ 0-1 \end{pmatrix}$, and let

$$K = \{ k_{\theta} = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}; 0 \le \theta \le 4\pi \},$$

$$A = \{ a_{t} = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}; t_{\varepsilon} R \}.$$
(2.1)

$$A = \{ a_{t} = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}; t_{\varepsilon} R \}.$$

For a complex valued function f on G we put

.

$$\| f \|_{p} = (\int_{G} |f(g)|^{p} dg)^{1/p} \quad (0 (2.2)$$

where dg is the Haar measure on G normalized by the following integral formula for the Cartan decomposition $G=KCL(A^+)K$ ($A^+=\{a_t; t > 0\}$):

$$\int_{\mathbf{G}} \mathbf{f}(\mathbf{g}) d\mathbf{g} = \frac{1}{8\pi} \int_{0}^{4\pi} \int_{0}^{\infty} \int_{0}^{4\pi} \mathbf{f}(\mathbf{k}_{\theta} \mathbf{a}_{t} \mathbf{k}_{\theta},) \mathbf{shtd} \theta dt d\theta', \qquad (2.3)$$

where d₀, d₀' and dt denote the Euclidean measures on $[0,4\pi)$ and R respectively. Then L^P(G) (0<p< ∞) denotes the space of all complex valued functions on G with finite $\| \cdot \|_p$ -"norm". For $1 \le p < \infty$, these spaces are Banach spaces with the norm, especially, L²(G) is a Hilbert space with obvious inner product denoted by (,).

2.2. Bergman and Hardy spaces on D. Let D={ $z \in C$; |z| < 1} be the open unit disk in C. For a complex valued function F on D we put

$$\| F \|_{p,r} = (\frac{1}{\pi} \int_{D} |F(z)|^{p} (1 - |z|^{2})^{2r} dz)^{1/p} (0
$$\| F \|_{H^{p}} = \lim_{r \to -\frac{1}{2}} (2r+1) \| F \|_{p,r} (0
(2.4)$$$$

where dz is the Euclidean measure on D. Then the weighted Bergman space $A_{D,r}(D)$ and the Hardy space $H^{p}(D)$ are defined as the spaces of all holomorphic

functions on D with finite $\| \cdot \|_{p,r}$ and $\| \cdot \|_{H^{p}}$ -"norms" respectively. For $1 \le p < \infty$, these spaces are Banach spaces with the norms, especially, if p=2, they are Hilbert spaces with obvious inner products. Moreover, it is easy to see that when $r \le -\frac{1}{2}$, $A_{p,r}(D)=\{0\}$, and each $\| F \|_{H^{p}}$ is also given by

$$\|F\|_{H^{p}=0 (2.5)$$

For $r > -\frac{1}{2}$ we put

$$e_{r+1}^{\ell}(z) = B(\ell+1, 2r+1) z^{\ell}$$
 ($\ell \in N$). (2.6)

Then { e_{r+1}^{ℓ} ; $\ell \in \mathbf{N}$ } is a complete orthonormal basis of $A_{p,r}(D)$. 2.3. Norm-preserving operators. The group G=SU(1,1) acts transitively on D by the linear transformation $g \cdot z = (\alpha z + \beta)/(\overline{\beta} z + \overline{\alpha})$ ($z \in D$ and $g = (\frac{\alpha}{\beta} \frac{\beta}{\alpha}) \in G$) and the isotropy subgroup at z=0 is equal to K, so we have the identification D=G/K. Here we put $J(g,z) = \overline{\beta} z + \overline{\alpha}$, and define the operator $T_{p,r}(g)$ ($0 , <math>r \in \mathbf{R}$ and $g \in G$) as follows.

$$T_{p,r}(g)F(z)=J(g^{-1},z)^{-4(1+r)/p}F(g^{-1}\cdot z)$$
 (z ϵ D). (2.7)

Then it is easy to see that each operator $T_{p,r}(g)$ preserves $\| \cdot \|_{p,r}$ and $\| \cdot \|_{H^{p-norms}}$, and moreover, $(T_{p,r}, A_{p,r}(D))$ and $(T_{p,r}, H^{p}(D))$ are irreducible representations of G with respect to the topologies induced by the "norms".

§3. <u>Discrete series of</u> G. If $0 and <math>r \in \mathbb{R}$ satisfy the relation: 4(1+r)/p = 2n, we put $T_n = T_p, r$. Then $(T_n, A_{2,n-1}(D))$ ($n \in \frac{1}{2}Z$ and $n \ge 1$) are nothing but the holomorphic discrete series representation of G. Let $f_{\ell m}^n(g)$ ($g \in G$ and ℓ , $m \in \mathbb{N}$) denote the normalized matrix coefficients of T_n defiend by

$$f_{\ell m}^{n}(g) = [T_{n}(g)e_{n}^{m}, e_{n}^{\ell}]_{n-1} / \| [T_{n}(.)e_{n}^{m}, e_{n}^{\ell}]_{n-1} \|_{2}, \qquad (3.1)$$

where $[,]_r$ means the inner product of $A_{2,r}(D)$. Actually, by using hypergeo-

metric function we can give the explicit form of $f^n_{\mathfrak{L}\mathfrak{M}}$: for example, if $\mathfrak{l} \geqq \mathfrak{m},$

$$f_{\ell m}^{n}(g) = \frac{1}{2} \left(\frac{2n-1}{\pi}\right)^{1/2} \left(\frac{\Gamma(\ell+1)\Gamma(\ell+2n)}{\Gamma(m+1)\Gamma(m+2n)}\right)^{1/2} \frac{1}{\Gamma(\ell-m+1)} (1-r^{2})^{n}$$

$$\times F(-m;2n+\ell,\ell-m+1;r^{2})r^{\ell-m}e^{-i\ell\theta}e^{-im\theta'}e^{-in(\theta+\theta')},$$
(3.2)

where $g = k_{\theta} a_t k_{\theta}$, ϵ KCL(A⁺)K and r=tht/2 (cf. [Sa]). Some basic properties of $f_{\ell m}^n$, which will be used in the following arguments, are summalized as follows.

emma 3.1. Let $n \in \frac{1}{2}Z$, $n \ge 1$ and ℓ , $m \in \mathbb{N}$.

$$(1) || f_{\ell m}^{n} ||_{2} = 1.$$

$$(2) f_{\ell m}^{n} (k_{\theta} g k_{\theta},) = e^{-i(\ell + n)\theta} e^{-i(m+n)\theta'} f(g) \quad (k_{\theta}, k_{\theta}, \epsilon K, g \epsilon G).$$

$$(3) T_{n}(g) e_{n}^{m} = 2(\frac{\pi}{2n-1})^{1/2} \sum_{\ell=0}^{\infty} f_{\ell m}^{n}(g) e_{n}^{\ell}.$$

$$(4) \frac{1}{4\pi} \int_{0}^{4\pi} e^{i(\ell + n)\theta} f_{\ell m}^{n}(xk_{\theta}y) d\theta = 2(\frac{\pi}{2n-1})^{1/2} f_{\ell u}^{n}(x) f_{\ell m}^{n}(y) \quad (u \epsilon N, x, y \epsilon G).$$

$$(5) f_{\ell m}^{n} * f_{uv}^{\omega} = \delta_{nw} \delta_{mu}^{2} (\frac{\pi}{2n-1}) f_{\ell v}^{n} \quad (w \epsilon \frac{1}{2}Z, w \ge 1 \text{ and } u, v \epsilon N).$$

$$(6) f_{\ell m}^{n} \text{ is the eigenfunction of the Laplace-Beltrami operator of G with the eigenvalue 4n(n-1).$$

(7) Let $1 \leq p \leq \infty$ and $(n,p) \neq (1,1)$. Then $\| f_{gm}^n \|_p < \infty$.

By the Plancherel formula for $L^2(G)$, each L^2 function f on G has the following decomposition:

$$f=f_{p}+\circ f, \quad \circ f=\sum_{\substack{\substack{\nu \in \frac{1}{2}Z, |n| \ge 1\\ \ell \to m \in \mathbf{N}}}} \hat{f}(n; \ell, m) f_{\ell m}^{n}, \quad (3.3)$$

where f_p consists of wave packets and $f_{gm}^n = \operatorname{conj}(f_{gm}^{-n})$ for $n \leq -1$. Clearly this decomposition for $L^2(G) \cap L^p(G)$ $(1 \leq p \leq 2)$ can be extended to $L^p(G)$. Then the next

lemma is an easy consequence from Lemma 3.1 (5), (6), (7) and (3.3).

Lemma 3.2. Let us suppose that f belongs to $L^p(G)$ $(1 \le p \le 2)$. Then for $n \in \frac{1}{2}\mathbb{Z}$, $n \ge 1$ and ℓ , $m \in \mathbb{N}$ we have

(1) $f_P * f_{\ell m}^n = 0.$ (2) $f * f_{\ell m}^n = c_n \sum_{u=0}^{\infty} \hat{f}(n; u, m) f_{um}^n, \text{ where } c_n = 2(\frac{\pi}{2n-1})^{\frac{1}{2}}.$

Therefore, if we put $P_m^n(f) = c_n^{-1} f \star f_{mm}^n$, P_m^n is the projection operator which maps f in $L^p(G)$ to the discrete part of f being of the form u = 0 $\hat{f}(n;u,m) f_{um}^n$. One of the important properties of P_m^n is the following

<u>Proposition</u> 3.3. Let $n \in \frac{1}{2}\mathbb{Z}$, $n \ge 1$, $m \in \mathbb{N}$, $1 \le p \le 2$ and suppose that $(n,p) \ne (1,1)$. Then $P_m^n(L^p(G))$ is contained in $L^p(G)$.

Proof. We shall use Lemma 3.1 (7). Let f be in $L^{p}(G)$. If n > 1 and $1 \le p \le 2$, then $|| P_{m}^{n}(f)||_{p} = c_{n}^{-1} || f * f_{mm}^{n}||_{p} \le c_{n}^{-1} || f_{mm}^{n}||_{1} || f||_{p} < \infty$, and if n=1 and 1 , $<math>|| P_{m}^{n}(f)||_{p} \le C_{p} || f||_{p} < \infty$ by the Kunze-Stein phenomenon on G (see [C] and [CS]). Q.E.D.

.4. Φ_m^n -<u>transform</u>. Let n ε ½Z, n ≥ 1, m ε N and 1≤p≤2. For an f in L^p(G) we shall define Φ_m^n (f) as follows.

$$\Phi_{m}^{n}(f)(z) = c_{n}^{-1} T_{n}(f) e_{n}^{m}(z) \quad (z \in D), \qquad (4.1)$$

where $T_n(f)$ is the operator defined by $T_n(f) = \int f(g)T_n(g)dg$. By using Lemmas 3.1 and 3.2 we easily see the following

 $\underline{\text{Lemma}}_{\text{In particular, } \phi_m^n(L^p(G)) = \phi_m^n(P_m^n(L^p(G)) \text{ and } \phi_m^n(\Sigma a_k f_{km}^n) = \overline{\Sigma a}_k e_n^k \text{ for a finite sum } \Sigma.$

Our aim is to give a characterization of $\Phi_m^n(L^p(G))$ as a space of holomorphic functions on D. First we shall prove the independence of m for $\Phi_m^n(L^p(G))$.

<u>Theorem</u> 4.2. Let $n \in \frac{1}{2}\mathbb{Z}$, $n \ge 1$, $m \in \mathbb{N}$ and $1 \le p \le 2$. Then $\Phi_m^n(L^p(G)) = \Phi_0^n(L^p(G))$.

Proof. Obviously, it is enough to prove that the correspondence of $f = \sum_{k=0}^{\infty} a_k f_{km}^n$ to $f = \sum_{k=0}^{\infty} a_k f_{k0}^n$ gives a bijection between $P_m^n(L^p(G))$ and $P_m^n(L^p(G))$. The case of $(n,p) \neq (1,1)$. Let us suppose that $f = \sum_{k=0}^{\infty} a_k f_{km}^n$ belongs to $P_m^n(L^p(G))$. Then by Proposition 3.3 f also belongs to $L^p(G)$, and it follows from the same "gument in the proof of Proposition 3.3 that $|| \hat{f} ||_p = d| f * f_{m0}^n ||_p \leq c_{p,n} || f ||_p < \infty$. Therefore, we see that \hat{f} belongs to $P_0^n(L^p(G))$. Clearly, this argument is reversible by noting that $f = c f * f_{0m}^n$. Thus the desired result follows from Lemma 4.1.

Before the proof of the case of (n,p)=(1,1) we shall prove a lemma, which will play an important role in §5.

Lemma 4.3. For each
$$f_{lm}^1$$
 there exists an L^1 function $[f_{lm}^1]$ such that $f_{lm}^1 = [f_{lm}^1] * f_{lmm}^1$.

Proof. For a fixed $\alpha > 0$ we put

$$[f_{\ell m}^{1}](g)=C_{\ell m}^{\alpha}|f_{00}^{1}(g)|^{\alpha}f_{\ell m}^{1}(g) \quad (g \in G),$$

where $\mathtt{C}^{\alpha}_{\mathfrak{gm}}$ is the constant determined by

$$C_{gm}^{\alpha}c_{1} f_{G}^{1}|f_{00}^{1}(g)|^{\alpha}|f_{gm}^{1}(g)|^{2}dg=1.$$
 (4.2)

Then it is easy to see that $[f_{gm}^1]$ belongs to $L^1(G)$ and moreover,

$$[f_{\ell m}^{1}] * f_{mm}^{1}(x)$$
$$= \int_{G} [f_{\ell m}^{1}](xy^{-1}) f_{mm}^{1}(y) dy$$

$$= \int_{G} [f_{\ell m}^{1}](y^{-1}) \int_{K} e^{i(n+\ell)\theta} f_{mm}^{1}(yk_{\theta}x) dkdy$$

= $c_{1} \int_{G} [f_{\ell m}^{1}](y^{-1}) \overline{f_{\ell m}^{1}}(y) dy f_{\ell m}^{1}(x)$
= $c_{1} C_{\ell m}^{\alpha} \int_{G} |f_{00}^{1}(y)|^{\alpha} |f_{\ell m}^{1}(y)|^{2} dy f_{\ell m}^{1}(x)$
= $f_{\ell m}^{1}(x).$

Therefore, $[f_{gm}^{1}]$ satisfies the desired properties.

Q.E.D.

The case of (n,p)=(1,1). Let us suppose that $f=\sum_{\ell=0}^{\infty} a_{\ell} f_{\ell m}^{1}$ belongs to $P_{m}^{1}(L^{1}(G))$. This means that there exists an L¹ function [f] on G such that $f=[f]*f_{mn}^{1}$. Therefore, $\tilde{f}=c_{1}^{-1}f*f_{m0}^{1}=[f]*f_{m0}^{1}$. Then by Lemma 4.3 we can choose an L¹ function $[f_{m0}^{1}]$ on G such that $f_{m0}^{1}=[f_{m0}^{1}]*f_{00}^{1}$, and thus, $\tilde{f}=[f]*[f_{m0}^{1}]*f_{00}^{1}$. Here we note that $[f]*[f_{m0}^{1}]$ belongs to L¹(G). Therefore, \tilde{f} belongs to $P_{0}^{1}(L^{1}(G))$. Clearly, this argument is reversible as before, so we can obtain the desired result. This completes the proof of the theorem. Q.E.D.

§5. <u>Characterization</u> of $\Phi_0^n(L^p(G))$. Let $n \in \frac{1}{2}Z$, $n \ge 1$ and $1 \le p \le 2$. By Theorem 4.2 our problem is reduced to the case of m=0. We shall give a characterization of $\Phi_0^n(L^p(G))$.

First we shall consider the case of $(n,p)\neq(1,1)$. Let us suppose that f= $\sum_{\ell=0}^{\Sigma} a_{\ell} f_{\ell 0}^{n}$ belongs to $P_{0}^{n}(L^{p}(G))$ and we put $F(z)=\Phi_{0}^{n}(f)(z)=\sum_{\ell=0}^{\Sigma} \overline{a_{\ell}}e_{n}^{\ell}$. Then we see that

$$f(g) = \frac{1}{2} \pi^{-\frac{1}{2}} (1 - r^2)^n \sum_{\ell=0}^{\infty} a_{\ell} B(\ell+1, 2n-1)^{-\frac{1}{2}} r^{\ell} e^{-i\ell\theta} e^{-in(\theta+\theta')}$$

$$= \frac{1}{2} \pi^{-\frac{1}{2}} (1 - r^2)^n \overline{F}(re^{i\theta}) e^{-in(\theta+\theta')},$$
(5.1)

where $g=k_{\theta}a_{t}k_{\theta}$, ϵ KCL(A⁺)K and r=tht/2. Since f belongs to L^p(G) by Proposition 3.3, this relation deduces that $\| f \|_{p} = c \| F \|_{p,\frac{1}{2}np-1} < \infty$. This means that

when $(n,p)\neq(1,1)$, f belongs to $P_0^n(L^p(G))$ if and only if $F=\Phi_0^n(f)$ belongs to $A_{p,\frac{1}{2}np-1}(D)$, and Φ_0^n preserves the norm up to a constant multiplication. Next we shall consider the case of (n,p)=(1,1). For a holomorphic function $F(z)=\sum_{k=0}^{\infty}a_kz^k$ on D the fractional derivative (resp. integral) of F of order $\alpha \ge 0$ 0 is defined as follows.

$$F^{\left[\alpha\right]}(z) = \sum_{\ell=0}^{\infty} a_{\ell} \frac{\Gamma(\ell+1+\alpha)}{\Gamma(\ell+1)} z^{\ell}$$
(resp.
$$F_{\left[\alpha\right]}(z) = \sum_{\ell=0}^{\infty} a_{\ell} \frac{\Gamma(\ell+1)}{\Gamma(\ell+1+\alpha)} z^{\ell}$$
(5.2)

By using this derivative we shall define

$$\| F \|_{H_{0}^{1} \to 0} = \lim_{\alpha \to 0} \alpha \| F^{[\alpha]} \|_{1, \frac{1}{2}\alpha - \frac{1}{2}}.$$
 (5.3)

Then the space $H_0^1(D)$ is defined as the space of all holomorphic functions on D with finite $\| \cdot \|_{H^{1-norm}}$.

Lemma 5.1. For each $g \in G T_1(g) e_1^0(z)$ belongs to $H_0^1(D)$ and the norm is uniformly bounded on $g \in G$.

Proof. From the definition (2.7) it is easy to see that

$$z^{-1}(zT_1(g)e_1^0(z))^{[\alpha]} = \frac{\Gamma(\alpha+2)(1-r^2)e^{-i(\theta+\theta')}}{(1-re^{i\theta}z)^{\alpha+2}}$$
,

where $g = k_{\theta} a_t k_{\theta'} \in KCL(A^+)K$ and r = th t/2. Then we have $\| (T_1(g)e_1^0)^{[\alpha]} \|_{1,\frac{1}{2}\alpha - \frac{1}{2}} \le Cr(\alpha+2)(1+\alpha^{-1})$, where C does not depend on $g \in G$. Thus the desired result Q.E.D. is obtained.

Now we shall give a characterization of $\Phi_0^1(L^1(G))$. First let us suppose that f belongs to $L^1(G)$. Since $\Phi_0^1(f)(z)=c_1^{-1}(T_1(.)e_1^0(z),f)$, it follows from Lemma 5.1 that $\| \Phi_0^1(f) \|_{H_0^1} \leq c_1^{-1}(\| T_1(.)e_1^0 \|_{H_0^1}, |f|) \leq c_1^{-1}c \| f \|_1 < \infty$.

This means that $\Phi_0^1(f)$ belongs to $H_0^1(D)$ for all $f \in L^1(G)$. Conversely let us suppose that $F(z) = \sum_{\substack{\ell=0 \\ \ell \equiv 0}} \overline{a}_{\ell} e_1^{\ell}(z)$ belongs to $H_0^1(D)$. Here we put $f(g) = \sum_{\substack{\ell=0 \\ \ell \equiv 0}} a_{\ell} f_{\ell 0}^1(g)$, and let $[f_{\ell 0}^1]$ ($\ell \in N$) be the L¹ functions on G constructed in the proof of Lemma 4.3. Actually, for a fixed $\alpha > 0$ they are given by

$$[f_{\ell 0}^{1}](g)=C_{\ell 0}^{\alpha}|f_{00}^{1}(g)|^{\alpha}f_{\ell 0}^{1}(g) \quad (g \in G),$$

where

$$C_{\ell 0}^{\alpha} = \frac{2^{\alpha} \pi^{\frac{1}{2}(1+\alpha)} \Gamma(\ell+2+\alpha)}{\Gamma(\alpha+1) \Gamma(\ell+2)} .$$

Here we put $[f] = \sum_{\ell=0}^{\infty} a_{\ell} [f_{\ell 0}^{1}]$. Then it follows from Lemmas 4.1 and 4.3 that $c_{n} \cdot \phi_{0}^{1}([f]) = \phi_{0}^{1}(f) = F$, and moreover,

$$\| [f] \|_{1} = \frac{2^{\alpha} \pi^{\frac{1}{2}(1+\alpha)}}{\Gamma(\alpha+1)} \| |f_{00}^{1}|^{\alpha} \sum_{\ell=0}^{\infty} a_{\ell} \frac{\Gamma(\ell+2+\alpha)}{\Gamma(\ell+2)} f_{\ell 0}^{1} \|_{1}$$
$$= \frac{2\pi}{\Gamma(\alpha+1)} \| z^{-1} (zF)^{[\alpha]} \|_{1,\frac{1}{2}\alpha-\frac{1}{2}}.$$

Obviously, this is finite, because F belongs to $H_0^1(D)$. Therefore, we see that F belongs to $\Phi_0^1(L^1(G))$.

Summalizing the results we just obtained, we have the following

Theorem 5.2. Let $n \in \frac{1}{2}\mathbb{Z}$, $n \ge 1$ and $1 \le p \le 2$.

- (1) If $(n,p)\neq(1,1)$, then $\phi_0^n(L^p(G))=A_{p,\frac{1}{2}np-1}(D)$ and $\phi_0^n: P_0^n(L^p(G)) \rightarrow A_{p,\frac{1}{2}np-1}(D)$ is bijective and norm-preserving.
- (2) If (n,p)=(1,1), then $\Phi_0^1(L^1(G))=H_0^1(D)$ and $\Phi_0^1: P_0^1(L^1(G)) \rightarrow H_0^1(D)$ is bijective.

Remark 5.3. Noting the proof in the case of (n,p)=(1,1), we see that if $\|F\|_{1,\frac{1}{2}\alpha-\frac{1}{2}} < \infty$ for an $\alpha > 0$, then $\|F\|_{1,\frac{1}{2}\alpha-\frac{1}{2}} < \infty$ for all $\alpha > 0$ and more-over $\|F\|_{H_0^1} < \infty$. Therefore, it is easy to see that for each $\alpha > 0$ $H_0^1(D)$ is

also defined as the space of all holomorphic functions F on D such that $F^{\lfloor \alpha \rfloor}$ belongs to $A_{1,\frac{1}{2}\alpha-\frac{1}{2}}(D)$.

<u>Corollary</u> 5.4. $L^{1}(G) \cap P_{0}^{1}(L^{1}(G)) = \{0\}.$

Proof. If $f \in L^1(G)$ belongs to $P_0^1(L^1(G))$, then $\| f \|_1 = 2\pi^{\frac{1}{2}} \| \Phi_0^1(f) \|_{1,-\frac{1}{2}} < \infty$. Obviously, this means that $\Phi_0^1(f) \equiv 0$ and thus $f \equiv 0$. Q.E.D.

⁵6. <u>The space</u> $H_0^1(D)$. In this section we shall state some basic properties of the space $H_0^1(D)$ introduced in the previous section.

Proposition 6.1.

(1) H¹₀(D) is dense in H¹(D).
(2) H¹₀(D) is not contained in and does not contain H[∞](D). In particular H¹₀(D) ⊊ H¹(D).

Proof. Let f be in L¹(G). Then $\| \phi_0^1(f) \|_H^1 \leq (\| T_1(.)e_1^0 \|_H^1, |f|) \leq C \| f \|_{1^{<\infty}}$, and thus, $H_0^1(D) = \phi_0^1(L^1(G)) \subset H^1(D)$ (see Theorem 5.2 (2)). Here we note that $\phi_0^1(L^1(G))$ is G-invariant under the action of $T_1(g)$ (g \in G). Therefore, since $(T_1, H^1(D))$ is irreducible, $H_0^1(D)$ must be dense in $H^1(D)$. This proves (1). Let F be an extremal function in $H^{\infty}(D)$. Then $|F'(z)| = (1-r^2)^{-1} \|F\|_{\infty}$ (cf.

Let F be an extremal function in $H^{\infty}(D)$. Then $|F'(z)| = (1-r^2)^{-1} ||F||_{\infty}$ (cf. [D], p.144, Ex.7). Therefore, F' does not belong to $A_{1,0}(D)$. This means that F does not belong to $H_0^1(D)$ (see Remark 5.3), and thus, $H_0^1(D)$ does not contain $H^{\infty}(D)$. Let D be the space of all holomorphic functions F on D such that $f_D|F'(z)|^2dz < \infty$. Then by using Schwarz's inequality and Remark 5.3 we see that D is contained in $H_0^1(D)$. However, it is well-known that D is not contained in $H^{\infty}(D)$ (cf. [D], p.106, Ex.7). Thus $H_0^1(D)$ is not contained in $H^{\infty}(D)$. Moreover, since $H^{\infty}(D)$ is contained in $H^1(D)$, the last assertion is obvious. Q.E.D.

<u>Proposition</u> 6.2. Let us suppose that F belongs to $H^{1}(D)$. Then for each $\alpha > 0$ $F_{[\alpha]}$ belongs to $H^{1}_{0}(D)$.

Proof. We easily see that $\| (F_{\lfloor \alpha \rfloor})^{\lfloor \alpha \rfloor} \|_{1,\frac{1}{2}\alpha - \frac{1}{2}} = \| F \|_{1,\frac{1}{2}\alpha - \frac{1}{2}} \le \infty$ for each $\alpha > 0$ and F in $H^1(D)$. Then the assertion is clear from Remark 5.3. Q.E.D.

For $\mu \in R$ and $a \in L^{1}(\partial D)$ we put

$$P_{\mu}(a)(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{(1-r^{2})}{|1-re^{i(\theta-\phi)}|^{2(1+\mu)}} a(\phi) d\phi \quad (z=re^{i\theta}),$$

and let $H^1_{(\mu)}(D)$ be the space of all holomorphic functions on D being of the form $P_{\mu}(a)$ for an a in $L^1(\partial D)$. Then $H^1(D)=H^1_{(0)}(D)$ by [D], Corollary 2 in p. 34, and moreover we have the following

<u>Proposition</u> 6.3. For each $\mu < 0$ $H^{1}_{(\mu)}(D) \subset H^{1}_{0}(D) \subset H^{1}(D)$.

Proof. Let us suppose that F belongs to $H^1_{(\mu)}(D)$, that is, $F=P_{\mu}(a)$ for an a in $L^1(\partial D)$. Without loss of generality we may assume that $-\frac{1}{2}<\mu<0$. By using the integral formula for the fractional derivative (cf. [K], (9.1)), $F^{[\epsilon]}$ can be written as

$$F^{\left[\varepsilon\right]}(z) = \frac{1}{\Gamma(1-\varepsilon)} \int_{D} F(\zeta) |\zeta|^{2\varepsilon} (1-|\zeta|^{2})^{-\varepsilon} (1-\overline{\zeta}z)^{-2} d\zeta.$$

Now we shall take an ϵ > 0 such that $0{<}_{\epsilon}{<}{-}2_{\mu}.$ Then by using Theorem A in [DRS] we see that

$$\| F^{\left[\varepsilon\right]} \|_{1,\frac{1}{2}\varepsilon^{-\frac{1}{2}}}$$

$$\leq \frac{1}{\Gamma(1-\varepsilon)} \frac{1}{2\pi} \| a \|_{1} \sup_{0 \leq \phi < 2\pi} \int \frac{(1-|\zeta|^{2})^{1-\varepsilon}}{|1-\zeta\varepsilon^{1\phi}|^{2}(1+\mu)} \int_{D} \frac{(1-|z|^{2})^{\varepsilon-1}}{|1-\overline{\zeta}z|^{2}} dz dz$$

$$\leq C \| a \|_{1} \int_{0}^{1} (1-\eta)^{1-\varepsilon-2(1+\mu)} d\eta \int_{0}^{1} (1-\eta)^{\varepsilon-1} dr$$

$$< \infty,$$

where $|\boldsymbol{\varsigma}|=_n$ and $|\boldsymbol{z}|=r.$ Then the desired result is obvious from Remark 5.3. Q.E.D.

§7. <u>Applications</u>. We shall apply the characterization of $\Phi_m^n(L^p(G))$ to the classical harmonic analysis on D. The following theorem, which is obtained in [DRS], Theorem 5, is an easy consequence of Theorem 5.2 and Remark 5.3.

Theorem 7.1. Let $r > -\frac{1}{2}$ and $\beta \ge 0$. Then

(1) If F belongs to $A_{1,r}(D)$, then $F^{[\beta]}$ belongs to $A_{1,r+\frac{1}{2}\beta}(D)$.

(2) If F belongs to $A_{1,r+\frac{1}{2}\beta}(D)$, then $F_{[\beta]}$ belongs to $A_{1,r}(D)$.

Moreover, if we replace $A_{1,-\frac{1}{2}}(D) = \{0\}$ by the space $H_0^1(D)$, the assertions are also valid for the case of $r=-\frac{1}{2}$.

To the detail of the proof see [K].

Next we shall recall the explicit form of the matrix coefficients f_{gm}^n (see (3.2)). Let $G_m(\alpha;\gamma;x)$ be the Jacobi polynomial with degree m. Then since $G_m(\ell-m+2n;\ell-m+1;1)=(-1)^m\Gamma(\ell-m+1)/\Gamma(\ell-m+1)/\Gamma(\ell+1)$, it is easy to see that $S_m(\ell-m+2n;\ell-m+1;r)$ has the expansion being of the form

$$G_{m}(\ell-m+2n;\ell-m+1;r) = (-1)^{m} \frac{\Gamma(2n+m)\Gamma(\ell-m+1)}{\Gamma(2n)\Gamma(\ell+1)} r^{m} + \frac{\Gamma(\ell-m+1)}{\Gamma(\ell)} (1-r) (Q_{m,m-1}^{n}(\ell)(1-r)^{m-1} + Q_{m,m-2}^{n}(\ell)(1-r)^{m-2} + \dots + Q_{m,0}^{n}),$$

where $Q_{m,k}^n$ is a polynomial of ℓ with degree k whose coefficients only depend on n, m and k. Therefore, since F(-m;2n+ ℓ , ℓ -m+1;r)=G_m(ℓ -m+2n; ℓ -m+1;r), fⁿ_{ℓ m}(g)

($\ell \ge m$, $g=k_{A}a_{t}k_{A}$, and r=tht/2) has the expansion:

$$f_{\ell m}^{n}(g) = C_{m}^{n} f_{\ell 0}^{n}(g) r^{-m} \{ r^{2m} + (1 - r^{2}) P_{m,m}^{n}(\ell) + \dots + (1 - r^{2}) P_{n,1}^{n}(\ell) \} e^{-m\theta'},$$
(7.1)

where $C_m^n = (-1)^m (\Gamma(m+2n)/\Gamma(m+1)\Gamma(2n))^{\frac{1}{2}}$ and $P_{m,k}^n (\mathfrak{L}) = (-1)^m \frac{\Gamma(2n)}{\Gamma(2n+m)} \mathfrak{L} Q_{m,k}^n (\mathfrak{L})$. By using these polynomials $P_{m,k}^n$, we shall define a differential operator $D_{m,k}^n$ as follows. For a holomorphic function $F(z) = \sum_{\mathfrak{L}=0}^{\Sigma} a_{\mathfrak{L}} z^{\mathfrak{L}}$

$$D_{m,k}^{n}F(z) = \sum_{\ell=0}^{\infty} P_{m,k}^{n}(\ell) a_{\ell} z^{\ell}.$$
(7.2)

Moreover, we put

$$D_{m}^{n}F(z) = C_{m}^{n} \{F_{(m)}|z|^{m} + (1 - |z|^{2})^{m}D_{m,m}^{n}F_{(m)}(z)|z|^{-m}$$
(7.3)
+ $(1 - |z|^{2})^{m-1}D_{m,m-1}^{n}F_{(m)}(z)|z|^{-m} + \dots + (1 - |z|^{2})^{-1}D_{m,1}^{n}F_{(m)}(z)|z|^{-m}$

where $F_{(m)}(z) = \sum_{\ell=m}^{\infty} a_{\ell} z^{\ell}$.

where $r_{(m)}^{(z)=} {}_{\ell=m}^{2} a_{\ell}^{z}^{-1}$. Now we shall recall Proposition 4.2 and its proof. Then we see that $F(z) = {}_{0}^{\Sigma} a_{\ell} e_{n}^{\ell}(z)$ belongs to ${}_{0}^{n}(L^{p}(G))$ if and only if ${}_{\ell=0}^{\Sigma} a_{\ell} f_{\ell m}^{n}$ belongs to ${}_{m}^{n}(L^{p}(G))$, and thus by (7.1),(7.3), if and only if $\|D_{m}^{n}F\|_{p,\frac{1}{2}np-1} < \infty$ when $(n,p) \neq (1,1)$, and $\|D_{m}^{n}F^{\left(\alpha\right)}\|_{1,\frac{1}{2}\alpha-\frac{1}{2}} < \infty$ for an $\alpha > 0$ when (n,p) = (1,1). Here let $A_{p,\frac{1}{2}np-1}(D)_{m}$ (resp. $H_{0}^{1}(D_{m})$ be the space of all holomorphic functions F on D such that $\|D_{m}^{n}F\|_{p,\frac{1}{2}np-1} < \infty$ (resp. $\|D_{m}^{n}F^{\left(\alpha\right)}\|_{1,\frac{1}{2}\alpha-\frac{1}{2}} < \infty$ for an $\alpha > 0$). Then we have the following

Theorem 7.2. Let $n \in \frac{1}{2}\mathbb{Z}$, $n \ge 1$ and $1 \le p \le 2$.

(1) If
$$(n,p)\neq(1,1)$$
, then $A_{p,\frac{1}{2}np-1}(D) = A_{p,\frac{1}{2}np-1}(D)$ for $m \in \mathbb{N}$.
(2) If $(n,p)=(1,1)$, then $H_0^1(D) = H_0^1(D)$ for $m \in \mathbb{N}$.

Corollary 7.3. Let us suppose that $(n,p)\neq(1,1)$. Then if F belongs to $A_{p,\frac{1}{2}np-1}(D)$, then F' belongs to $A_{p,\frac{1}{2}(n+1)p-1}(D)$.

Proof. This is an easy consequence from the case of m=1 in Theorem 7.2. Q.E.D.

References

- [C] Cowling, M.: The Kunze-Stein phenomenon, Ann. of Math., 107 (1978), 209-234.
- [CR] Coifman, R.R. and Rochberg, R.: Representation theorems for holomorphic and harmonic functions in L^p, Asterisque 77 (1980), 12-66.
- [CS] Clerc, J.L. and Stein E.M.: L^p-multipliers for non-compact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A., 71 (1974), 3911-3912.
- [D] Duren, P.L.: Theory of H^p Spaces, Academic Press, New York, 1970.
- [DRS] Duren, P.L., Romberg, B.W. and Schields, A.L.: Linear functionals on H^p spaces with 0<p<1, Reine Angew. Math., 238 (1969), 32-60.</p>
- [K] Kawazoe, T.: Fourier coefficients of L^p functions on SU(1,1), Keio Univ. Research Report, 7 (1985).
- [Sa] Sally, P.J.: Analytic continuation of irreducible unitary representations of the universal covering group of SL(2,R), Memoirs of A.M.S., 69 (1967).
- [Su] Sugiura, M.: Unitary Representations and Harmonic Analysis, Wiley, New York, 1975.