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Discrete Part gf_Lp Functions on SU(1,1)

By

Takeshi Kawazoe

§1. Introduction. Liet G be SU(1,1) and T (n e #Z, |n| z 1) the holomorphic (n
> 0) and the anti-holomorphic (n < 0) discrete series representation of G (cf.
fSul, p.237). Let me (2, m ¢ N) denote the normalized matrix coefficient of
n with K-type (-(n#2),-(ntm)), where "+" corresponds to the * sign of n. Then
the Fourier coefficients of f 1in LZ(G) are defined by

f(nse,m)= fo(g);z;(g)dg (1.1)

forne 3Z, |n| 2 1 and ¢, m e N. In the previous manuscript [K] we define
the operator @3 which maps the function f on G to the function ¢;(f) on D,
the open unit disk in C, as follows.

tn(F)(2)= 1 Fl)T ()ep(z)dg (2 = D)
- (1.2)
=2n%(2n-1)_% z %(n;z,m)ez(z),
420 n

where er%(z)=(1‘(£+2n)/r(2+1)r(2n-1))%zZ (2 € N). Then a characterization of
@8(Lp(G)) (1<p<2) is obtained in [K], Theorem 8.1, actually, if (n,p)#(1,1),
it coincides with the weighted Bergman space ?p,%np-l(D) on D (cf. [CR]), and
if (n,p)=(1,1), it is given by the subspace HO(D) of the classical Hardy space
Hl(D) which consists of all holomorphic functions Fon D satisfying F' ¢ Al,O(D)'

However, the approach and their proofs in [K] are complicated, and we treat
only the case of m=0. Therefore, in this manuscript, we shall try to reform
them and obtain the independence of m for ¢£(LP(G)). Moreover, we shall give
some applications tothe classical harmonic analysis on D.
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§2. Notation. We shall use the same notations in [K]. For the readers who read
first we shall brief them.

2.1. LP functions on SU(1,1). Let G be SU(1,1), the group of 2x2 complex ma-
trices g satisfying det g=1 and t@(é_?)g=(é_?), and let

i9/2
K={ k =(® 0 ) 5 Osgesdrn },
8 -ig/2

cht/2sht/2 :
A={ a=( ) s teR 3.

sht/2 cht/2

For a complex valued function f on G we put

Il = IGif(g)[pdg)l/p (0<p<sn) s (2.2)

where dg is the Haar measure on G normalized by the following integral formula
for the Cartan decomposition G=KCL(A+)K ( A+={ a5 to> 01}):

by o Ay

- .
fo(g)dg 87070 %o fkgazky )shtdodtde ', (2.3)

where do, de¢' and dt denote the Euclidean measures on {0,4n) and R respective-
ly. Then Lp(G) {0<p<=) denotes the space of all complex valued functions on G

with finite || .|| p—"norm". For lsp<e, these spaces are Banach spaces with the
norm, especially, LZ(G) is a Hilbert space with obvious inner product denoted
oy { ).

2.2. Bergman and Hardy spaces on D. Let D={ z ¢ C ; |zl < 1} be the open
unit disk in C. For a complex valued function F on D we put

Il Fll
p,r

1

- 1 IF(2)[P(-121%)%"d2) P (0<pem, 1 € R)
D (2.4)
IFIl =%im (2r+1) ]| Fj (0<p<=),
HP r--% p,r
where dz is the Euclidean measure on D. Then the weighted Bergman space

Ap r(D) and the Hardy space HP(D) are defined as the spaces of all holomorphic
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functions on D with finite || .|| D,r and || .|| p-"norms" respectively. For lsp
<o, these spaces are Banach spaces with the norms, especially, if p=2, they
are Hilbert spaces with obvious inner products. Moreover, it is easy to see
that when r < -}, Ap,r(D)={0]’ and each || F|| yP is also given by

2n .
IFll = sup (27 |F(re'®)|Pdo) /P (2.5)
Hp O<r<1 ™ 0

For r > -} we put
e, (2)=B(w+1,2r1)2" (2 e N), (2.6)

2
Then { sl

3 2 ¢ N} is a complete orthonormal basis of Ap,r(D).

2.3. Norm-preserving operators. The group G=SU(1,1) acts transitively on D
by the linear transformation g-z=(az+g)/(8z+a) {z ¢ D and g=(%-§) e G) and the
isotropy subgroup at z=0 is equal to K, so we have the identification D=G/K.

Here we put J(g,z)=Bz+a, and define the operator T_  (g) (O<p<=, r ¢ R and g ¢

p,r
G) as follows.
T (@R PR ey 27
Then it is easy to see that each operator T r(g) preserves || .|| . and

| .| yp-"norms", and moreover, (Tp r’Ap,r(D)S and (Tp’r,Hp(D)) are irreducible

representations of G with respect to the topologies induced by the "norms".

§3. Discrete series of G. If O<p<w and r ¢ R satisfy the relation: 4(1+r)/p=
2n, we put Tn:Tp,r' Then (Tn’AZ,n—l(D)) {(ne iZ and n 2z 1) are nothing but
the holomorphic discrete series representation of G. Let fgm(g) (g ¢ G and
2, m e N) denote the normalized matrix coefficients of Tn defiend by

£ 9)=IT, (9)enserd /1 [T (eperdng o (3.1)

where [ , ]r means the inner product of A2 r(D)' Actually, by using hypergeo-
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metric function we can give the explicit form of f:m: for example, if ¢ 2z m,

N (g)L@nL /2l (a12n) 172 L8

r(mI)r(m¥2n)’  T(e-m+1) (3.2)

- - +g!
x F(-m;2n+g,o-mtlsr )r 126 ime " 1n(e 8 ),

where g=keatke' € KCL(A+)K and r=tht/2 (cf. [Sa]). Some basic properties of me’
which will be used in the following arguments, are summalized as follows.

“emma 3.1. Let ne 32, nz 1 and %, m e N.
(1) || £l 572

p i menra
(2) F1 (ko ghy)=e (V0TI ey ke Ky g e 6

(3)

x ,1/8 % %
1 liOme(g)en'

4Tr
1
(4) e J

1) ) () (we N, w y e G

0
1
(5) fz fﬁ nw mu Zn l)fz (we 32, wz1and u, v e N).

(6) me is the eigenfunction of the Laplace-Beltrami operator of G
with the eigenvalue 4n(n-1).
(7) Let 1gpsw and (n,p)#(1,1). Then || meH p <

By the Plancherel formula for LZ(G), each L2 function f on G has the follow-

ing decomposition:

f= 4+ °f, °f= 1 f(nse,mf , (3.3)
P neiZ,lnlzl m
siMe

where f consists of wave packets and fn ~conJ(f2$) for n < -1. Clearly this

decompos1t1on for L (G)[]Lp(G) (1=p=2) can be extended to Lp(G). Then the next
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lemma is an easy consequence from Lemma 3.1 (5), (6), (7) and (3.3).

Lemma 3.2. Let us suppose that f belongs to P(e) (1sps2). Then for n ¢ 22,

nz1and %, me N we have

(1) fb*fzm=0.

1
2

o _ .
f(n,u,m)fzm, where cn—2(2n_1) .

(2) f*mezcn i

u=0

. . Nypgy_. -lo cn n
herefore, if we put Pm(f)—cn Fxfm P

f in Lp(G) to the discrete part of f being of the form uEO %(n;u,m)fzm. One

is the projection operator which maps
of the important properties of P; is the following

Proposition 3.3. Let ne 32, n 2 1, m e N, 1sps2 and suppose that (n,p)#(1,1).
Then P(IP(G)) is contained in LP(G). .

Proof. We shall use Lemma 3.1 (7). Let f be in LP(G). If n > 1 and 1lsp<2,
n -1 n -1 ¢n .

theg [l Pl p=cp I fofonll p 5 €0 Il Fgll 111 Fll < = and iF n=1 and 1<p=2,

|}Pm(f)” b < Cp” | p < by the Kunze-Stein phenomenon on G (see [C] and

[csl. Q.E.D.

A. ¢;—transform. Let ne 4Z, n 21, me N and 1sp<2. For an f in LP(G) we
shall define ¢;(f) as follows.

(FeMz) (z e D), (4.1)

-1
¢:1(f)(z)=cn Tn n

where Tn(f) is the operator defined by Tn(f)= 7 f(g)Tn(g)dg. By using Lemmas
3.1 and 3.2 we easily see the following G

Lemma 4.1. of'(zP(6))=e (FL(1P(G)) and @Z(Zazfzm)=iamei for a finite swn 3.

In particular, @Z 18 injective on PZ(LP(G)).
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Our aim is to give a characterization of QE(LP(G)) as a space of holomorph-
ic functions on D. First we shall prove the independence of m for ¢;(Lp(G)).

Theorem 4.2. Let ne 22, nz 1, me N and 1sps2. Then ¢”;(LP(G))=¢Z(LP(G)).
Progf.co Obviously, it is enough to prove that the correspondence of f=1§0a1fzm
to f=%§0a2f20 gives a bijection between P;(Lp(G))wand Pg(Lp(G)).

The case of (n,p)#(1,1). Let us suppose that f=£§0a2fgm belongs to P;(LD(G)).
Then by Proposition 3.3 f also belongs to Lp(G), and it follows from the same
-gument in the proof of Proposition 3.3 that || ?“ 5«“ f*fgou p < Cp,n” il D
< «, Therefore, we see that ¥ belongs to PS(Lp(G)). Clearly, this argument
is reversible by noting that f=c?*f8m. Thus the desired result follows from

Lemma 4.1.
Before the proof of the case of (n,p)=(1,1) we shall prove a lemma, which

will play an important role in §5.

Lemma 4.3. For each fJ

— L
[fim]*fim'

m there exists an LJ funetion [fim] such that fim=
Proof. For a fixed a > 0 we put

[fl 1(9)=c% [f3,(0)|%FL (9) (g ¢ 6)

end' 97 om0 om'9 &3

where sz is the constant determined by

o 1 ael 2, _

Conc1 741 To0(9) | ym(9) | dg=1. : (4.2)
L

Then it is easy to see that [fim] belongs to L™ (G) and moreover,

1 1
[flm]*fmm(x)

1 -1yl
=fG[flm](xy )y )dy
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= o 0l 171y g e MOl (yi ) dkdy
G K
=, s [fim]( )y (Y)Yl (x)

=c 0% s 1f00(y)| L) 1Pyl (x)

Therefore, [fim] satisfies the desired properties. Q.E.D.

The case of (n,p)=(1,1). Let us suppose that f= zZOazfzm belongs to P (L (G)).
This means that there exists an L1 function [f] on G such that f= [f]*f
Therefore f Cl%*fmo[f]*f Then by Lemma 4%3 we can choose an L1 function
[fmo] on G such that fl -[f ]*f 0’ and thus,mf= [f]*[f ]*f Here we note
that [f]*[f 0] belongs to L (G) Therefore, f belongs to Pé(Ll(G)). Clearly,
this argument is reversible as before, so we can obtain the desired result.

This completes the proof of the theorem. Q.E.D.

§5. Characterization of ¢8(LD(G)). Let n ¢ 3Z, n =2 1 and 1sp<?2. By Theorem
4.2 our problem is reduced to the case of m=0. We shall give a characteriza-
tion of 4g(LP(6)).

First we shall consider the case of (n,p)#(1,1). Let_us suppose that f=

belongs to P (Lp(G)) and we put F(z)=9 (f)(z)= Then we see

T3 et
20%g 10 2=0%28n"

that

f(9)=%ﬂ_%(1-r2)n 7 a B(g+1,2n-1)" ~3ng-ie0-in(ote’)
=0 * (5.1)

o~ (1r8) F(relf)eninO¥eT),

where g=k atk € KCL(A }JK and r=tht/2 . Since f belongs to Lp(G) by Proposi-

tion 3.3, this relation deduces that || || p=c” Fl < w. This means that

p,inp-1
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when (n,p)#(1,1), f belongs to PB(Lp(G)) if and only if F=q>8(f) belongs to

A (D), and @8 preserves the norm up to a constant multiplication.

pa%np’l
Next we shall consider the case of (n,p)=(1,1). For a holomorphic function

=X
Flz)= %,
0 is defined as follows.

alzl on D the fractional derivative (resp. integral) of F of order a 2

F[a](

® +1+a
Z)=£§0a¢£%%5¥T712£ (5.2)
r(g+l) 2 .

(resp. F[a](z)=lioasziii:ESi

By using this derivative we shall define

(5.3)

L
yha-4

HFY 4= vim aff Py
H0 a0
Then the space Hé(D) is defined as the space of all holomorphic functions on
D with finite || .|| y1-norm.
0

Lemma 5.1. For each g € G Tl(g)e?(z) belongs to Hé(D) and the norm is uniform-
ly bounded on g e G.

Proof. From the definition (2.7) it is easy to see that

[a]: F(a+2)(1-r2)e-i(e+e')

Z-l( ig_yat2
(1-re °z)%

2T, (g)ed(2))

where 9=keatks' € KCL(A+)K and r=tht/2 . Then we have || (Tl(g)e?)[a]H 1.30-3
< CF(Q+2)(1+u_1), where C does not depend on g ¢ G. Thus the desired result
is obtained. Q.E.D.

Now we shall give a characterization of ¢6(L1(G)). First let us suppose
that f belongs to Ll(G). Since ¢é(f)(z)=c1'1(T1(.)e?(z),f), it follows from
1 -1 -1
Lemma 5.1 that || oy(f) | Hé sc; (I Tl(.)e?H Hé’ Ifl) = ¢ cll £l { <=
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This means that @é(f) belongs to H (D) for all f ¢ Ll( G).

Conversgly let us suppose that F(z) Q=O .8 %(z) belongs to HO(D). Here we
put f(g)= % a f1 (g), and let [fio] (2 ¢ N) be the L” functions on G constructed

2=0"2 20
in the proof of Lemma 4.3. Actually, for a fixed o > 0 they are given by

[fkol(g) C“O|f00(g)|“f20(g) (g ¢ G),

where

o o 2% Hlta) | io4y)
20 T(atI)r(2+2)

©

Here we put [f] 0d [fzo] Then it follows from Lemmas 4.1 and 4.3 that c -
00([f]) @é( )=F, and moreover,

(2+2+a)

an%(lhi) 1 e °
IFEFI = rarry I Ifgel™ 2 @ STt faoll 1
. _2n -1 (o]
= eyl 2 @ gy
Obviously, th1s 1s finite, because F belongs to H (D) Therefore, we see that

F belongs to ¢O(L (G)).
Summalizing the results we just obtained, we have the following

v

Theorem 5.2. Let n ¢ 3%, n z 1 and 1sps<2.

(1) If (n,p)#(1,1), then ¢Z(LP(G))=AP Ean_l(p) and ¢Z : PZ(LP(G))

> Ap,énp—Z(D) 15 bijective and norm-preserving.
(2) If (n,p)=(1,1), then a)(L'(G))=H}(D) and &} : PL(LT(G)) ~
H (D) is bijective.

Remark 5.3. Noting the proof in the case of (n,p)=(1,1), we see that if
HFEl yu-1 < @ for an o >0, then il Fll 1,3q-3 < = for all a >0 and more—
22
over || F|| yl < =. Therefore, it is easy to see that for each o > 0 HO( ) is
0
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also defined as the space of all holomorphic functions F on D such that F[“]
belongs to Al,%a-%(D)'

Corollary 5.4. LJ(G) n Pé(LZ(G))= {0}.

Proof. If feL (G) be]ongs to P (L (6)), then || f| 1=2n H ® ()| 1oy <=
Obviously, this means that Qo(f) 0 and thus f=0. Q.E.D.

56. The space Hé(D). In this section we shall state some basic properties of
the space Hé(D) introduced in the previous section.

Proposition 6.1.

(1) Hé(D) 1g dense in HJ(D).

(2) Hé(D) is not contained in and does not contain H (D). In partic-
utar #)(D) < # (D).
Proof. Let f be 1n Ll(G). Then Il ¢ Ol s (T ?” ylo[F1) = Pl < s
and thus, H (D) 0(L (G)) =H (D) (see Theorem 5.2 (2)). Here we note that
,QO(L ( )) 15 G-invariant under the action of T (g) ig e G). Therefore, since
H (D)) is irreducible, HO(D) must be dense in H' (D). This proves (1).
Let F be an extremal function in H(D). Then |F'(z) |=(1-r2)_1H FIj  (cf.
[D], p.144, Ex.7). Therefore, F' does not belong to A1 0( ). This means that
F does not belong to HO(D) (see Remark 5.3), and thus, H1( D) does not contain
H”(D). Let D be the space of all holomorphic functions F on D such that
iplF'( |2dz < w, Then by using Schwarz's inequality and Remark 5.3 we see
that D is contained in Hl ( ). However, it 1s well-known that] is not contain-
ed in H”(D) (cf. [D], p. 106 Ex.7). Thus H (D) is not contained in H™ (D).
Moreover, since H"(D) is contained in H (D), the last assertion is obvious.
Q.E.D.

10
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Proposition 6.2. Let us suppose that F belongs to HJ (D). Then for each o> 0

1
ijbdmmstonm.
Proof. We eas11y see that || (F )[“ I 1,40} =l FIl g, 3q-4< @ or each a > 0
and F in pt (D). Then the assertlon is clear from Remark 5.3. Q.E.D.

For y e R and a ¢ Ll(aD) we put

2 2 .
P (a)(2)=5 1 §%;f¢§l2(1+u) a(e)ds  (2ore’®),

0 |1l-re
and et H( )(D) be the space of all h01omorph1c functions on D being of the
form Pu(a) for an a in L (3D). Then H (D)= H(O)(D) by [D], Corollary 2 in p.
34, and moreover we have the following

Proposition 6.3. For each w < 0 H( )(D) CZI? (D) €= H (D).

Proof. Let us suppose that F belongs to H%u)(D)’ that is, F=Pu(a) for an a
in Ll(aD). Without Toss of generality we may assume that -4<u<0. By using
the integral formula for the fractional derivative (cf. [KI, (9.1)), F-*4 can
be written as

-2

o)y o POl (102760 e,

Now we shall take an € > 0 such that O<e<-2u. Then by using Theorem A in
[DRS] we see that

ekl

1 1
s2€”2

1- -
(1- |C12 - (l’lzlz)E ledC

1
“lal, sup s ;o=
F(T-e) 2n "0 L 000 D [1-ce #1200) Tp 1712

A

A

1
s CJlall4 fo(l—n)1'€'2(1+“)dn fo(l-r)e'ldr

11
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where |z|=n and |z|=r. Then the desired result is obvious from Remark 5.3.
Q.E.D.

§7. Applications. We shall apply the characterization of ®$(LP(G)) to the
classical harmonic analysis on D. The following theorem, which is obtained
in [DRS], Theorem 5, is an easy consequence of Theorem 5.2 and Remark 5.3.

Theorem 7.1. ILet r > -% and B 2 0. Then

s8]

(1) If F belongs to AZ r(D)’ then F belongs to A JB(D).
k] 2

1,7+

(2) If F belongs to A gB(D)’ then F[ ] belongs to A],r(D)'

1,r+ B

Moreover, i1f we replace AJ 4(D)={0} by the space Hé(D), the assertions are
y—2

also valid for the case of r=-3.
To the detail of the proof see [K].

Next we shall recall the explicit form of the matrix coefficients fzm (see
(3.2)). Let Gm(u;y;x) be the Jacobi polynomial with degree m. Then since
Gm(g—m+2n;2—m+1;1)=G4er(2n+m)r(1—m+1)/r(2n)r(1+1), it is easy to see that
Gm(m—m+2n;2—m+1;r) has the expansion being of the form

Gm(i—m+2n;2-m+l;r)

~(-1)" r(2n+m)r(g-m+l) m
r{2n)r(e+l)

+ —(TF(I%-TI)(l-r)(Qg’m_l(l)(l-r)m_1+Q:]’m_2(2)(l—r)m'2+...+Q;,0),

where Q; K is a polynomial of 2 with degree k whose coefficients only depend
on n, m and k. Therefore, since F(-m;2n+2,1—m+l;r)=Gm(2~m+2n;2-m+1;r), fgm(g)

12
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(2 2 m, g=keatke. and r=tht/2 ) has the expansion:

£ (@)=Cnfro(a)r ™ (P (1-r2)Ph  (0)
. (7.1)
+ ..+(1—r‘2)P: (2)y ™,

where C1=(-1)"(r (m2n)/r(m+1)r (20))* and By | ()=(- I, qh ((2). By using

these polynom1a1s P k° we shall define a d1fferent1a1 operator Dn K as follows.

For a holomorphic funct1on F(z)= 1=0 o2 24

n - 3
D kF(z) QZOP k(l)alz . (7.2?

Moreover, we put

(2)]z]™" (7.3)

D F(z) C {F )|z| +(1- [zl m m (m)

2\m-1_n -m 2y-1.n
+(1-1z|) Dm,m—lF(m)(Z)|Z| +.o..+(1-2]%) Dm’lF(m)(z)|z
where F( )(z) NI

. Now we shall recall Propos1t1on 4.2 and its proof. Then we see that F(z)=

028 (z) belongs to @ (Lp(G)) if and on]y if Zoanf am belongs to P;(Lp(G)), and
thus by (7.1),(7.3), if and only if || D FH < = when (n,p)#(1,1), and
|D F “]“ yg-3 < @ for an a > 0 when (n p) (1,1). Here let Ay %np_l(o)m
(resp. Hl( )m) be the space of a]] holomorphic functions F on D such that

n
[IDmFH b inp-1 < {resp. || D ple ||1 dae < for an o > 0?. Then we have

the following

p,inp-1

Theorem 7.2. Let n ¢ 3%, n 2 1 and 1sps2.

(1) If (n,p)#(1,1), then Ap,énp—Z(D)mzA (D) for m € N.

ps énp"l

(2) If (n,p)=(1,1), then HL(D) =H\(D) for m e .

13
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Corollary 7.3. Let us suppose that (n,p)#(1,1). Then if F belongs to Ap 1
2
!
then F' belongs to Ap,é(n+1)p—1(u)'
Proof. This is an easy consequence from the case of m=1 in Theorem 7.2.
Q.E.D.
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