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ABSTRACT

Various criteria of model selection are derived
from Kullback-Leibler information number. It is
shown that TIC, which is an extension of Akaike's
information criterion (AIC), and the cross-
validation CV are asymptotically equivalent. Such
criteria are further extended to RIC for the case
when penalized maximum likelihood estimate is used
in place of the maximum likelihood estimate. Such
extension allows us to select a weight of the

penalty as well as a model.

Some key words: Model Selection, AIC, TIC, RIC,
CvV, BIC, HQ.
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1. Introduction

The objective of this paper is to draw together various
criteria of model selection based on Kullback-Leibler infor-
mation number and clarify the problem. Model means here a
parametric family F of densities. The problem of model
selection arises whenever one wants to do a statistical
analysis, regression, discrimination and so on. Even the
band-width selection of kernel density estimate can be con-
sidered as a kind of model selection (Rice[12]). Natural
requirement for a selection procedure is to choose a model
as good as possible from a giveh famfly'of/models. Needless
to say, the goodness depends on the objective "of the

analysis. Two main objectives are:

a) To know the true model g(:) as correctly as possible.

This is what hypothesis testing aims at.

b) To choose a model which yields a good inference, for

example, good estimation, good prediction and so on.
The selected model is only considered as an approxima-
tion to the true g(‘) which may not be exactly

described by any of given models.

Consistency is our main concern for the former ob jec-
tive, and the goodness of the resulting inference is more
important for the latter. However, it is not always the
case that the consistency and the goodness of the inference

are compatible. Recent analysis shows that some of
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selection procedures are inconsistent but yield good infer-
ence for large number of observations. It will be discussed

later in Section 4.

Model selection depends on the the type of family of

models;
Separate nested
hierarchical {ﬂ
Unseparate unnested

unhierarchical

Although most of criterion procedures are formally
applicable for any type of models, the difficulty of selec-
tion varies with the type of models as listed above. | f
models are separate, that is, each models have no intersec-
tion like normal and lognormal models, it is rather easier
to distinguish models, because log of the likelihood ratio
diverges to infinity with order of the number n of observa-
tions for different models ( Cox[5], and Box & Cox[4]). Our
theoretical interest is then mainly in unseparate models,

particularly in hierarchical models.

We may choose a model by plotting values of a criterion
or by looking for the minimum. An advantage of such cri-
terion procedure is that it is easy to see differences of

models by a single value. Any pre-determined values like
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significance levels in multiple testings are not required.
An objection to such criterion procedure may be that it
obliges user to choose a unique model. However we should
emphasize that the role of a criterion is not in leading
analyst to a unique decision but in giving a guide of selec-
tion. The user is free to make his/her final decision by

consulting any other available information as well.

In Section 2, we will derive AIC ( Akaike's Information
Criterion ) from Kullback-Leibler information number and
extend it to a criterion TIC. |In Section 3, an asymptotic
equivalence between the cross-validation CV and TIC will be
shown. Except for independent and identically distributed
observations, such equivalence does not hold true between CV
and AIC. Various criteria which have been proposed will be
compared in Section 4. A further extension in Section b
allows us to select a weight of penal{zed maximum likelihood

estimate as well as a model.

2. Information Criteria

Let y," = (YyoeeoaYp) be n independent observations but
not necessarily identically distributed, whose joint density
is g(yn), where ' denotes transpose of a vector or of a
matrix. Hereafter, E denotes the expectation with respect
to the vector of random variables, Yn- Given a parametric
family of densities F = {f(yn;e),ee®}, we can make use of

the model F for estimation, prediction and for any other
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statistical inferences. If our objective is b) in Section
1, one of natural ways of evaluating goodness of the model F
is to introduce a kind of distance between the estimated
density f(+;8) and the the density 9(+), where 6:6(yn) is
the maximum Llikelihood estimate of ¢ under the model F,
based on Yn As a distance, we adopt Kullback-Leibler

information number
A J g(x,)
Kn(g(')'f(':e)) = g(xn)logf——/\—dxn,

(xp:9)

which is the function of observations y, through 6. If
ljg(xn)log g(xp)dx | <=,

then the expectation of Kullback-Leibler information number

K (g(+),f(+;6)) can be rewritten as

Jg(xn)log 9(x,)dx, - Ejg(xn)log f(xn;ﬁ)dxn. (2.1)

A statistical problem here is how to estimate (2.1),
which is a function of unknown g(+). We will approximate
(2.1) by an asymptotic expansion under the following assump-

tions Al to A5.

Al. The parameter space © is Euclidean p-dimensional space

RP or its open subspace. Both Gradient vector

g, (0)" = (gng(e),l=l,...,p)
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and Hessian matrix

2
Ha(0) = (ggig6- (), 15L,msp)
m

of the log-likelihood function l(e) = log f(yn;e), are
well defined with probability 1, and both continuous

with respect to e.

A2. Elgn(e)|<m and E|Hn(e)|<w, where |+| denotes the abso-
lute value of each components of a vector or of a

matrix.

A3. There exists a unique o* in e, which is the solution of
Egn(e*)=0. This assumption together with A2 implies
that K (g(+),f(+;0)) is minimized at o¥.

A4. For any &0,

sup (o) - l(e*)
lle—o*lI>e

diverges to - « a.s.. This assumption assures that

x P
6-6" converges to zero a.s. as n tends to infinity.

AS. For any ¢>0, there exists 3>0 such that

sup  |E(B-0¥)"J (o) (8-0%) - tr(ln(e*)Jn(e*)“)x <e
llo—o*l1 <o

for large enough n. Here

(%) = E gn(e*)gn(e*)' and  J,(6) = — E H (o)

are assumed positive definite matrices and continuous
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with respect to o.

We note that all of assumptions above are commonly used
regularity conditions and satisfied in various situations.
By expanding log f(xn;§) around 6%, we have

log f(xn;é) = log f(xn;e*) + (6—9*)'§glog f(xn;e*)

¥ 2

N ’ X X A X
+ %(e—e ) 35%5Tlog f(xn;e Y(6-6"),

where o ¥¥ is a value between & and o¥. We should note that

the Gradient vector jglog f(xn;e) and the Hessian matrix

2
55357109 f(xn;e) are not of log f(yn;e) but of log f(x,;e).

Since
3 X
Jg(xn)galog f(xn;e )dxn = 0,
the assumption A3 justifies the expansion;

I,\ — . *
Jg(xn)log f(xn,e)dxn = Jg(xn)logf (ane )dxn

2
+ %(6-9*)'[ (X)) 35557109 f(xn;e**)}(§—e*).(2.2)

From the assumption A5, the expectation of (2.2) is
Ejg(xn)log f(x,:8)dx, = Jg(xn)log f(xn;e*)dxn
- (1, (e%)9, (%)) + o(1)

= El(e¥) - %tr(ln(e*)dn(e*)_1) + o(1).
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On the other hand, by expanding l(e*) around &, from the

fact that gn(6)=0 we have
(%) = L(8) + (o*-B)"H (6*%)(0*-5). (2.3)

Therefore
Ejg(xn)log f(x;8)dx, = EL(8) - tr(ln(e*)Jn(e*)"‘) + 0(1),

and the expected Kullback-Leibler information number (2.1)

becomes

E Ky(g(+), f(+;8)) = Ig(xn)log 9(x,)dx,,

1

FE(=U(B)) + tr(1, (e")d (017 )) + o(1). (2.4)

Since the first term on the right hand side of (2.4) s
independent of each model F, a natural criterion of select-

ing a model is derived as

~1(8) + t (o), (2.5)

X -1

where tn(e*) is an estimate of ¢t (o) = tr(In(e*)Jn(e*) )
in (2.4), which is considered as a penalty appeared in (2.2)
for the increasing size of the model, plus a correction of

the bias in (2.3).

There are various ways of estimating tn(e*), from which
different criteria may follow. If g(+) is equal to one of
densities in F, say f(+;6,), then e¥=o , 1 (0,)=J (o,), and
tn(e*)zp. Therefore, for the case when g(') is expected
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equal to or very close to one of densities in F, the cri-

terion known as Akaike's Information Criterion (Akaike[1]),
AIC = =21(8) + 2p

follows from (2.5). Multiplication by 2 is employed only by

convention.

A procedure suggested by Takeuchi[23] is to estimate
tn(e*) based on the sample moments, as well as based on the
maximum likelihood estimate & of e*. The following example

may illustrate his idea.

Example 2.1

Let us consider a simple location and scale family

i [i§1 w[y;_u]}’

where « is the standard normal density. In our notation,

.=

Y
0'=(u,0), © = (—,=)x(0,«), and f(yi;e)=¢[ ! ]. We don't

a
assume any specific distribution for each observation but we
only assume that yi's are independent observations and have

the same first and second moments. Since u* =3 Eyi/n and

*2

o¥ =5 E(y;-4")

2
/n, we have

2 5

i X 1 3) /0¥
5 Lple7) = /9 n(3)/o

5 6 2
w(3) )X a4y a* <176

and
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*2

] x, _|1/a 0
ﬁ Jn(e ) - > »
0 2/a*

where u(1)=5 E(yi—u*)l/n for >1. Then,
|

4
t (e%) = 1+ %(ﬂ(A)/a* - 1),

2
By replacing w«(4) and a¥ by the 4th sample  moment

2(4)=Z(Yi—7)4/n and the maximum likelihood estimate

82=2(yi—?)2/n respectively, we have an estimate of tn(e*),

tp(e®) = 1+ Syt - 1.
A criterion which follows from (2.5) is then

“2U(B) + 2 + (a(8)8t - 1)

TICo(F)

n+n log(2n8%) + 2 + (a(4)/et - 1),

Multiplication by 2 is again employed by convention as is in

AlIC. Difference between TICO and
AlIC = -21(8) + 4

is clear. The effect of difference of the shape of g(')
from the normal s counted in TICy. By applying the same
technique we can derive TIC for the problem of selecting a

sample transformation w». Consider models;

no vy -
i {i21l¢ (y‘)|¢[___5___]J'
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where ' is the derivative of »w. Then
TIC(F,) = -21(8) + 2 + ((4)/d" - 1)

follows, where Z(A)=Z(w(yi)—2)4/n and 32=z(w(yi)—ﬁ)2/n with
a=sw(y;)/n. Comparing TICy(F,), we may select a transforma-

tion ».

However, such procedure of deriving an estimate of
tn(e*) is not widely applicable. It is laborious to find an
estimate of tn(e*) model by model, and it is usually unknown
what kind of assumption s appropriate for yi's. Before
proceeding to an extension of TICy, we consider another

example.

Example 2.2

A Gaussian regression model with m dimensional regres-

sion parameter is denoted by

=X, '8
L [ '31 W[Y' z'-—]» 6=(B.a)'eRmx<0.«)}.
1=

We first assume only independence of yi's. Then

ln(e*)

2 5
S (2) = (D)%% /6% S (3)=uj (D (2))x;" /o

*5 2 *6
5 (3) =y (N a (2% /0% 50 (8) =1 (2)°)/a

and
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:
x, _ [X'X/a 0
Jp(e*) = :
0 2n/a
Here u;(1)= E(e;)! for L>T with ej=y;-x;'#*, i=1, ...,n and
X=(x] yer s Xp )" is the design matrix.

Denoting the hat matrix by H=(hij)=X(X'X)_'X' we have

X
tn(e®)

2 4

v s (- 207 0% )

= 5 (2)=nj (N )0y /0

if we assume that the first and the second moments of ei's

are the same, then

4
to(0%) = m + S(ls w(4) /0% -1) (2.6)

and

TICo(F,) = -2L(8) + 2m + J( ks 8f/6%-1),

are the maximum Llikelihood

Q>

where &.=y;-x}8, and 3 and
estimates.
One of possible ways to avoid such specific assumption on

g(+) is to make use of the following inequality.

2 4
tn(e%) < su(2hy /0 + glisu /et -1 (2.1)

Here the equality holds true if and only if ”i(])zE(ei):O

2
X for all i, and then the value becomes to

and ui(2)=E(e?)=o
be that in (2.6). The right hand side of (2.7) can be

estimated by
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2 _ o2 ~2 1,124 ,~4
This estimate is possibly biased. However it is toward
safer direction. More penalty is put for models which are

far from best fitting. The resulting criterion is

TIC(Fm) = =21(8) + an.

This example leads to a general definition of TIC.
Hereafter we assume that Yn is a vector of independent
observations. Models should be also for independent obser-
vations, that s, the joint likelihood can be decomposed

into
l(e) = 2 li(e)r

where 1 (e)=log f;(y;;0). Estimate I,(e*) and Jp(e*) by

and

respectively. Then
TIC = -21(8) + 2tr(137 ")

is an extension of TICy. As noted in the example, since

X

5 E(5ol, (6%)5201,(0%)) = 1,(6) + 5 E531;(0%) Eggvl;(0¥)
| |
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(2.8)

tr(T3_1) tends to over-estimate tn(e*) by the last term on
the right hand side of (2.8). But, if it is significant we
can not expect any stable behavior of the maximum likelihood
estimate 6. Each observations unevenly contribute to the
Gradient of the log likelihood function at e*, which is the

solution of

Therefore such bias does not affect the objective to select
a model which yields good inference. |t is worth noting
that tr(fﬁ_]) is well known Lagrange-multiplier test statis-
tics ( Hosking[8]). TIC consists of two parts, -2 log (

maximum likelihood ) plus twice of that test statistic.

3. Equivalence between Cross-validation and Information

Criteria

Cross-validation is another kind of criterion to evalu-
ate goodness of fit of a model. This criterion has a long
history and has been used widely. Detailed analyses can be

found in Stone[19].

We restrict our attention into a simple cross valida-
tion. By 8(-i) we denote the maximum likelihood estimate of
6 based on y, with picking out the ith observation y;. The

cross validation is then défined as
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oV o= -25 L (8(-i)).
[

It is shown by Stone[20] that CV is asymptotically
equivalent to AIC, when yy,...,y, are i.i.d. and g(') is a
member of F. |t does not hold true otherwise, but instead
we can show an equivalence of CV to TIC. Necessary assump-

tions are the following A6 to A8 besides Al to A4.

A6 For any >0,

max sup  (l_;(e) - l_i(e*))
U Jle—oX>e

diverges to — =« a.s. as n tends to infinity, where
l_i(e) = l(e)—li(e). This implies that &6(-i)'s, the

solutions of

2 (8(-i)) =0 =l n

38 i vl
uniformly converge to o¥ as n tends to infinity.

A7  For any >0, there exists 5>0 such that

sup T - Hn(e)Hn(e*)"]H_< €
llo-o*l <o
for large enough n, where {[+|l is Euclidean norm of a

vector or the operator norm of a matrix.

A8  For any €>0, there exists 3>0 such that

32 X, -1
max sup ngggfli(e)Hn(e ) < €
' lle—o*i<o
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for large enough n.

From the definition of 8(-i) we have

3oL, (8(-1)) = g2ud(-))
2
= 53‘(6) + {3§§§Tl(6)}(6(—i) -8) (1 + op(1)).

= =0 (8(-i) - 8)(1 + op(1))

and
Ay A Ay Avy 9 A
L(B(=1)) = 1{(8) + (8(-1) - 8)"521,(5)
a, N Y: XXy, A, A
+ (6(-i) - 8) ggjgfli(e y(o(-1) - #8)
= 1(8) = 521310 371 5218 (1 + 0 (1))
= 1(8) - 51,8 37 28 (1 + 0p(1)).
Therefore

cv

-2 3 L(8(-1))

S21(8) + 23 321(8) 0T R2L(8) (1 + op(1))
|

“21(8) + 2 tr(io™hy (1 + op(1))

is equivalent to TIC.
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Example 3.1

Consider the same regression model as in Example 2.2.
To simplify our discussion, we regard ¢ as a nuisance param-
eter and estimate it by . From the well known equality (

Stone[19] ), we have

cv

n log(2n6%) + N X, "B(~1))%/5°

2
n log(2n62) + ; [éi/(1—hii)} /52,

To assure the consistency of §, we assume that max(hii) con-
i

verges to zero as n tends to infinity, which is equivalent

to assume A7. We have then

Ccv

n log(27d?) + X 82(1 + 2h; /6% + o (1)

n log(2r6%) + n + 5 &8%h, /3% + 0p( 1),
|

which is asymptotically equivalent to TIC when o is regarded
as a nuisance. The term (%Zé?/&A—l) will appear in Cv, if

d(-i) is used in place of .

GCV ( Wahba[25], Li[11] ) is a variant of cross valida-
tion. It is known that GCV is equivalent to AIC in the con-

.text of regression. Actually

6oy = 5 82/(1 - m/n)?
|

A

5 82(1 + am/n) + 0 (1/n)
t
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[l

n [32(1 £ 2m/n) + op(1/n2)},
and

AIC = n + n log(2n) + 2 + n log(d2exp(2m/n))

n+n log(2n) + 2 + n logl(32(1+2m/n)) + Op(1/n2)}.

However, both criteria are different from TIC.

Although the equivalence shown above is only for the
case of large enough n, this allows us more freedom to
choose one of the equivalent criteria, CV or TIC. An advan-
tage of the wuse of TIC is that the calculation may be
simpler than that of CV. A simple reduction is possible for
CV in the case of regression, but generally n maximums
li(é(—i)), i=1,...n should be looked for. On the other
hand, only one time maximization of the likelihood is neces-
sary for obtaining TIC. To apply TIC we have to construct
beforehand a family of models which are explicitly
parametrized. This seems a limitation of TIC but it should
be taken as an advantage, since, in most cases, the con-
struction of models will result in clarifying the underlying
phenomena. Even in CV, the likelihood function should be
explicitly parametrized. An essential limitation of TIC s
that it can not be applied for the selection of models
parametrized by discrete values, since differentiation of

the likelihood should be allowed with respect to parameters.
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4., Comparison of Criteria

To discuss the behavior of each selection procedure, it
is better to classify the assumptions on the true density

g(+).

1) g(+) is in a fixed family of models {Fj} for any
number n of observations.

2) g(+) is outside of a fixed family of models {Fj} for
an increase of n, or always stays outside.

3) g(*) is outside of the family {Fj}' and comes into
it in the limit as the family increases its size with

n.

Under the assumption 1), our first concern is about the
correctness of the selection, and the' goodness of the
resulting inference is secondly. This assumption fits for
the objective a) in Section 1. Under the assumptions 2) or
3), the correctness can not be defined well, so that our
main concern is only how close the selected model is to the
true g(+). Such assumptions fit for the objective b) in

Section 1.

To discuss the consistency under the assumption 1), the
following generalization of AIC ( Bhansali & Downham[3],

Atkinson[2], Hampel et al. [6] pp.366-367 ) is convenient.
AlC, = -21(8) + « p,

where « is a pre-determined value which controls the amount
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of penalty for the increasing size of the model and may
depend on the size n of observations. The result by Hannan
and Quinn [7] suggests that under suitable regularity condi-
tions a necessary and sufficient condition for the strong

consistency is , putting « = «,

liminf an/(Zlog log n) > 1
n .

and

limsup an/n = 0.
n

That for the weak consistency is

. o = e
l|m|nf n o

and

limsup an/n = 0.
n

The result above is not yet generally proved, but intui-
tively clear if we note that 2{l(6)—l(eo)} is x2 distributed
with the degree of freedom p if g(:) is equal to f(:;0,), a
density in the wunderlying model, otherwise x* distributed
with a degree of freedom with the order of n. The condition
for strong consistency comes from the law of iterated loga-
rithm. Therefore, the AIC, TIC or CV introduced in the
previous section are not consistent. For the asymptotic dis-
tribution, see Shibata [14], Bhansali & Downham[3], and Woo-
droofe[26]. They obtained the asymptotic distribution of
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the selected model by applying theorems of random walk.
Some of consistent criterion procedures have been proposed,
BIC by Schwarz[13] and HQ by Hannan and Quinn[7], which are
AIC, with « = log n and « = ¢ log log n for ¢ > 2, respec-
tively. It is interesting note the result by Takada[22],
that any procedure so as to minimize AIC, is admissible
under the 0-1 loss. In other word, if our main concern is
the correctness of the selection, there is no dominant

selection procedure in such class of selection procedures.

I f we put assumption 2), at least asymptotically, the
largest model or the full model which includes any underly-
ing models, will be the best possible selection. Apparently
such full model can be constructed from the given family of

models.

Under the assumption 3), our main concern is about the
goodness of the resulting inference rather than the correct-
ness. The key point for proving an optimality property of
AIC is that the trade off between the bias and the variance
remains significant even when n is large enough. |If we res-
trict our attention into the estimation of regression param-
eters, such trade off mechanism is rigorously formulated.
The result by Shibata[15] shows that if the regression vari-
ables are selected so as to minimize one of AIC, then the
selection is asymptotically optimal if and only if a=2, that
is the case of AIC. Necessary assumptions for the proof are

that the shape of g(:) is the same as that of F, and the
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mean vector of observations is parametrized by infinitely
many regression parameters. Otherwise, AIC is not neces-
sarily optimal. But TIC is instead expected optimal under
the loss function tike, Kullback-Leibler information number
as well as under the squared loss, even when the shape of
g(+) does not coincide with that in F. This results will be

reported elsewhere.

For admissibility under the squared loss with an addi-
tional penalty p, Stone[21] proved local asymptotic admissi-
bility, and Kempthorne[10] proved the admissibility under
the squared loss. Such results are corresponding to the

result by Takada[22] in the case of 0-1 loss function.

All of the results above is in the sense of asymptot-

ics. |If the size n is fixed, theoretical comparison is dif-
ficult and only available results are by simulations.
Recent paper by Hurvich[9] will help the understanding of
the behavior in small samples, for example, consistency does
not necessarily imply the goodness of selection. One of
practical procedure might be obtained by choosing « accord-

ing to the size n ( see Shibata[16] ).

For more detailed discussion on incompatibility between
consistency and efficiency, see Shibata[18], and for com-

parisons with testing procedures see Shibata[17].
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5. Further extension

In previous sections, the maximum likelihood estimate
has been always used as an estimate of parameter o. |In
fact, there is no definite reason why we restrict our atten-
tion into such estimate, though, the maximum likelihood
estimate has nice properties and is convenient for analysis.
As far as f(+;6) is close to g('), we may use any other
estimate in place of & under each model. In this section,
we consider the penalized maximum likelihood estimate and
derive a criterion based on such estimate. A typical exam-
ple of penalized estimate 1is ridge regression or spline
function approximation. A crucial problem in such estimate
is how to choose a weight of penalty. As a result of the
extension, we can unify selection of such weight and that of

a model.

Penalized likelihood is defined as

L,(yn:e) = log f(y,;e) + xk(e),

where k(e)<0 is an arbitrary penalty function which may
depend on n and twice differentiable. The weight xz0 con-
trols the amount of penalty.

The penalized maximum likelihood estimate 6(x) is the solu-

tion of
3 (y;0) =0
30\ Yn’ '

We assume that 6(x) converges to e*(A) which is the unique

solution of
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J

E 5oL, (y,i0) = O.

By similar expansions as in Section 2, we can show

E [ Ly (x5 8(2))g(x,)dx,
= E L (y,:8(0) = E (8(x)=0%(2) I, (A)(8(x)-0 () + o(1),
(5.1)

where

2
d L X
Jn(2) = = B ggagrtalypie (3))-

Subtracting xk(8(x)) from the both sides of (5.1), we have
E J 9(x,)log f(xn;é‘(x))dxn
= E{ L(B(2) = (8()=0%(2) "I (2 (B()-8"(x)) } + o(1).

Since the expansion

2
0= a_ng(yn;e*(A)) + aTgETL/\(Yn;G*(A))(é\(x)—-e*(,\))

asymptotically holds true, we can rewrite the expectation of

Kul lback-Leibler information number as

9(x,)
E | log— d
J ng(xn:a(x)) 90 Sy

= J g(xn)log g(xn)dxn - E 1(6(n)) + tr(ln(A)Jn(A)—1) + o(1),

where
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1,00 = E 53 (v,:05 () 32+l (v,:05 ().

Then an extension of TIC follows,

1

RIC = =21(8(x)) + 2tr(T(x)I(x)" "),
where
T(x) = S{321,(8(x) + 2 52k (BOIHFIL (B(A) + 2 5k(B(x2)}
2
= 5 2Bl (B(0) = 2 523K (8(0) 52k (B(x)

and

~ 32 A 32 A

I(R) = = 5555 LB (R) = X 555K (B ().

When x=0, RIC is reduced to TIC, so that RIC is in fact an
extension of TIC. By RIC, we can choose x, as well as
selecting a model. One of practical procedures is to choose
x for each model so as to minimize RIC and compare the
minimized value of RIC for each model. There is no rigorous
proof of optimality yet, but it is clear from the derivation
that we are looking for an f(:;e) in given models {FJ}' as
close as possible to g(:) in terms of Kullback-Leibler

information number.

Example 5.1

Consider the same regression model as in Example 2.2.
To simplify the problem, we regard ¢ as a nuisance parame-

ter. As a penalty function we adopt
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k(e) = - lIxgll®/24°.

The penalized maximum likelihood estimate of B is then a
shrinkage estimate, 8(x)=8(0)/(1+x), where B8(0) denotes the

maximum likelihood estimate of 8. Since

f(x) =5 éf xlxi'/cr4
and
S(x) = (142) X'X/a?,
we have
RIC(F,2) = n log2na® + S(y; = x;'B(x)7 /" + 155587h, /0"
= n log2no” + { 585 + (1307597 + 125 séthy, b/t
where 9, =y, - &;. Here
32 RIC(F,,») = ZTzzgﬁgj{ AES9T - s85h, i) - 58%h;; }(5.2)
The X which minimizes RIC is then
A2
R = Zyﬁzii;“:‘h” if o s9] > S8thy
=« otherwise.
The resulting estimate of 8 is
BR) = (1 - 581hy /597" B(0),
where (oz)+ = max(«a,0). It is interesting to note that a

non-negative shrinkage factor automatically follows from
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minimizing RIC. As a special case, for the model with a

single location parameter # as in Example 2.1,

~

MRy = (1 =& my)ty,

which is one of commonly used shrinkage estimates.

The minimum value of RIC for each model is

A2

N 2 A2 128 2
RIC(F,,8) = n log2na® + { $8° + 2(1 - 5 “—511)(58Th;;) }/o
2.
if £97 > s8ih,, i.e. R (.,
=n log2;rw2 + Zy?/a2 otherwise.
Thus

RIC(F,=) = RIC(Fm,ﬁ) < RIC(F,,0),

and RIC(Fm,A) decreases as x increases from 0 and attains
the minimum at 3. Particutarly when 3X=<, the complete
shrinkage estimate B(«)=0 follows. By using such estimate
we can always decrease the value of RIC except for the case
when all éi's are zero. We then compare such minimized
value for different models F,» and choose one of them.

More generally if the penalty function is of the form of

k(o) = - llA8lI®/2¢%, then
RIC(F_,») = n log2na® + { lly=XB(x)II% + ZZhii(A)Q? } /a2,

where

H(x) = (hy00) = X(X'X+2A"A) " Ix"
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and
B(x) = (X'X+xA'A)—]X'y.

As a result, in this regression context, RIC is closely
related to a criterion '?(h) which is mentioned in Titter-

ington[24].

It is also possible to extend RIC for the case of more
than one penalty functions. Still much works should be done
for this criterion. We leave those for future investiga-

tions.
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