Research Report

KSTS/RR-86/008
27 July 1986

Global asymptotics of the outer
pressure problem of free type

by

Takeyuki Nagasawa

Takeyuki Nagasawa

Cepartment of Mathematics
Faculty of Science and Technology
Keio University

Hiyoshi 3-14-1, Kohoku-ku
Yokohama, 2223 Japan

Dept. of Math., Fac. of 5ci. & Tech., Keio Univ.
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan



KSTS/RR-86/008
July 27, 1986

Global asymptotics of the outer pressure problem of free type

Takeyuki NAGASAWA

Department of Mathematics, Faculty of Science and Technology,

Keio University, Yokohama 223, Japan

ABSTRACT

Global asymptotics on the outer pressure problem of free type is discussed.
The solution of the problem exists globally (Theorem 1), and some global asymptot-
ics are investigated (Theorem 2). Under some additional assumptions, the solution

converges to a statiopary state (Theorem 3) with exponential rate (Theorem 4).
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1. Introduction and results.

We consider the outer pressure problem of free type for the one-dimensional motion of the

polytropic ideal gas. Find the functions (u,v,8) satisfying the system of equations

U = Vy, (1.1)
0 Vx .
U - X 1.2
\{} [ Ru + 2] u ]x, ( )
ce=—Ri+p.v—xv+x&— (1.3)
Ve u u)* u),’
for (x,t) € [0,1] X R4, the initial condition
(u,v,0)(x,0) = (u0,0,00)(x), #o >0, 80> 0, (1.4)
and the boundary conditions
v(0,0) =0, (1.5)

[— R—i— + p”T] 1,0 = - PU()), (1.6)
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0,(0,) = 6,(1,1) = 0, .7
where
() = '[(')1 ug(x)dx + _’: v(1,7)d7. (1.8)

P({) is the outer pressure. Here the specific volume u, the velocity v and the absolute tempera-
ture @ are unknown functions; the outer pressure P({) is a given function; the gas constant R, the
coefficient of viscosity p, the heat capacity at constant volume ¢y and the coefficient of heat con-
duction k are positive constants. The subindex ¢ or x indicates the partial differentiation with
respect to the variable ¢ or x.

In [2] we discussed the outer pressure problem of different type where the outer pressure P
wvas a given function of ¢ In this paper, however, P is determined together with the solution. We

assume P({) is a not necessarily positive function in the class of cl(o,L) (L € (1(0),+=]), satisfying

(P1) giTr; ¥({) > Eq,
and either
(P2) fim ¥(0) > Eo,
or
(®2)’ fm PO < +o,
where
Y = fi, P(n)dn, (1.9)
Eg= J;l [%v% + cy0g|(x)dx. (1.10)

Physically, P({) is a function like

P({) = const. > 0, (1.11)
or
__ const.
PO = T—¢ > 0, (1.12)

where in latter, L is a positive constant. In these cases we can easily check the assumption (P1) and
(P2)'.
Firstly, in Section 2, under the above assumption, we shortly discuss the existence of the solution
n+o

of (1.1) - (1.7) globally in time. For function spaces H e, Hite and B2Y®, we should refer to [1,

Eq. (2.2) - (2.6)]-
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Theorem 1. Assume that the initial data which are compatible with (1.5) - (1.7) belong to
ug € H*® vy € H2*®, 05 € H>*® for some a € (0,1) with ug > 0, 8¢ > 0 and that the function P({)
satisfies (P1) and either (P2) or (P2)'. Then there exists a temporally global and unique solution
(u,v,8) for the problem (1.1) - (1.7) such that it belongs to B}*® X H}*® X H}*® withu > 0,6 > 0

and has generalized derivatives uy, vy, 8, € L*>((0,1)X(0,T)) for any T > 0.

The sequel of studies is an asymptotic analysis of the solution. In Section 3, we can establish

some asymptotic properties of the solution.

Theorem 2. Assume that the hypotheses of Theorem 1 hold. Then there exists positive constant C

Yich depends on R, p, cy, x, P({) and initial data but not on t such that
Cl=u,0=c,
2
L'l max v¥(x,7) + f‘{u} + v+ 62+ vi+6%+ [R2 - P(I(T))] }dx]d'r =C,
0 |x€[0,1] 0 u
lim fo‘(vz +u2 + v2 + 02)dx = 0,

1=+

tl-ifxx(P(l(t))u(x,t) — RO(x,)) = 0 uniformly in x € [0,1]

hold.

For the proof of this theorem we use similar techniques to those in [2], plus some new ones. To
avoid a routine repetition, we shall only point out differences between our case and [2]. For details
we should refer to [2].

Theorem 2 implies that v converges to zero in w12(0,1) as t - +, but we cannot clarify if

u and 6 converge to some constants or not. [2, Theorem 2] shows that, roughly speaking, if

lim P(r) exists, then (u,v,0) converges to a stationary state. In our case, the convergence of
=t x

P(I(1)) is almost equivalent to the convergence of u (see (2.1)). Under the additional assumption,
however, we can show the convergence of u and 6. Let Z be aset

R

Z={{ € (OL);cyk{ “ + ¥(L) = Eo}
where

R R R

- = -1 = -2
= R
K= N(uo(x)) < 0o(x)dx + _j;+ fO‘ -:;u w2 Brge oy e, |dxdr. (1.13)
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The right-hand side of the above equation is meaningful because of Theorem 2. The meaning of X
will be clarified in Lemma 3.6. Assuming that P({) satisfies

(P3) Z does not contain any intervals,

we get the following theorem.

Theorem 3. Assume that the hypotheses of Theorem I and (P3) hold. Then the solution (u,v,8)

converges to a stationary state (45,0,0.) in wl2(0,1) as t -+, where u, and 8, are the roots

of
Cvex + ‘I’(llx) = Eo N (114)
P(ux)te = ROy . (1.15)
.oreover
r 1 [ L ] + 1 LVZ K 93
I = cy * _x =
K = u,’ 8. = exp j; log | (uo(x)) " 8g(x) Jdx + fo j; [CV o " - uez]dxd'r (1.16)
holds.

Though for checking (P3), we must know the explicit value of X, it seems difficult to know it
from initial data and P etc., because it may be equal to solve the problem explicitly, so we want to

have a criterion not containing K.

Corollary of Theorem 3. Let Z' be a set

' R
z'={{ e (O,L); P} = ;;(Eo = ¥ ()}
Assume that the hypotheses of Theorem 1 and

(P3)’ Z' does not contain any intervals,

hold. Then (u,v,0) converges to a stationary state (ue,0,8.) in wh2(0,1) as t - +o.

In the case when P({) is a function like (1.11) or (1.12), it is easy to check the assumption
(P3)’.
In Section 4 we assume still more hypotheses on P({). Let §,5 and 5 (i =1, 2) be

S = { (31,52) € (O,L) x (0,+°°) ‘CVJZ + ‘I’(Sl) =E0, P(Sl).!'l = R.\'2 },

£= inf min {sy, s3},
(51,8D €S
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“Ti = su Sis
(51,52 €S
Remark that § depends on R, cy, Eo and P({) butnoton p,so g and §; do notdependon p

either. We assume on P({) that

() Pue) > -‘%P(u,c) + P'(u)ux), ‘

(P4) (i) £>0,5<L,5 <+,
(iii) w is sufficiently large.

Then we can establish the following result concerning the rate of the convergence of the solution.

Theorem 4. Assume the hypotheses of Theorem 3 and (P4) hold. Then there exist positive con-

~ants N, C depending on R, ., cy, x, P({) and initial data such that
1
j(‘) {(u — ug)® + v* + (8 — 0.)% + u? + v2 + 02}dx < Cexp(— A1).

One can readily check that in the case when P({) is (1.12) and R is smaller than cy, (P4) is

fulfilled for suitable choices of initial data and . In thermodynamics,

R
=S 4
1= 1

is called the adiabatic exponent and its value belongs to (1,2) (y = % for He, Ar, etc., % for O,,
N,, etc., -g— for CO,, CH,, etc.). Thus the assumption R < ¢y is meaningful.

Remark. Theorem 4 also holds under the assumption

(P4)’ P'({) = 0 on some open interval containing .,
_astead of (P4). Obviously in the case when P({) is (1.11), (P4)’ is fulfilled for any initial data.

2. Comments on existence of solution.
To establish an existence theorem, we need a priori estimates of the solution. We assume
1 . .
u>0,06>0, J; u dx < L, and introduce notations:

t) = mi 1), M, (t) = max u(x,t
m, (1) xé[é{ll]u(x’), «1) <<loN] (x,1),

= min 0(x,t), My(t) = max 6(x,).
mg(1) Din, (x,1), Mo(£) xem( )

Lemma 2.1. There exist constants C € (1,+®) and C' € (0,L) which depend on parameters R, p,

cy, &, P({) and initial data but not on t such that the estimates



KSTS/RR-86/008

July 27, 1986
.6-
cls 1) = [ uGndr = C', (2.1)
c = j(:)l 8(x,)dx = C, (2.2)
fo’ V2(x,0)dx = C, (2.3)
- C s P@), YU@) =C. (2.9)
hold.

Proof. Integrating (1.1) over [0,1] X [0,f] by virtue of the boundary conditions, we have the
equality in (2.1).
From adding (1.3) to the equation obtained by multiplying (1.2) by v, and the integrating over

[0,1] x [0,], it follows

J;l [—;—vz + cve](x,t)dx + W) = fo‘ [%vg + cveo] (x)dx = Eg > 0 (2.5)
by integration by parts, hence we get the boundedness of ¥(/(#)) from above. Therefore by the
assumption (P1), we have the boundedness of () [=_f")l u dx) from above. Dividing both sides of
(1.3) by 6 and integrating over [0,1] X [0,f], we have

J:)l(cvlog 6¢ + Rlog ug)dx = j;)‘(cvlog ¢ + Rlog u)dx
= cvlog{_j;)l (] dx} + Rlog{_j:]l u dx}. (2.6)
Consequently, we have the boundedness of j;) ' 9 dx from below, i.e.,

1 ~ 1 cy ~,
Jyode= c[f0 udx] =C'>0.
Other estimates can be shown as follows. Firstly, we assume (P2). In this case the boundedness
of I(¥) [= _j;l u dx) from below follows from the boundedness of ¥ (I(¢)) from above. Therefore
(2.4) follows. The boundedness of _[; ‘(vz + 8)dx from above is a consequence of (2.4) and (2.5).

Next we assume (P2)’. The boundedness of P(I(f)) from above follows from that of I(t) and

(P2)’. Therefore we have

inf W([) > —oo.
g (9]

From this and (2.5), J;l(vz + 8)dx is bounded from above. From (2.6} we get

cy

i) = j;ludxz E(j;’edx) R=¢ >0
Thus (2.1) is proved, and yields (2.4). O
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From now on, the symbol C denotes a generic constant with the same dependence as in Lemma
2.1.
Lemma 2.2. We have
U@ + f) ‘V()dr + ¥U@) = C, @7
where
1f1,
Ut) = j(‘) 2V + R(u — logu — 1) + cy(8 — log & — 1) dx, (2.8)
2 2
1 Vx ex
V() = j;) [p. Yy + k uez]dx. 2.9)

Proof. From (1.1) - (1.3), (1.5) - (1.7), we have
U@ + V) + %«y(z(:)) = Rv(L,f).

Integrating this identity over [0,f], we have the assertion by use of (2.1). O

Using above lemmas, a similar procedure to [2] gives us

Lemma 2.3. We have an expression

u(x,f) = m{uo(x) + fo’%e(xﬂ)a(xﬂ)y(w)df}, (2.10)
where

B(x,f) = exp[%f,‘(v(e,r) - vo(e»dg}, (2.11)
Y() = exp{ﬂ,’P(l(w»df}, (2.12)

and estimates
Cl=sB(xf=C, (2.13)
1= e~ = 'Yz_:)fc; Y(v)dv = C, (2.14)
clt-Cc= fo‘p(z(T))dT =C(+ 1), (2.15)
M,()=C, (2.16)
My(t) = C(1 + V(). (2.17)
m()=Clem C!, (2.18)

-1

my(f) = c—1[1 + fo'm:i(:)] , . (2.19)

hold.
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Proof. The expression (2.10) can be got in a similar way to [2, Lemma 3.3]. (2.13) is a conse-
quence of (2.3). To prove (2.14), we integrate both sides of (2.10) with respect to x. With help of

(2.1), (2.2) and (2.13), we have

c! t Cc t
70) [1 + j;) Y('r)d'r] sl=s Y_(t)—[l + j;) Y(’r)d’r]. (2.20)
Recalling the definition (2.12) of Y(f), we have the right inequality of (2.14).
Multiplying (2.20) by Y(t), applying Gronwall’s lemma, we have
C-leCT < ¥(r) = CeC . (2.21)
Taking logarithm, we obtain (2.15). From (2.20) and (2.21) we have the left inequality of (2.14).

(2.16) - (2.19) are obtained in a similar manner to [2, Lemmas 3.4 -3.5]. O

Above lemmas play essential roles of establishing a priori estimates of the solution, which are in
need of extending a local solution, by a similar manner to [2, § 2], while the local existence theorem

has been already established by Tani even more general case [3]. Thus we have Theorem 1.

3. Global asymptotics.
It is important for investigating the asymptotic behavior of the solution to establish an estimate
inf m, () > 0.
=0
This can be derived from a similar procedure to {2, Lemma 4.2], if P(I(r)) is non-negative for large
t. However it seems difficult to prove non-negativity of P(i(f)) directly. Therefore we need a closer
analysis. We begin with proving the following lemma of Massera-Schiffer type. Itis a slightly gen-

eral version of [4, Lemma 4.6], so the proof is quite similar to its.

Lemma 3.1. Let M(t) (= 0) and w(t) be continuous functions satisfying that there exist positive

constants C; (i = 1, - - -, 4) such that

€7 = exp[f' w(.v)dS} < Cyef ™Y for 0sts=rt G
T
We denote A(¢) by

A() = j;'“)\('r)d'r.

Then for any T = 0 there exists a positive constant C(T') depending on T, and \, such that
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1-—e¢ = Cyt —T]

mmf INOENA exp{- I w(s)ds}m)df

1 t
————————sup A(1) + C(T)ex { (T d-r}, 3.2
L up A(7) + C(T)exp Jy 0@ (3.2)
holds for t = T. Here ['] is a Gaussian symbol. Especially,

1
Cyle — e CeF Dy imt=

hm A() = hmf exp{ L‘w(s)ds]’)\('r)d'r

= hmf cxp{ L'm(:)ds}x('r)d'r <=—1  im A (3.3)

P c,(1-e Cz) (4=
holds.

Proof. Only the right inequality of (3.2) will be shown; other estimates are derived similarly.
t r
j;) exp[-— fT m(s)ds}}\('r)d'r

=< exp{—j:; m(s)ds}‘jz)ﬂlexp{j: (n(s)ds}k('r)d-r + Z

mnx{O.[tE— T]—l}e_ Czj-

max{0,[r—T]-1}
p

j:'__jj_lexp{— j;' m(.\')ds})\(-r)d'r
-r -1

= C(T)exp{ _[; m(s)d.r} + Cj [‘sgpr A(t)] 2,

Here we use (3.1). Since 3 e~ €2/ can be majorized by (1 — e~ €7)=1  the desired estimate follows.

o

1 R 1 . .
Lemma 3.2. u(x,t) and EE;,t)—Y(t)—J;! :B(x,'r)Y('r)j;) 0(t,T)dkdT are asymptotically equivalent

with respect to sup-norm:

(349

. 1 —_—
’I_TL xgl[l 1 ‘a(x ) — mf B(I,T)Y(T)J;) 0(¢,7)dtdr| =
Proof. We have
0y bu(et
)2 J-l 0x( )|
292(€ r)
1 1
= (j;’ 8(£.0)dt) [1 + cvl(t)].

L
02 (x,) = ([ 0(e.n)dt

Here we use (2.16). Therefore by (2.2), we have

8(x,1) = [ 0(6,0dE + Cre + C(OV()
for any € > 0. Consequently, from (2.10), (2.21) and (2.12) we have
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u(x,f) — m N %B(x,*r)}’('r) [ 0(6.7)dgdx
< }—%{1 + [l + C(E)V(T))Y(T)d'r}
= C[e‘ ey _];' exp{-— f: ﬂ(l;‘@l)-ds}(e + C(e)V('r))d'r].
A similar argument to one from which (2.21) is derived shows that ﬂl;'@l)- satisfies the condition of
o(f) in Lemma 3.1, while from (2.7) we have
‘{iinx_[;'ﬂ(e + C(e)V(r))dT = e.
Consequently by means of (3.3), we have

1
ulx,e) = B(x,0)Y(t)

for ¢ large uniformly with respect to x € [0,1].

J;)r %B(x,'r)}’('r)j;)l 6(t,7)dEdT < C-e

On the other hand from

1 1y 1
02 + ¢ ([ 0e0at) Vi) = (£ oe.nag)®,

we get

8(x,f) = J;‘ 8(E,1)dt — C-e — C(e)V(r).

Thus in a similar way, we have

1
4E0 = BT Q)

for ¢ large uniformly with respect to x € [0,1].

.!: 'I}%B(x,w)}’('r)fo1 8(&,7)dEdT = — Ce

Since € > 0 is arbitrary, we obtain (3.4). O

Lemma 3.3. We have
inf m,(t) > 0. (3.5)
=0

Proof. From Lemma 3.2, there exists T, = 0 such that

1 t R 1
— | — Y dEd- 3.6
u(x,t) = ZB(x,t)Y(t)J;) “B(x,'r) ('r)_j.o 0(k,7)dtdr ‘ (3.6)
for t=T,. By virtue of (2.2), (2.13) and (2.14), if necessary we take T, larger, we find that the
right-hand side of (3.6) is positive uniformly with respect to f € [T1,+«). This fact and (2.18)

yield the assertion. O
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By the help of Lemma 3.3, although the details do not carry out, the same procedure as [2, Lem-

mas 4.3 - 4.7] with trivial modifications leads the followings.

Lemma 3.4. We have
_f")l(v‘1 + 02 + ul)dx
2
t 1 [}
+ j;) Joax v2(x,7) + _[; {v} + 0u? + 02 + [R; - P(l('r))] }dx]d'r =C, (3.7)

. el g _
ilﬁ:']:) vi(x,t)dx = 0. (3.8)

Due to this lemma, we have

Lemma 3.5. u(x,), _f;)l u(x,t)dx, O(x,t) and _];‘ O(x,t)dx are asymptotically equivalent with

respect to sup-norm each other. Here
1 R
= —( = . 3.
O(x,1) @ o Y(1)8(x,7)dT (3.9)
Proof. Application of Lemma 3.1 gives us

. 1 ‘R ! 1_poR
e T o I A TO L

with help of (2.11) and (3.8). Thus from Lemma 3.2, the asymptotic equivalence between u(x,f) and

Y()J, L o(¢,m)dtdr| = 0

J;| ©(x,1)dx follows.

To establish the equivalence between j;; u(x,f)dx and j;l O(x,t)dx, we integrate (1.2) over [x,1]:

1 0 u
[L v(E,0dE), = (R; - u—,}](x,r) - P(I(2))-
Here we use (1.1). Multiplying both sides by u(x,f) and integrating over [0,1], we have by means of

(1.5) and (2.1)
%{1(1) + % £ucen ]! v(g,r)dgdx} + ﬂ’;@l{z(g) + —i— [luGanf! v(g,t)dgdx}
- —l-{j;)l(vz + RO)(x,)dx + f—(’;@l £ unf! v(§,t)d§dx}. (3.10)
Therefore we get an expression

1) + i— £ uten [ v(endtdx

- ?%E[fot lg)-{fo‘(# + RO)(x,7)dx + f—(i@)-fol u(x,m)f, V(E,T)dEJX}dT

+1(0) + —i— £ o] vo(g)dgdx]. (3.11)
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By virtue of (2.1), (2.21) and (3.8), the same method as in the proof of Lemma 3.2 yields the
desired equivalence.

The equivalence between ©(x,f) and j(') ! @(x,t)dx is also derived from (3.7) and the application

of Lemma3.1. O

R
Lemma 3.6. (I(r)) CVJE)I 0(x,)dx has a limitas t -~ +o:

R
Tim ()™ ) Yo(x,f)dx = K,

and K is a positive constant given by

R R R
= - £ -1 Lo
K= _I;)l("o(x)) v oo(x)dx + j;; J;)l -5—14 vy %u Y u®,|dxd. (3.12)
v

R
Proof. Multiplying both sides of (1.3) by oy 'u v, and integrating over [0,1] X [¢',f], we have

02
= C_[;fj;l[vf + 0u? + 62 + e—;—]dxdT-O as ', - +oo.

R R
Ijol uo(x,t)dx — j:)l u 0(x,t')dx

Here we use (1.1), (1.7), (2.16), (3.5), (3.7), and (2.7). Thus, with the help of Lemma 3.5, (2.1)

R
and (2.2), we find that (I())“ _j; ' 9(x,0)dx has a limit. And the above calculation implies (3.12).

a

Lemma 3.7. P(I(¢))u(x,t) and J;l RO(x,f)dx are asymptotically equivalent with respect to sup-
norm, especially P(I(f)) is strictly positive for large t.
Proof. By Lemma 3.5 and (2.1), it is sufficient to show the asymptotic equivalence between
PU)I() and [ RO(x,dx.
Put I and I such that
I'= lim I(t
I= lim i(t),
L= lim ().
(=t
Remark that from (2.1),
0<lsI<L

is valid.
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Firstly we assume [ = 1, which is denoted by I. in this paragraph. Of course, in this case

lim PQ(©) = P(=)

‘

exists, and (2.15) implies P(l.) must be positive. Moreover, taking ¢ - +o in (2.5), we find that

J; ! 6(x,f)dx has a limit, say 0. in this paragraph. Therefore by L’Hospital’s rule we have

R 1
o o 1 STOL S o,
ol Otnpjaxr = um PAW) 5 TPl
n

From this equality, Lemma 3.5 and (2.1), the assertion of this lemma is valid.

Next we assume L # I. From (2.5),

_R -R
cyK((D) & + Y(@) = Eo — _II)I —;-vz(x,t)dx + cV{K(l(t)) v - _fol e(x,t)dx}
is valid, so taking account of (3.8), Lemma 3.6 and (2.1), I(r) is close to some root of

_R
vkl ¥+ ¥({) =E

for ¢ sufficiently large. Since I(¢) is continuous, the assumption L # I implies

_R
ekl ¥ + ¥() =E on [L1],

which yields

R

P(DL=RKL © on [L1].

Therefore we have

-k
’l_iﬂlP(l(t))l(t) - fo‘Re(x,r)dx|= ‘gﬂ\xx(z(r)) vo— J:)IRS(x,t)dx =0. O

From above lemmas, we can establish the following lemma, which is proved in a similar manner

to [2, Lemma 4.9] with only trifling modifications.

Lemma 3.8. We have

1
fo’(u,% +v2 + 02dx + [[ /(v + 02)dxdr = C, (3.13)
lim [lwz +v2 + ehax = 0. (3.14)
ft

Theorem 2 can be easily proven from Lemmas 3.2 - 3.8.
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Next we shall prove Theorem 3 and its corollary. They are quite easy.

Proof of Theorem 3. By Theorem 2, it is sufficient to show that there exist positive constants ux
and 6. such that
l{iﬂj{‘)l u(x,t)dx [= ’1-1?_'; l(t)] = Uy,
tl_iix:cj(;l 0(x,0)dx = 0., .
As stated in the proof of Lemma 3.7, if L # 1, then
Licz
Consequently if (P3) is fulfilled, then L = 1 holds, which is u.

Taking ¢~ +® in (2.5), we find the existence of 0., and (1.14) is valid. Here we use (3.8).
(1.15) follows from Lemma 3.7. Lemma 3.6 yields the first equality of (1.16). The second equality
of (1.16) is shown as follows. Dividing both sides of (1.3) by c¢v6, and integrating over
[0,1] x [0,f], we have

R R

1 o 1 v 1 el
j;) log [(u(x,t)) c'e(x,r)]dx = -Ill) log [(uo(x)) "eo(x)]dx + ;_[(')j(') V(r)dr.
Taking into account of the uniform convergence of (#,8) to (ux,8x), the second equality follows.

o

Proof of Corollary of Theorem 3. 1f (P3) is not fulfilled, Z contains some interval [a,b]. On this
interval

R R
cyK + LW (L) = Eol ™

holds. Differentiating with respect to {, we have
R
POL = E(Eo - ¥()) on [a,b].

Thus (P3)’ is not fulfilled. O

4. Rate of convergence.
In the remainder of this paper, we devote ourselves to prove Theorem 4. Since under the
hypotheses of Theorem 3, the solution (,v,0) converges to (4x,0,0.) in W'2(0,1) as -+,

we may assume that
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J;l{(u—ux)2+v2+(6—9,)2+u3+v3+83}dx<8<1,

for arbitrary small 8. Thus, we have

(4.1)

c-1(3) fol{(u ~u )2+ 92 + (8 — 0.)%dx = U() = C(8) jo‘{(u — u2)? + 2+ (8 — 0.)2)dx, (4.2)

b = uel + = uef + 10 = 02 = c(3) < 1,

where

U Uy

W= {2; 2+R[~———log—— 1] +cv[69—-—log—9{—— 1]}4;:,

and C(8), c(8) are positive constants depending on & and satisfying ¢(3) -0 as 5 - 0.

(4.3)

(4.4)

In what follows, the symbol C means C(3), and c(5) is a generic constant satisfying above

nroperties.

Lemma 4.1. We have

a+ ( ))u==

s P P — )’

U@+ (1 - e)V() =

dr o

=Ug

for any €; € (0,1). P'(ux) means d—P(-Q-L
Proof. From (1.1) - (1.3), (1.5) - (1.7) and (1.15), we have

U@ + V() = é(P(u,,) ~ PO [ vad
2
= e f nds + Zﬁ;(";’l u® dx]-é-(p'(z(r) + (e = IR — u)?

for some () € (0,1). Here we use the mean value theorem. Recalling (4.3), we get (4.5).

Lemma 4.2. We have

() — u)? = (1 + )G + (1 +e3)(1 + c(a)) V(t) %‘22(;‘)3_)
for any €,, €3> 0. Here
1+c(®) | Y R |c(a)elf2 Pu)us
6= Yzzt) [f j)— - 20v| B 2372 ]"iaeyzvm('r)

2
() — uxl}d'r] .

+ —-P(ux) + P (uo)e
cy

(4.5)

(4.6)

]

4.7

(4.8)

Proof. We multiply (1.2) by v, add the result to (1.3), and integrate over [0,1] X [¢,+).
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Integration by parts and the fact that j;l v3(x,t)dx -0 as t - +o yield

[ 0Gendx - 0. = - ﬁ £ VAo + i(‘l’(u,‘) O (4.9)

Moreover it follows from the definition (2.12) of ¥(r) that

1)
Y(t) f P((x))dr =1- (t) (4.10)

By use of (3.9), (3.11), (1.14), (1.15), (4.9), (4.10) and the mean value theorem, we have
1) — uw = I(f) — j‘ O(x,)dx + f‘ O(x,)dx — ux

= 7(—5[]-‘ L(I)- 2(:c,'r)dx + MI (x,'r)f v(E,T)d&dx}d*r

+ 1(0) + —J;) uo(x)j; vo(ﬁ)dﬁdx] - --jl') u(x,t)j; v(§,t)dEdx

Y(t) i R—Y@-{f 8(x,)dx — 0. + ——(P(ux) - A"(l(f)))}dT - h]
-l Sl ) s P g
+ [—fV—P(l(T) + (1) (e = (7)) + P'(U7) + v() (e — l(f)))ux](ux - '(T))}dT

+ 1(0) + %J;l uo(x)_’;l vo(E)dEdx — u,] - %j{‘)l u(x,t)_';l v(E,1)dEdx
for some (1) € (0,1).

On the other hand, by use of (1.5), (4.3) and (2.9), we have

fl vidx = flvfdx = l-*-—c@)—um(-)
0 0 18

= }—%ﬂ“"xvm(ﬂ"m(ﬂ =2 +,,,C 8y 0.c(5)V (), (4.11)
—I—’—K%ID-_];‘ u(x,'r)_j;l v(E,7)dEdx

2
<1+c®) 4, )umem[ 1»% ] < 1) p, yu32912p12(r),

23/2 23/2

‘%P(l(f) + (@) (e = 1@)) + P + y(1) (s — 1(1))u=

= (1 + c(3)

Rp () + P'(ux)tte
cy

%j; u(Jt:,t)_[;1 v(E,1)dEdx

. 2
< 1+e® mginfpt 0| < 1+ c(®) sngraping,
2u372 0 " ud 2p372

Therefore we can get the assertion. 0O
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From (4.3) and the fact P(u.) > 0 (see Lemma 3.7), we may assume P(I(#)) > 0 for any
t = 0. Therefore by means of the same procedure as one in [2, Lemma 5.3] , we can establish the

following lemma.

Lemma 4.3. We have

Uy c(d }!2 x)Ux
Gl(t) * (1 _C(a)) P(P' )G(t) = 1”-;(2(’3) [‘1 - CR;V} ( l)"'e * P(21;3)/2 ]ul}zeyzvvz(t)

2
+ —E—P(ux) + P'(ux)us|i(f) — u,l} . (4.12)
3%

Lemma 4.4. There exist some positive constants Ny, N\, and C such that

MU + G'(@) + MU0 — u)? + GO + V(@)} = Yﬁt) (4.13)
holds.
Proof. We fix €; € (0,1). From (4.5) and (4.12), we have
G'(1) + €(I(f) — ux)? + €G(¥)
uiﬁx €4C(€2,€3)
S G'(1) + (e4(1 + €) + €)G(1) + €4(1 + €3)(1 + ¢(8)) 3 V() + >
4p RS ()
12
1+ ¢(8) R_|c(®)8¥ P(ux)u= | 11010
= 1 - — + x0L°VV4(e
WP () ZCVI w DY ®
2
R '
+ :—P(uw) + P'(ue)uli(r) — u,[}
v
ul0. €,C(€2,€3)
+ €4(1 + €3)(1 + ¢(3)) ™ V() + 7w (4.14)
if €, €4, €5 and 8 > 0 are sufficiently small such that
Pux .
(l+€) +es< (1- c(a))%l. (4.15)

Moreover (4.5) and (4.14), we have

U (1) + G'(1) + €g(1 — V(1) + €(I(f) — u)* + &G (1) .
< 1t c®) { S (P (ua))? + ———;z;:)’ [—]S—P(u,) + P'(u,)ux] }(l(t) - u)?

i 4610; cy

2
| - _R_tf(a)ejc’2 + ———P("“,):"] V()

+ (1 + c(8))uxba | €4(1 + €3)ul + C(eq) [

p,s 4 P(ug) 2cy 2
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€,C(€;5,€
4 (2 2,€3) (4.16)
140
s - P(ux)
We choose €, €5 and 8§ sufficiently small, so we can choose ¢; sufficiently close to " (see

(4.15)). Therefore (P4)— (i) implies

o> il_i;c_@ll{&_(p(ux))z + L’ﬁllp(h) + P’(u,c)u,:]z} (4.17)

4e0, Pux) {cv

for sufficiently small 5, € and e€; > 0. Since (ux,0.) €S, £= u. =5, £= 0. =5, hold,
where g, 5; (i = 1,2) are positive constants not depending on p (see (P4)—(ii)). Consequently if

w is sufficiently large (see (P4)—(iii)), then

66(1 - El) >

W 4 P(uy) 2pl12

2
Sk c(?)uxe“ [64(1 * ez | Cle) [1 - f‘}f(a)ezﬂ + —-—P("“)"i] (4.18)
v

is valid. (4.16) - (4.18) yield the assertion. O

Lemma 4.5. We have

{fo‘ (log w)x - v]zdx} + €71 (wQog w), — v ax = cv(), (4.19)
) = c{J;‘ (mClog ), - v ax + G + V() + Y}(‘) } (4.20)

Proof. For (4.19) see [2, Lemma 5.2]. For (4.20) we begin with the estimate of v2. From (1.5)

and Theorem 3, it is clear that
= 'y2dx < cv(r). (4.21)
Therefore, we have from (4.7) and (4.21)
1 2 1 2
(u - u,)st[ —_[; udx] +2[j; udx — u,c]

= c[_g)1 uldx + G(f) + V(1) + YZl(t)]

Here we use _](')1 u dx = I(t).

Next we evaluate (8 — 8.)2. By use of (4,9), (4.1), (4.21), (4.22), (4.7) and (2,9), we have

©-o0.s200- [0 i)+ 2(f 0 dx - 0.)
= C[V(t) + (@) — ux)z)
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1
s C|G() + V() + . 4.23
[ 0 +vE Yz(t)] (4.23)
(4.20) follows from (4.2) and (4.21) - (4.23). O
In a quite similar manner to one in [2, Lemmas 5.6 - 5.7], we can establish the following lemma.
Lemma 4.6. We have
1 1 2 ue |
i [v, - ;—(RQ - P(l(t))u)] + P(()u [T‘] + 02 {dx
t
2 u 2
+ c—l_fo1 [v,, - %(Re - P(l(t))u)] + P(l(t))u[~u—x] + 02tdx
= ¢{ [ (wltog w), — v)'dx + G(1) + V(1) + L1 (4.24)
0 Y3(f)
Now we proceed to prove Theorem 4. From (4.13), (4.19), (4.20) and (4.24), we find that
there exist positive constants \; (i = 3, - - -, 7) such that

[xgﬁ(x) + MG(f) + As fo‘ (p.(log u), — v]zdx

2 2
+ Xg fol[[v,, - ﬁ—(RB - P(l(r))u)] + P(I(£)u [—"] + e,%]dx

u

+ N [xg’ﬁ(z) + NG + Asf] (p.(log u), — v)zdx

2 2
+hg fol[[v" - -’1;(1{9 - P(l(x))u)] + p(:(;))u[lu‘-] + e}]dx

= -£ .
Y3(1)
It follows from the definition (2.12) of Y(r) and the fact P(I(f)) - P(ux) > 0 as - +o, there

(4.25)

_exists a positive constant Ag such that

1
Y3(s)

= Cexp(— Agf). (4.26)

(4.25) and (4.26) assert that

2
fol{(u —u? V4 (8- 0.2+ w2+ 02+ v, - %(Re - P(!(t))u)] }s Cexp(—\1)
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for some \ > 0, which yields

2
[ var = 2f! [v, - i—(Re - P(I(t))u)] dx + ;27 ['Ro = PQ()u)dx
2
=< cfol{[v, - %(Re - P(l(t))u)] +(0 = 0.)% + (u — ux)? + ug}dx = Cexp(— \f).

Thus we complete the proof of Theorem 4.
Remark. From (4.13), (4.19) and (4.20), we have

{235(1) + X4G(0) + Xsf) (p.(log u), — v]zdx}

C

+ i7{f3'ﬁ(t) + NG + fsj;l [p.(log u), - v)zdx} = 0

which yields

fol{(u — ue)? + V2 + (8 — 0,)? + ulldx < Cexp(— N0).

From the above procedure we find X7 > Ay, which implies X > A
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