Research Report

KSTS/RR-86/007 27 June 1986

$\begin{array}{c} \text{Minimal tori in } \mathsf{S}^3 \\ \text{whose lines of curvature lie in } \mathsf{S}^2 \end{array}$

by

Kotaro Yamada

Kotaro Yamada

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

Minimal tori in S^3 whose lines of curvature lie in S^2

Dedicated to Professor Morio Obata on his 60th birthday

Kotaro YAMADA

0.Introduction. Let $\varphi: \Sigma \to S^3$ be a minimal immersion of a compact orientable surface Σ into the unit 3-sphere S^3 . It is valuable to study the set of such immersions with given genus of Σ . For example, when Σ is of genus 0, *i.e.* Σ is a 2-sphere, φ must be a totally geodesic immersion of S^2 into $S^3[\mathbf{L}, \mathbf{A}]$.

Assume Σ is a torus. In this case, there is a well-known minimal isometric embedding of the flat square torus $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$ into S^3 called the Clifford immersion. Though there are many minimal immersions of a torus into S^3 , they are not embedded. Thus, it is conjectured that the only minimal embedding of a torus into S^3 is the Clifford one[Y].

To study this, we consider minimal immersions of a torus into S^3 having the following property:

(*) Each line of curvature of the immersion is closed and lies in some totally geodesic 2-sphere in S^3 .

The main theorem of this paper is the following:

THEOREM.

- (1) There exist infinitely many minimal immersions of a torus into S^3 satisfying (*).
- (2) A minimal immersion of a torus in S^3 satisfying (*) is not embedding provided that it is not congruent with the Clifford one.
- **1.Preliminaries.** Let $\varphi: \Sigma \to S^3$ be a smooth immersion of a surface into the euclidean 3-sphere. The first fundamental form of φ is the induced

metric $g = \varphi^* < , >$, where < , > is the standard metric of S^3 . The second fundamental form h of φ is defined as $h(X,Y) = - < \overline{\nabla}_X \nu, Y >$ for all vectors X and Y tangent to φ , where ν is the unit normal vector field of φ and $\overline{\nabla}$ is the canonical connection of S^3 .

The existence of isothermal coordinates shows us that there exist local coordinates (u, v) of Σ in which g is written as

$$(1-1) g = e^{\sigma}(du^2 + dv^2),$$

where σ is a smooth function of u and v. Write the second fundamental form in these coordinates as

$$(1-2) h = Ldu^2 + 2Mdudv + Ndv^2,$$

where L, M and N are functions of u and v.

The mean curvature of φ is the function H on Σ defined by

$$(1-3) H = \frac{1}{2}e^{-\sigma}(L+N)$$

in the present isothermal coordinates. The immersion φ called *minimal* when H is identically 0 i.e. N = -L in (1-2).

In these coordinates, the equation of Gauss is

(1-4)
$$-\frac{1}{2}e^{-\sigma}\Delta\sigma = (LN-M^2)e^{-2\sigma}+1$$
, where $\Delta = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$.

Consider the complex function f of z = u + iv

$$(1-5) f(z) = M + iN.$$

When φ is minimal, the equation of Codazzi holds if and only if f is a holomorphic function of z.

2.Fundamental equation. Suppose $\varphi: \Sigma \to S^3$ be a minimal immersion of a torus. On taking the universal cover of Σ , φ is lifted to the minimal immersion $\tilde{\varphi}: \mathbb{R}^2 \to S^3$. Since the induced metric $\tilde{g} = \tilde{\varphi}^* < \cdot$, > is conformal to the flat metric of \mathbb{R}^2 [B], there exist global coordinates (u, v) in which the first fundamental form is

$$\tilde{g}=e^{\sigma}(du^2+dv^2),$$

where σ is a smooth function on \mathbf{R}^2 which is invariant by the deck transformations of the cover $\mathbf{R}^2 \to \Sigma$, *i.e.* σ is a doubly periodic function. The second fundamental form of $\tilde{\varphi}$ is written as (1-2), where L, M and N are doubly periodic functions defined on \mathbf{R}^2 .

Since $\tilde{\varphi}$ is minimal, the complex function f in (1-5) is holomorphic on whole the complex plane. Hence by Liouville's theorem, L, M and N must be constant on \mathbb{R}^2 . Then, by a suitable change of coordinates, we may assume the second fundamental form is diagonalized as

$$h = L(du^2 - dv^2),$$

where L is a positive constant. Replacing u, v and σ by $u/\sqrt{L}, v/\sqrt{L}$ and $\sigma + \log L$ respectively, we have the first fundamental form (2-1) and the second fundamental form

$$(2-2) h = du^2 - dv^2.$$

By (2-1) and (2-2), the equation of Gauss (1-4) is

(2-3)
$$\Delta \sigma = -4 \sinh \sigma.$$

Conversely, by the fundamental theorem of the theory of surfaces [S], we have the following proposition:

PROPOSITION 2.1.

- (1) If $\varphi: \Sigma \to S^3$ is a minimal immersion of a torus, and $\tilde{\varphi}: \mathbb{R}^2 \to S^3$ is the lift of φ to the universal cover of Σ , then there exist coordinates (u,v) of \mathbb{R}^2 in which the first and the second fundamental forms of $\tilde{\varphi}$ is written as (2-1) and (2-2) respectively, and the function σ in (2-1) satisfies (2-3).
- (2) If a smooth function σ on R² satisfies (2-3), then there exists a minimal immersion φ_σ: R² → S³ whose first and second fundamental forms are (2-1) and (2-2) respectively. Moreover, such an immersion is unique up to congruence.

Remark. Even if σ in (2-3) is doubly periodic, the corresponding immersion φ_{σ} is not necessarily doubly periodic. To study minimal immersions of a torus into S^3 , we must search for doubly periodic solutions of (2-3) whose corresponding immersions are also doubly periodic.

The trivial solution of (2-3) is $\sigma = 0$. In this case, the corresponding minimal immersion φ_0 is an isometric minimal immersion of \mathbb{R}^2 with flat metric which is written explicitly as

$$\varphi_0(u,v)=(\frac{1}{\sqrt{2}}\cos\sqrt{2}u,\frac{1}{\sqrt{2}}\sin\sqrt{2}u,\frac{1}{\sqrt{2}}\cos\sqrt{2}v,\frac{1}{\sqrt{2}}\sin\sqrt{2}v)\in S^3,$$

where $S^3 = \{(x^0, x^1, x^2, x^3) \in \mathbb{R}^4; \sum_{i=0}^3 (x^i)^2 = 1\}$. Since φ_0 is doubly periodic, it gives the minimal isometric immersion of the flat torus \mathbb{R}^2/Γ into S^3 , where Γ is the lattice on \mathbb{R}^2 generated by $\{(0, \sqrt{2}\pi), (\sqrt{2}\pi, 0)\}$. This immersion is called *the Clifford immersion*, which has the following properties:

- (1) It is the only isometric minimal immersion of the flat torus into S^3 up to congruence.
- (2) The immersion is 1 to 1, i.e. it is embedding.

- (3) The area of the immersed torus is $2\pi^2$.
- (4) The immersion is given by the first eigenfunctions of the laplacian of \mathbf{R}^2/Γ . In other words, the first eigenvalue of the laplacian of \mathbf{R}^2/Γ is 2.
- **3.Lines of curvature.** Suppose $\varphi: \mathbb{R}^2 \to S^3$ be a minimal immersion with the first and second fundamental forms (2-1) and (2-2) respectively.

Vector fields $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$ give the principal directions of h, and their integral curves are the lines of curvature of φ . Let

(3-1)
$$c_u(v) = \varphi(u,v), \qquad c_v(u) = \varphi(u,v).$$

Then curves c_u and c_v in S^3 are lines of curvature of φ parameterized by v and u respectively. The following lemma is easy to show.

LEMMA 3.1.

(1) The curve c_u has the curvature

$$\kappa_u = \frac{1}{2}e^{-\sigma/2}\{(\partial_u\sigma)^2 + 4e^{-\sigma}\}^{1/2}$$

and the tortion

$$\tau_u = e^{-\sigma/2} [\{\partial_v (\frac{e^{-\sigma/2}\partial_u \sigma}{2\kappa_u})\}^2 + \{\partial_v (\frac{e^{-\sigma}}{\kappa_u})\}^2]^{1/2}.$$

(2) The curve c_v has the curvature

$$\kappa_v = rac{1}{2} e^{-\sigma/2} \{ (\partial_v \sigma)^2 + 4 e^{-\sigma} \}^{1/2}$$

and the tortion

$$au_v = e^{-\sigma/2}[\{\partial_u(rac{e^{-\sigma/2}\partial_v\sigma}{2\kappa_v})\}^2 + \{\partial_u(rac{e^{-\sigma}}{\kappa_v})\}^2]^{1/2}.$$

LEMMA 3.2. Each line of curvature of φ lies in some totally geodesic 2-sphere in S^3 if and only if σ is the following form:

(3-2)
$$\sigma(u,v) = \log\{U(u) + V(v)\}^2$$

where U and V are smooth functions on \mathbb{R} .

PROOF: Suppose σ is as in (3-2). So, it is an easy consequence of Lemma 3.1 that τ_u and τ_v are identically 0 for any u and v. Then each c_u and c_v lies in some totally geodesic 2-sphere in S^3 .

Conversely, if each τ_u is identically 0, $\partial_v(\frac{e^{-\sigma}}{\kappa_u})$ must be identically 0. Hence $4(e^{\sigma}\kappa_u)^2 = (\partial_u e^{\sigma/2})^2 + 1$ must depend only on v. Let $\partial_u e^{\sigma/2} = V(v)$. Then $e^{\sigma/2} = U(u) + V(v)$ for some function U(u) and the conclusion follows.

PROPOSITION 3.3. Let $\varphi: \mathbb{R}^2 \to S^3$ be a minimal immersion with the first and second fundamental forms (1-6) and (1-7) respectively. Then each line of curvature of φ lies in some totally geodesic 2-sphere in S^3 if and only if $\sigma(u,v)$ depends only on one variable u or v.

PROOF: If σ depends only on u or v, c_u and c_v are curves without tortion because of Lemma 3.1.

Assume each c_u or c_v lies in a totally geodesic S^2 . Then σ is written as (3-2). Substituting (3-2) in (1-8), we have

$$U''(U+V)+V''(U+V)+(U')^2+(V')^2=1-(U+V)^4,$$

where $U' = \frac{dU}{du}, V' = \frac{dV}{du}$ etc. Differentiating this equation by u and v,

$$U'''V' + U'V''' = -12(U+V)^2U'V'.$$

If $U'V' \neq 0$, then

$$\left(\frac{U'''}{U'}\right) + \left(\frac{V'''}{V'}\right) = -12(U+V)^2.$$

Differentiating the above, we obtain U'V' = 0, so U'V' must be identically 0. Hence U or V is a constant function.

4.Differential equation. In this section, we construct a family of minimal immersions of \mathbb{R}^2 into S^3 whose lines of curvature lie in some totally geodesic 2-spheres in S^3 .

Let $\varphi: \mathbf{R} \to S^3$ be one of such immersions. So, by Proposition 2.1. and Proposition 3.3., there exist coordinates (u, v) of \mathbf{R}^2 such that

(1) The first fundamental form of φ is

$$(4-1) g = e^{\sigma} (du^2 + dv^2).$$

(2) The second fundamental form of φ is

$$(4-2) h = du^2 - dv^2.$$

- (3) The function σ depends on only v.
- (4) The function $\sigma(v)$ satisfies the ordinally differential equation:

$$\frac{d^2\sigma}{dv^2} = -4 \sinh \sigma.$$

Conversely, for each solution of (4-3), there exists a minimal immersion of \mathbb{R}^2 whose first and second fundamental forms are (4-1) and (4-2) respectively.

The equation (4-3) has an integral:

$$\frac{1}{2}(\frac{d\sigma}{dv})^2 + 4\cosh\sigma = 4\alpha,$$

where α is an integral constant. Then for each $\alpha \in [1, \infty)$, there exists a unique solution σ_{α} such that:

$$\frac{1}{2}(\frac{d\sigma_{\alpha}}{dv})^2 + 4\cosh\sigma_{\alpha} = 4\alpha,$$

(4-5)
$$\sigma_{\alpha}(0) = \log a$$
, where $a = \alpha + \sqrt{\alpha^2 - 1}$,

$$\frac{d^2\sigma_{\alpha}}{dv^2}(0) \geq 0.$$

LEMMA 4.1.

The solutions $\{\sigma_{\alpha}; \alpha \in [1, \infty)\}$ have the following properties:

- (1) $\sigma_1=0.$
- (2) For each $\alpha \in (1, \infty)$, σ_{α} is a periodic function with period:

$$T(lpha) = rac{2}{\sqrt{a}} \int_0^{rac{\pi}{2}} rac{dx}{\sqrt{1 - (1 - a^{-2})\sin^2 x}}.$$

(3)
$$\sigma_{\alpha}(v) = \sigma_{\alpha}(-v), \quad \frac{d\sigma_{\alpha}}{dv}(v) = \frac{d\sigma_{\alpha}}{dv}(-v).$$

- (4) $-\log a \leq \sigma_{\alpha} \leq \log a.$
- (5) σ_{α} is simply decreasing on $[0, \frac{T(\alpha)}{2}]$, and increasing on $[\frac{T(\alpha)}{2}, T(\alpha)]$.

PROOF: (1) and (3) are immediate consequences of (4-4).

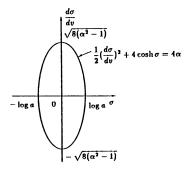


Fig.1

Fig.1 is the phase curve of the solution σ_{α} of the equation (4-4). The tangent vectors of this curve $(\frac{d\sigma_{\alpha}}{dv}, \frac{d^2\sigma_{\alpha}}{dv^2})$ never vanishes, so σ_{α} is periodic with period

$$\begin{split} T(\alpha) &= \int_0^{T(\alpha)} dv = 2 \int_{-\log a}^{\log a} \frac{d\sigma_{\alpha}}{d\sigma_{\alpha}/dv} \\ &= 2 \int_{-\log a}^{\log a} \frac{d\sigma}{\sqrt{8(\alpha - \cosh \sigma)}} \\ &= \frac{2}{\sqrt{a}} \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - (1 - a^{-2})\sin^2 x}}, \end{split}$$

and thus (2) is proved.

By Fig.1, (4) and (5) are also proved.

By Proposition 1.1., there exists the immersion φ_{α} of \mathbb{R}^2 into S^3 defined by (4-1),(4-2) and $\sigma = \sigma_{\alpha}$. Since $\sigma_1 = 0$, the immersion φ_1 is the Clifford immersion.

Remark. Though the period of the Clifford immersion in a direction v is $\sqrt{2}\pi$, $\lim_{\alpha\downarrow 1} T(\alpha) = \pi$. This shows that the Clifford immersion is isolated in the family $\{\varphi_{\alpha}\}$ as an immersion of the torus.

Consider the lines of curvature of φ_{α} ,

$$c_u^{\alpha}(v) = \varphi_{\alpha}(u,v), \qquad c_v^{\alpha}(u) = \varphi_{\alpha}(u,v).$$

Since they lie in some totally geodesic 2-spheres in S^3 , we may consider each of c_u^{α} and c_v^{α} as a curve in $S^2 \subset \mathbb{R}^3$. By Lemma 3.1., we obtain the following lemma.

LEMMA 4.2.

(1) c_v^{α} is the curve with the curvature

$$\kappa_v^{\alpha} = \sqrt{2\alpha e^{-\sigma_{\alpha}} - 1}$$

in S^2 .

- (2) c_v^{α} is a small circle with radius $e^{\frac{\sigma_{\alpha}}{2}}/\sqrt{2\alpha}$ in \mathbb{R}^3 .
- (3) φ_{α} gives a minimal immersion of the cylinder whose fundamental domain is

$$C_{\alpha} = \{(u,v); 0 \leq u < \sqrt{\frac{2}{\alpha}}\pi\} \subset \mathbf{R}^2.$$

(4) c_u^{α} is the curve with the curvature

$$\kappa_u^{\alpha} = e^{-\sigma_{\alpha}}.$$

(5) The curves c_u^{α} are congruent with each other.

5.Proof of the main theorem. Suppose that σ_{α} and φ_{α} be as in the previous section. By Lemma 4.2.(3), φ_{α} gives an isometric immersion of a cylinder. Hence φ_{α} gives an immersion of a torus with closed lines of curvature if and only if the curve c_u^{α} is closed with some integral times of the period of σ_{α} .

The theorem mentioned in Introduction is an immediate consequence of the following proposition:

PROPOSITION 5.1.

- (1) There exist countably many α 's in $(1,\infty)$ such that the curve c_u^{α} is closed with period $k_{\alpha}T(\alpha)$ for some positive number $k_{\alpha} > 2$.
- (2) If $\alpha \in (1, \infty)$ is as in (1), c_u^{α} has a self intersection in the period $[0, \kappa_{\alpha} T(\alpha)]$.

Take $\alpha \in (1, \infty)$, and let $T = T(\alpha)$ and $\sigma = \sigma_{\alpha}$. Consider $c = c_{u}^{\alpha}|_{[0, T(\alpha)]}$ as a curve in $S^{2} \subset \mathbb{R}^{3}$. Let C be the circle of curvature in S^{2} of c at v = 0, and P be its center. Because (4-5), C is the small circle of S^{2} with radius

$$R(\alpha)=\frac{1}{\sqrt{1+a^2}}.$$

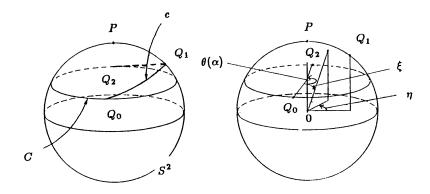


Fig.2

Fig.3

By Lemma 4.1., $\kappa_u^{\alpha}(v) \geq -a$ and $\kappa_u^{\alpha}(0) = -a$. So c lies in the interior of C. Since κ_u^{α} is an odd periodic function with period T, $c|_{[0,T/2]}$ and $c|_{[T/2,T]}$ are symmetric with respect to a great circle of S^2 through P and c(T/2). So c is tangent to C at v = T(Fig.2).

Take polar coordinates (ξ, η) of S^2 as Fig.3, and let $c(v) = (\xi(v), \eta(v))$, where $\xi(0) = \arcsin R(\alpha)$ and $\eta(T/2) = 0$. Define a function $\theta(\alpha)$ as

(5-1)
$$\theta(\alpha) = \int_0^T \frac{d\eta(v)}{dv} dv.$$

LEMMA 5.2.

(1) $\theta(\alpha)$ is a continuous function of α .

(2)
$$\pi \leq \frac{\pi}{R(\alpha)} < \theta(\alpha) < 2\pi \sqrt{\frac{\alpha}{\alpha+1}} \leq 2\pi.$$

(3)
$$\lim_{\alpha \downarrow 1} \theta(\alpha) = \sqrt{2}\pi, \qquad \lim_{\alpha \uparrow \infty} \theta(\alpha) = \pi.$$

PROOF: The first claim holds, because $\{\varphi_{\alpha}\}$ gives the C^{∞} family of minimal immersions.

Let $Q_0 = c(0), Q_1 = c(T/2)$ and $Q_2 = c(T)$ be as in Fig.2. The length of c is shorter than that of arc Q_0Q_2 , so $\pi < R(\alpha)\theta(\alpha)$.

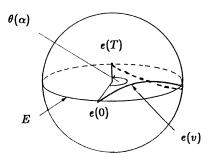


Fig.4

Consider c as a curve in \mathbb{R}^3 with curvature

$$\tilde{\kappa}_u^{\alpha} = \sqrt{(\kappa_u^{\alpha})^2 + 1} = \sqrt{e^{-2\sigma_{\alpha}} + 1}.$$

Let e be the Gauss map of c as in Fig.4, i.e. the unit tangent vector of c. So $\theta(\alpha)$ is the length of the projection of e onto the equator E which contains e(0) and e(T). Then,

$$\theta(\alpha) \leq \text{length of } e(v)$$

$$= \int_{0}^{T} \tilde{\kappa}_{u}^{\alpha}(v) \left\| \frac{dc}{dv}(v) \right\| dv$$

$$= \int_{-\log a}^{\log a} \sqrt{\frac{\cosh \sigma}{\alpha - \cosh \sigma}} d\sigma$$

$$= \sqrt{\frac{8}{\alpha}} \int_{0}^{\frac{\pi}{2}} \frac{dx}{(1 - \frac{\alpha - 1}{\alpha} \sin^{2} x) \sqrt{1 - \frac{\alpha - 1}{2\alpha} \sin^{2} x}}$$

$$\leq 2\pi \sqrt{\frac{\alpha}{\alpha + 1}}.$$

Thus (2) is proved.

The first claim of (3) is an easy consequence of (2), because $\lim_{\alpha\downarrow 1} R(\alpha) = \frac{1}{\sqrt{2}}$. To prove the second, we consider

$$S^2 = \{(x^0, x^1, x^2) \in \mathbf{R}^3; (x^0)^2 + (x^1)^2 + (x^2)^2 = 1\} \subset \mathbf{R}^3.$$

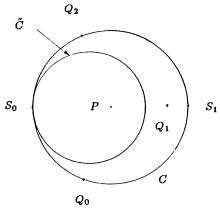


Fig.5

Let S_0 and S_1 be points of C such that the great circle through S_0, S_1 gives the axis of symmetry of c as Fig.5.

Take the coordinates of \mathbb{R}^3 such that:

The coordinates of P are (0,0,1).

The coordinates of S_1 are $(R(\alpha), 0, \sqrt{1 - R(\alpha)^2})$.

The coordinates of Q_1 are $(R(\alpha)\cos\frac{\theta(\alpha)}{2}, R(\alpha)\sin\frac{\theta(\alpha)}{2}, \sqrt{1-R(\alpha)^2})$.

Let d and \tilde{d} be the distance functions of S^2 and \mathbb{R}^3 respectively. The curve $c|_{[0,T/2]}$ joining Q_0 and Q_1 has length

$$\int_0^T \left\| \frac{dc}{dv} \right\| dv = 2 \int_{-\log a}^{\log a} \frac{e^{\sigma/2} d\sigma}{\sqrt{8(\alpha - \cosh \sigma)}}$$
$$= \frac{\pi}{2},$$

so $d(Q_0, Q_1) \leq \frac{\pi}{2}$. In terms of \tilde{d} ,

$$\sqrt{2}=2rcsinrac{\pi}{4}\geq \widetilde{d}(Q_0,Q_1).$$

On putting $\rho = \arcsin R(\alpha) + d(S_1, Q_1)$, Q_1 have the coordinates $(\cos \rho, 0, \sin \rho)$. Then

$$egin{aligned} 2 &\geq \{ ilde{d}(Q_0,Q_1)\}^2 \ &= 2 - 2R\cos
ho\cosrac{ heta(lpha)}{2} - 2\sqrt{1-R^2}\sin
ho, \qquad ext{where} \quad R = R(lpha), \end{aligned}$$

hence

(5-2)
$$\cos \frac{\theta(\alpha)}{2} \leq -\frac{\sqrt{1-R^2}}{R} \tan \rho.$$

Let

$$I = \{v \in [0, \frac{T}{2}]; -\log a \le \sigma_{\alpha}(v) \le \log \frac{a}{\alpha}\}$$

and

$$\ell(\alpha) = \text{length of } c|_I.$$

So,

$$\ell(\alpha) = \int_{-\log a}^{\log \frac{a}{\alpha}} \frac{e^{\sigma/2} d\sigma}{\sqrt{8(\alpha - \cosh \sigma)}}$$

$$= \frac{1}{2} \arccos \frac{\alpha(\alpha - 1) - \sqrt{\alpha^2 - 1}}{\alpha\sqrt{\alpha^2 - 1}},$$

and

(5-3)
$$\lim_{\alpha \uparrow \infty} \ell(\alpha) = 0.$$

Take a small circle \tilde{C} of S^2 with radius $1/\sqrt{(\frac{\alpha}{a})^2+1}$ (in \mathbb{R}^3), which is tangent to C at S_0 and lies in the interior of C. Since κ_v^{α} is simply increasing on $[0, \frac{T}{2}]$,

$$\kappa_u^{\alpha}|_{[0,\frac{T}{2}]\setminus I} \leq \frac{\alpha}{a},$$

and $c|_{[0,\frac{T}{2}]\setminus I}$ lies in the exterior of \tilde{C} . So,

$$ho = rcsin R + d(S_1, Q_1)$$
 $\leq rcsin R + \{ ext{diameter of } C - ext{diameter of } \tilde{C} + \ell(\alpha) \}$
 $= rccos R + 2 rcsin R - 2 rcsin rac{1}{\sqrt{\left(rac{lpha}{a}\right)^2 + 1}} + \ell(\alpha).$

Let $\tilde{\rho}(\alpha)$ be the right hand side of the above, so by (5-3), we have

(5-4)
$$\lim_{\alpha\uparrow\infty}\tilde{\rho}(\alpha)=\pi-2\arcsin\frac{2}{\sqrt{5}}<\frac{\pi}{2}.$$

By (5–2),
$$\theta(\alpha) \leq 2\arccos\{-\frac{\sqrt{1-R^2}}{R}\tan \rho\}$$

$$\leq 2\arccos\{-\frac{\sqrt{1-R^2}}{R}\tan \tilde{\rho}\}.$$

So,

$$\lim_{\alpha\uparrow\infty}\theta(\alpha)\leq\pi,$$

because $\lim_{\alpha \uparrow \infty} R(\alpha) = 1$ and (5-3). By (2), $\theta(\alpha) \ge \pi$, hence

$$\lim_{\alpha \uparrow \infty} \theta(\alpha) = \pi$$

and (3) is proved.

PROOF OF PROPOSITION 5.1.: By Lemma 5.1.(1) and (3), $f(\alpha) = \frac{\theta(\alpha)}{2\pi}$ is a continuous function defined on $(1, \infty)$ such that $\lim_{\alpha \downarrow 1} f(\alpha) = \frac{1}{\sqrt{2}}$ and $\lim_{\alpha \uparrow \infty} f(\alpha) = \frac{1}{2}$. Hence there exist countably many α 's such that $f(\alpha)$ is a rational numbers. For such α , let

$$f(lpha) = rac{m_lpha}{k_lpha}, \quad ext{where} \quad m_lpha, k_lpha \in \mathbf{Z}^+ \quad ext{and} \quad (m_lpha, k_lpha) = 1.$$

So, $k_{\alpha}\theta(\alpha)\equiv 0 \pmod{2\pi}$ and c_{u}^{α} is closed in k_{α} times of $T(\alpha)$.

Since $\frac{1}{2} < f(\alpha) < 1$, $2 < k_{\alpha}$ and the rotation number of $c_u^{\alpha}|_{[0,k_{\alpha}T(\alpha)]}$ is greater than 2. Hence c_u^{α} has a self intersection in the period of the immersion φ_{α} for $\alpha \in (1,\infty)$. This completes the proof of the proposition.

ACKNOWLEDGEMENT. The author would like to thank Professor Osamu Kobayashi for his useful comments.

REFERENCES

- [A] F.J.Almgren, Jr, Some interior regularity theorems for minimal surfaces and extension of Bernstein's theorem, Ann. of Math. 84 (1966), 277-292.
- [B] M.S.Berger, On the conformal equivalence of compact 2-manifolds, J.Math.Mech. 19 (1969), 13-18.
- [L] H.B.Lawson, Jr, Complete minimal surfaces in S³, Ann. of Math. 92 (1970), 179-183.
- [S] M.Spivak, "A comprehensive introduction to differential geometry", Publish or Perish, Berkeley, 1975.
- [W] H.C.Wente, Counterexample to a conjecture of H.Hopf, Pacific J.Math 83 (1986), 193-243.
- [Y] S-T.Yau, "Seminar on Differential Geometry", Princeton Univ. Press, 1982, pp. 669-706.

Department of Mathematics
Faculty of Science and Technology
Keio University
Yokohama 223,JAPAN