Research Report

KSTS/RR-86/007
27 June 1986

‘Minimal tori in 83. L9
whose lines of curvature lie in S

by
Kotaro Yamada

Kotaro Yamada

Department of Mathematics
Faculty of Science and Technology
Keio University

Hivoshi 3-14-1, Kohoku-ku
Yokohama, 223 Japan

o Univ.

Dept. of Math., Fac. of Sci. & Tech., Kei
223 Japan

Hiyoshi 3-14-1, Kohoku-ku, Yokohama,



KSTS/RR-86/007
June 27, 1986

Minimal tori in S8

whose lines of curvature lie in S2
Dedicated to Professor Morio Obata on his 60th birthday

Kotaro YAMADA

0.Introduction. Let ¢ : & — S3 be a minimal immersion of a compact
orientable surface ¥ into the unit 3-sphere S3. It is valuable to study the
set of such immersions with given genus of L. For example, when I is of
genus 0, f.e. T is a 2-sphere, p must be a totally geodesic immersion of S 2
into S3[L,A].

Assume X is a torus. In this case, there is a well-known minimal isometric
embedding of the flat square torus S1(1/v/2) x S!(1/v/2) into S? called the
Clifford immersion. Though there are many minimal immersions of a torus
into S3, they are not embedded. Thus, it is conjectured that the only
minimal embedding of a torus into S is the Clifford one[Y].

To study this, we consider minimal immersions of a torus into S 3 having

the following property:

(*) Each line of curvature of the immersion is closed and lies in some

totally geodesic 2-sphere in S3.

The main theorem of this paper is the following:

THEOREM.

(1) There exist infinitely many minimal immersions of a torus into S3
satisfying (*).

(2) A minimal immersion of a torus in S3 satisfying (*) is not embedding

provided that it is not congruent with the Clifford one.

1.Preliminaries. Let ¢ : © — S3 be a smooth immersion of a surface

into the euclidean 3-sphere. The first fundamental form of  is the induced
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metric ¢ = p* <, >, where < , > is the standard metric of S3. The
second fundamental form h of ¢ is defined as A(X,Y) = — < Vx»,Y >
for all vectors X and Y tangent to ¢, where v is the unit normal vector
field of ¢ and V is the canonical connection of S3.

The existence of isothermal coordinates shows us that there exist local

coordinates (u,v) of T in which g is written as
(1-1) g = e“(du® + dv?),

where o is a smooth function of v and v. Write the second fundamental

form in these coordinates as
(1-2) h = Ldu® + 2Mdudv + Ndv?,

where L, M and N are functions of u and v.

The mean curvature of ¢ is the function H on I defined by
1 _
(1-3) H= 3¢ ?(L+ N)

in the present isothermal coordinates. The immersion ¢ called minimal
when H is identically 0 i.e. N = —L in (1-2).

In these coordinates, the equation of Gauss is

(1-4) ——l-e—”Ao = (LN —M?%e 2 +1 where A = -22—- + —-61
2 ’ ou? ' 9v?

Consider the complex function f of z =u + v
(1-5) f(z) =M +1N.

When ¢ is minimal, the equation of Codazzi holds if and only if f is a

holomorphic function of 2.
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2.Fundamental equation. Suppose p : & — S be a minimal immersion
of a torus. On taking the universal cover of £ , ¢ is lifted to the minimal
immersion ¢ : R2 — S$%. Since the induced metric § = $* <, > is
conformal to the flat metric of R? [B], there exist global coordinates (u,v)

in which the first fundamental form is
(2-1) § = e?(du? + dv?),

where ¢ is a smooth function on R? which is invariant by the deck trans-
formations of the cover R? — X, i.e. o is a doubly periodic function. The
second fundamental form of  is written as (1-2) , where L, M and N are
doubly periodic functions defined on R2.

Since ¢ is minimal, the complex function f in (1-5) is holomorphic on
whole the complex plane. Hence by Liouville’s theorem, L, M and N must
be constant on R2. Then, by a suitable change of coordinates, we may

assume the second fundamental form is diagonalized as
h = L(du? — dv?),

where L is a positive constant. Replacing u,v and o by u/\/I_J,v/\/—L_ and
o + log L respectively, we have the first fundamental form (2-1) and the

second fundamental form
(2-2) h = du? — dv?.

By (2-1) and (2-2), the equation of Gauss (1-4) is
(2-3) Ao = —4sinho.

Conversely, by the fundamental theorem of the theory of surfaces [S], we

have the following proposition:
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PROPOSITION 2.1.

(1) If o : T — S3 is a minimal immersion of a torus, and $ : R?Z 5 S%is
the lift of ¢ to the universal cover of X, then there exist coordinates
(u,v) of R? in which the first and the second fundamental forms of
is written as (2-1) and (2-2) respectively, and the function o in (2-1)
satisfies (2-3).

(2) Ifasmooth function o on R? satisfies (2-3), then there exists a minimal
immersion ¢, : R? — S2 whose first and second fundamental forms are
(2-1) and (2-2) respectively. Moreover, such an immersion is unique

up to congruence.

Remark. Even if o in (2-3) is doubly periodic, the corresponding immersion
©o is not necessarily doubly periodic. To study minimal immersions of a
torus into S3, we must search for doubly periodic solutions of (2-3) whose

corresponding immersions are also doubly periodic.

The trivial solution of (2-3) is ¢ = 0. In this case, the corresponding
minimal immersion wg is an isometric minimal immersion of R? with flat
metric which is written explicitly as

1
wo(u,v) = (% cos ﬁu,—\/—isin\/ﬁu,%cos V2v, %sin V2v) € 3,

where §3 = {(z°,z!,2%,23) € R% Y s o(z")? = 1}. Since po is doubly
periodic, it gives the minimal isometric immersion of the flat torus R2/T
into 3, where T is the lattice on R? generated by {(O,ﬁw),(\/iﬂ,o)}.

This immersion is called the Clifford immersion, which has the following

properties:

(1) It is the only isometric minimal immersion of the flat torus into S up
to congruence.

(2) The immersion is 1 to 1, s.e. it is embedding.

4
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(3) The area of the immersed torus is 272.

(4) The immersion is given by the first eigenfunctions of the laplacian of
R2/T. In other words, the first eigenvalue of the laplacian of R2/T is
2. '

3.Lines of curvature. Suppose ¢ : R? — §3 be a minimal immersion
with the first and second fundamental forms (2-1) and (2-2) respectively.
Vector fields 5— and #; give the principal directions of h, and their

integral curves are the lmes of curvature of p. Let

(3-1) cu(v) = p(u,v), co(u) = p(u,v).

Then curves ¢, and ¢, in S2 are lines of curvature of ¢ parameterized by

v and u respectively. The following lemma is easy to show.

LEMMA 3.1.

(1) The curve ¢, has the curvature
Ky = %e_"ﬂ{(aua)2 + 4e77}1/2
and the tortion
= RS20 + (B
(2) The curve ¢, has the curvature
Ky = %e""/z{(ava)2 + 4¢z_"}l/2
and the tortion

/23,0

ro = e 7[{, (——————)} + {94 ( )} i
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LEMMA 3.2. Each line of curvature of ¢ lies in some totally geodesic

2-sphere in S2 if and only if o is the following form:
(3-2) o(u,v) = log{U(u) + V(v)}?

where U and V' are smooth functions on R.

PROOF: Suppose o is as in (3-2). So, it is an easy consequence of Lemma
3.1 that 7, and 7, are identically O for any u and v. Then each ¢, and ¢y
lies in some totally geodesic 2-sphere in S3.

Conversely, if each 7, is identically O, 8.,(%) must be identically O.
Hence 4(eky)? = (84e°/2)? + 1 must depend only on v. Let dye/? =
V (v). Then e°/2 = U(u) + V (v) for some function U(u) and the conclusion
follows.] '

PROPOSITION 3.3. Let ¢ : R? — S2 be a minimal immersion with the
first and second fundamental forms (1-6) and (1-7) respectively. Then each
line of curvature of ¢ lies in some totally geodesic 2-sphere in S3 if and

only if o(u,v) depends only on one variable u or v.

PROOF: If o depends only on u or v, ¢, and c, are curves without tortion
because of LLemma 3.1.

Assume each ¢, or ¢, lies in a totally geodesic S2. Then o is written as
(3-2). Substituting (3-2) in (1-8), we have

U'U+V)+V"U+V)+U)+ (V)2 =1-(U+V)*,
where U’ = %’V’ = % ete. Differentiating this equation by v and v,
UV +U'V" = —12(U +V)*U'V".
If U'V' #0, then
UIII VIII
(7) + (—VT) =-12(U + V)z.

6
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Differentiating the above, we obtain U’V' = 0, so U'V' must be identically

0. Hence U or V is a constant function.[]

4.Differential equation. In this section, we construct a family of mini-
mal immersions of R2 into S2 whose lines of curvature lie in some totally
geodesic 2-spheres in S3.

Let ¢ : R — S3 be one of such immersions. So, by Proposition 2.1. and
Proposition 3.3., there exist coordinates (u,v) of R? such that

(1) The first fundamental form of ¢ is
(4-1) g = ¢°(du? + dv?).
(2) The second fundamental form of ¢ is

(4-2) h = du® — dv?.

(3) The function o depends on only v.

(4) The function o(v) satisfies the ordinally differential equation:

d%o )
(4-3) i —4sinho.

Conversely, for each solution of (4-3), there exists a minimal immer-
sion of R? whose first and second fundamental forms are (4-1) and (4-2)
respectively.

The equation (4-3) has an integral:

%(-‘;—:—)2 +4cosho = 4a,

where « is an integral constant. Then for each a € [1,00), there exists a
unique solution o, such that: '

1 do,

2( o )2 + 4 cosho, = 4da,

(4-4)

7
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(4-5) 04(0) = loga, where a=a+ Va?-1,
d’o
4-6 =(0) > 0.
(4-6) %2(0) >
LEMMA 4.1.

The solutions {oq; a € [1,00)} have the following properties:

(1) gy = 0.
(2) For each o € (1,00), 04 is a periodic function with period:

2 ¥ dz
T(a) = —= .
\/5/; \/1—(1—a“2)sin2x

(3) ; ;
0a(v) = 0a(-v), Z2(v) = TE(-v).
(4) —loga < 0o Lloga.

(5) o4 is simply decreasing on [0, 1(2‘—"1], and increasing on [%ﬂ,T(a)].

PROOF: (1) and (3) are immediate consequences of (4-4).
do

dv

VB = 1)

;(%%)’ + 4cosho = 1

4

—loga o loga
- VB{ed 1)
Fig.1

@
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Fig.1 is the phase curve of the solution 04 of the equation (4-4). The

. 2 . . 3 .
tangent vectors of this curve (4%, 4%x) never vanishes, so o, is periodic

T(a) loga
T(a) =/ dv = 2/ il
0

—loga 90a/dv

loga do

=2
—loga \/S(Q—COShO')
2 /% dz
va Jo \/1——(1—a‘2)sin2z

with period

and thus (2) is proved.
By Fig.1, (4) and (5) are also proved.[]

By Proposition 1.1., there exists the immersion p, of R? into S defined
by (4-1),(4-2) and ¢ = 04. Since oy = 0, the immersion p; is the Clifford

immersion.

Remark. Though the period of the Clifford immersion in a direction v is
V2, limg 1 T(e) = w. This shows that the Clifford immersion is isolated

in the family {©o} as an immersion of the torus.
Consider the lines of curvature of @4,

e3(0) = palw,0),  €(u) = palu,).

Since they lie in some totally geodesic 2-spheres in 52, we may consider
each of ¢2 and cZ as a curve in S? C R3. By Lemma 3.1., we obtain the

following lemma.

LEMMA 4.2.

(1) ¢Z is the curve with the curvature

Ky = V2ae % —1

9
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in S2.
(2) c2 is a small circle with radius e [/2a in R®.
(3) wa gives a minimal immersion of the cylinder whose fundamental do-
main is '
Co = {(u,v);0<u< \/gﬂ'} C R2.

(4) ¢ is the curve with the curvature

—Ca

K

o
u— €

(5) The curves ¢g are congruent with each other.

5.Proof of the main theorem. Suppose that o, and p, be as in the
previous section. By Lemma 4.2.(3), . gives an isometric immersion of
a cylinder. Hence p, gives an immersion of a torus with closed lines of
curvature if and only if the curve ¢ is closed with some integral times of
the period of o,.

The theorem mentioned in Introduction is an immediate consequence

of the following proposition:

PROPOSITION 5.1.

(1) There exist countably many o's in (1,00) such that the curve cy is
closed with period koT(a) for some positive number ko > 2.

(2) If @ € (1,00) is as in (1), ¢Z has a self intersection in the period

[0, kaT(a)].

Take a € (1,00), and let T = T(c) and ¢ = 0,. Consider ¢ = cg|jo,7(a)]
as a curve in S? C R3. Let C be the circle of curvature in S? of ¢ at v =0,

and P be its center. Because (4-5), C is the small circle of S? with radius

R(a) = -—1\/,1:_;;

10
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Fig.2 Fig.3
By Lemma 4.1., £%(v) > —a and k2(0) = —a. So ¢ lies in the interior

of C. Since x¢ is an odd periodic function with period T, C|[o,T/2] and
c|[T/2,T] are symmetric with respect to a great circle of S? through P and
¢(T/2). So c is tangent to C at v = T(Fig.2). '

Take polar coordinates (&,7) of S? as Fig.3, and let ¢(v) = (£(v), n(v)),
where £(0) = arcsin R(e) and 5(T'/2) = 0. Define a function 6(a) as

T
(5-1) 0(c) =/(; i%g)ldv.

LEMMA 5.2.

(1) 6(a) is a continuous function of a.

w a
< = < 2n.

(2) ﬂ_R(a)<0(a)<27r a+1_27r

(3) liir110(a) = V2n, lirm 0(c) = m.

PROOF: The first claim holds, because {4} gives the C*° family of min-
imal immersions.

Let Qo = ¢(0),Q1 = ¢(T/2) and Q; = ¢(T) be as in Fig.2. The length
of ¢ is shorter than that of arc QoQ32, so # < R(a)8(a).

11
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Fig4

Consider ¢ as a curve in R® with curvature

72 =/(k3)2+1=+Ve 20 +1.

Let e be the Gauss map of ¢ as in Fig.4 , s.e. the unit tangent vector

of ¢. So 8(c) is the length of the projection of e onto the equator E which

contains €(0) and ¢(T). Then,

0(a) < length of'e(v)
T
- / )
l°5“ / cosho
log a cosha
[/ (1 - 2=1sin x) 1-%=lsin’z

<2 .
= &m a+1

Thus (2) is proved.
The first claim of (3) is an easy consequence of (2), because lima|1 R(a) =

To prove the second, we consider

s+

S% = {(zo,a:l,:cz) € R3; (:110)2 + (=) + (.1:2)2 =1} cR®

12
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Fig.5

Let So and S; be points of C such that the great circle through So,51

gives the axis of symmetry of ¢ as Fig.5.
Take the coordinates of R® such that:

The coordinates of P are (0,0,1).

The coordinates of S are (R(a),0,1/1 — R(a)?).
The coordinates of Q; are (R(c) cos ﬂ.;l,R(a) sin ﬂ.}‘l, V1 — R(a)?).

Let d and d be the distance functions of S? and R3 respectively. The

curve ¢|[o,/2] joining Qo and Q1 has length

Tl de log a e’/? do
[l o=z ==
o lidv —loga V/8(a — cosho)
m
=2

50 d(Qo, Q1) < §. In terms of d,
V2 = 2arcsin§ > J(QO,QI).

On putting p = arcsin R(a) + d(51,Q1), @1 have the coordinates
(cos p,0,sinp). Then '

2 > {d(Qo, Q1) }?

=2 — 2R cospcos

0(20‘) —2v/1 — R2sinp, where R = R(a),

13
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JVI—-RZ
(5-2) cos 0(a) < - 1-R tan p
2 R
Let ‘
T a
I={velo, -—2-];—loga, < oa(v) <log E}
and
£(a) = length of ¢|;.
So,
log & of2
t(a) = __¢de
—loga \/8(a — cosha)
1 ala—1) —va2 -1
= = arccos ,
ava? -1
and
(5-3) lim £(a) = 0.
atoo

Take a small circle € of §? with radius 1/4/(%)? + 1 (in R3?), which
is tangent to C at So and lies in the interior of C. Since «{ is simply
increasing on |0, %—],

a
walio,gne < 5o

and c|[0,£]\ 1 lies in the exterior of C. So,

p = arcsin R + d(S1, Q1)
< arcsin R + {diameter of C — diameter of C + £(a)}

1
= arccos R + 2 arcsin R — 2 arcsin ————= + £(a).
V1
Let 5(a) be the right hand side of the above, so by (5-3), we have
5-4 lim 5(a) 2arcsin —= < =
= — 2arcsin —= < 7.
G4 Al weein 75 < 3

14
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By (5—2)’
Vi—RZ
0(a) <2 arccos{——-l—RR— tanp}
Vi R2?
< 2arccos{— -——}—R—I—Z— tanp}.
So,

lim 0(a) <,
afoo
because limatoo R(e) = 1 and (5-3). By (2), 6(a) > 7, hence

lim 0(a) =
atoo

and (3) is proved.[]

PROOF OF PROPOSITION 5.1.: By Lemma 5.1.(1) and (3), f(a) = &2
is a continuous function defined on (1, 00) such that limg}; f(@) = 715 and
limgtoo f(e) = 1. Hence there exist countably many o’s such that f () is

a rational numbers. For such a, let
Moy +
fla) = T where Mma, ko € Z7 and (ma,ka) = 1.
[+ 3

So, kof(a) = 0(mod 27) and cg is closed in ko times of T'(c).
Since 1 < f(a) < 1, 2 < ko and the rotation number of c|jo,ka T (a)]
is greater than 2. Hence cZ has a self intersection in the period of the

immersion @4 for a € (1,00). This completes the proof of the proposition.[]
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