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1. Introduction
We consider the three-dimensjonal Ising model, in a box , Vi y

= {t = (t1,02,13)€Z%0 < 11, = L,—M =< t3 = M + 1}, with = boundary condition ;
spin variables are fixed to be +1 and -1 on the upper and the lower half part of the
boundary of the box respectively. This boundary condition yields a surface which
decomposes the box inte the upper region and the lower region surrounded by + and
- spins respectively. We call such a surface an interface. In the ground state, i.e. T=0
( or B = « ) , the interface is perfectly flat. However, the interface A will be
deformed as the temperature goes up from zero, and this deformation is characterised
by a family of elementary shapes w=(wy, ...,w,) called standard walls [1],[2].
Dobrushin showed that at sufficiently low temperature the interface doesn’t fluctuate
and becomes " rigid " in the following sence ; the probability that the interface passes
through a point which isn’t on the perfect flat surface at T=0 tends to zero , as B-®
,uniformely in Vi »,. This implies that the limit Gibbs state becomes non-translational
invariant state [1].

In this paper we investigate the fluctuation on this "nearly flat " interface ,at suffi-



KSTS/RR-86/006
June 19, 1986

-2-

ciently low temperature , by considering the ramdom field XZ(t,s) given by ,

xb, (W) = F(w),

1
o®L 2,
wcC[0,L]Xx[0,sL]
where F(w) is the real valued function of w satisfying some conditions which will be
stated in § 3, and the sum runs over all w€w in the region , [0,.L]1X[0,sL] ,of the

interface . ( See Fig. 1)
Letting M -~ we induce the probability distribution P;(\) of the interface A in
Vi = {t€Z3 ; 0=<t;,t,<L}. This probability distribution P;(-) is described as the Gibbs

—

.ate for the system of standard walls with long range interaction.

We shall prove that the finite dimensional distribution of Xf},,) comverges to the
corresponding distribution of the Brownian sheet as L-» if the temperature is suffi-
ciently low .

We use the method of low-temperature expansion or polymer expansion
developped by Gallavotti,Martin-Lof, Miracle-Sole [3,4,5] and Del Grosso [6]. This
method is known to be very useful for studying the probabilistic behaviour of the
phase-separation line or the analyticity of the correlation functions. For instance
,Higuchi [7] proved that the phase sepalation line in the two dimensional Ising model
converged to the Brownian Bridge.Also Bricmont ,Lebowitz and Pfister proved the
analyticity of the spin correlation functions for three-dimensional Ising model and
Widom-Rowlinson model [8].

To prove the convergence of the finite dimensional distribution of XL(t,s) we
express the probability distribution of the interface in terms of the contour expansion
v [3] and apply the method of polymer expansion to the system of standard walls . Our

method strongly rely on [7,8].

We introduce the continuous randomfield YZ(z,s) by refining XZ(z,s) to state our
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result in more mathematical or more probabilistic form , and we prove the conver-
gence of YX(z,s) to the Brownian Sheet as the distribution on the path space

C([0,1]%~R) by checking the moment condition for tightness.
2. The interface and it’s probability distribution

2.1. 3-dimensional Ising Model
Consider a 3-dimensional cubic lattice Z3 . We arrange either a (+)-particle or

(-)-particle at each site t € Z3 . A configuration space in 23 is defined by

Q = {+1,-1}

Let us now consider the system enclosed in V

V=V ={t=0nhty) €2°;0=<1t 1, <L, -M=t3=M+1},

with the boundary condition w, given by,
+1 if 23>0
(1) ={ —1 if ;=0
We associate to each configuration £€Q, = {+1,—1}¥ the interaction energy
Hy(|w.) given by
- Hy(tlox) = -7 3  EDEG — J > EDwe(), 7>0,

ijevli-jl=1 iev,jeve li—-jl=1
where fi-j| is the Eucledean distance between i and j .

The Gibbs state on Qy for the interaction energy Hy(&lwy) is defined by

1
Py () = 7+ exp{ —BHy(EloL)}, (2-1
v,~&
where B > 0.

As in the two dimensional Ising model , it is convenient to describe the configura-

tion £ by the family of contours. For a given configuration § € Qy with @, we put a

unit square perpendicular to the bond <i,j> with £(i)§(J) =—1,0r ((Hw.(j) = -1
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(j € 8 V), and passing through the middle point of <i,j> . Then the set of such unit
squares is decomposed , in a unique way , into a finite number of closed polyhedrons
{T';,...,T,} and an open surface A which is pinned in the boundary 8 V. S, S =
{t€Z3; t; =1/2} . By this surface \ the box V is divided into the upper region V§ and
the lower region Vﬁ\ . Owing to the choice of the boundary condition w,. the interior
of V¥ is surrounded by (+)- particles and the interior of Vi, is surrounded by (-)-
particles . ( See Fig.1) The surface X is called an interface or the phase separation sur-
face and each I' contour . We say a family {A,['y, . . .,I,} of an interface and con-

—

wours is admissible if it corresponds to a configuration £€{}y

For simplicity we put 2J=1 . Then the probability distribution (2-1) is described by

Py o(8) = ;1; exp{—BN| B, [T:l, (2-2)

if £ is given by {\,I'y, . . . ,T,}, where |\| and |I';| are areas of A and T'; respectively .
For the study of the probabilistic behavior of the interface N we first derive the
probability distribution of A from (2-2) ; it is given by
Py = == exp{-BR] Z, ., Z (2-3)
v n Zy expi—B v+ Al -e
where ng + and Zvi _ are the partition functions in V¥ and V’)‘ with (+) and (-)
boundary conditions respectively. From the symmetricity ZVIM_ = ZV{,+ and it is
explicitely given by ,

Zyg+ = Zqry,....rgcvy exp{~BZ{ Il

where the sum runs over all admissible family of contours in the interior of VJ .
To describe the probability distribution (2- 3) in terms of polymer functionals first
induced by Gallavotti-Martinlof we shall review the algebraic formalism for contour

expansion. ( See [41,[5],[6] for details )
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2.2. Contour Expansion
Let 4 be the set of all contours in Z3 . & is the space of mapping X from Y. to the
set of non-negative integers N satisfying,

XNl = S X(T) <w.

& is the space of real valued functions on % defined by ,

= {¥: -Rs.t. [¥], = sup,x=,/¥| < @ for each n = 1}
and the convolution product is defined on % as follows ,

X!

— Y *W(X) = > ¥1(XD¥a(Xo) X K,0

(X1.X9) : X1+ Xo=X

where the sum is taken over all ordered pair (X;,X,) , X=X;+X, , and X! =
Irey XM

Subspaces Jyand F of J are defined by ,

FH={TeI; VWD) =0}

and

F = {¥e F; w2 = 1}
The exponential mapping Exp ¥ and the logalithm mapping Log*¥ are defined on

F5and T respectively by ,

Exp¥X) = S -;IT\I'*"(X) Ve 5
n=0""

o (—1yn+1
Log¥(X) = 3 i——%—- TINX) ¥ = Vote€ F,

n=1

where W€ 7 is uniquely expresed as the sum of W€ F, and the function e given by ,

{1 fX =@
e(X) =

0 O otherwise

As l1Xil<o the sums above are finite sums .
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It follows from the elementaly calculation that
Log Exp¥ =¥ for V¢ «72) (D

Exp Log¥ =¥ for ¥e J; . )
If x € 3 is multiplicative ,i.e. x(X; + X3) = x(X1)-x(X,), and the following con-

dition is satisfied for ¥y and ¥, € J,

¥ (X)x(X)
l"_X‘x__l (k= 1,2),
X e '
then
— (¥ *¥,)(X) ¥ (X)x(X) YL (X)x(X)
Xt X% = X X1 )
XeH - Xe ' xXe
Using this relation we can prove the following lemma .
Lemma 2-1 Put ¥7T = log¥ for ¥¢ 5i. If x € & is multiplicative and
s TIX)x(X) <o
Xe X!
then
T(X)x(X)| <
N pY X!
X€ % :
and
Y(X)xX YTxX)x(X
z T oy 5 TEXE (24)
Xex : Xeh :

For each X € X% we define a mapping Dy : J» — F by (Dx¥)(Y) = ¥(X+Y)

T e ,YeF . Weidentify y€ 4 with the element of 3 given by

1if T=4v
YT =1 0 otherwise

Then the mapping D, is a derivation in the following sense .
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Lemma 2-2
() Dy(¥*¥,) = (Dy¥)*¥, + ¥ *(D,¥;)
(i) Dy(Exp¥) = (D,¥)*Exp¥
Now we shall see how the above algebraic formalism can be applied to the analysis
of our system.
We say X€ X is admissible if X! = 1 and there exists a particle configuration
. which has supp X as the set of contours. When X is admissible we can say X stands
~#qr the particle configuration in Z3 .

We introduce special functions ¥'g and o€ VI

exp(—B|X|) if X is admissible
Ya(X) = { 0 otherwise

1 if X is admissible
aX) =1 0 otherwise

where [X| = Sreg X(T) IT| .
Then the partition function for Ising model in V with (+)-boundary condition is
given by

Zy. = 3 V0, 2-5)
XCcv

where X C Vmeanssupp X C V.

Denote X € 3 by X = SE  mpy;, where m;€N, v;€ ¢ (i=1,...,k) , and

m; = Yi (i=1,...,k)
XM =] 0 otherwise

We say X is a polymer if for each pair of vy, and vy, there exists a chain v;, ... v,
1< ij,..., iy = k, such that y; = v, , ¥;, = Vg 2nd v; NV, # & for each n .
Let {yy, - . . ,¥u},u = 2{;1 m; , be a possible rearragement of X such that 3 ¥_;v;

= 2{;1 myy; -We make a graph G(X) from X = {v1» .--» v, } as follows ;as vertices



KSTS/RR-86/006
June 19, 1986

-8-

of G(X) we take all ¥;€ X and draw a bond between v; and v; if v; N v;#J . A

subgraph C C G(X) is called connected if y; ,..., ¥, C C and for any v; and v; there

exists a chain of bonds of C which connects y; and y; . Then af = Log « is rewrit-

ten in the form ,

aT(X) = 2 (- 1)# of bonds in C
CCG(X):connected

We give the proof of (2-6) in the Appendix A .
It follows from (2-6) that

(*1) oT(-) is translation invariant ,i.e.

oT(Xy) = «T(X,) if supp X, is superimposed on supp X, by translation 7

and X{(I') = X,(+T) forallT € supp X; ,

(*2) «T(X) = 0 unless X is a polymer .

From lemma 2-1 we have ,

Zy,+ = exp{ Sxcy Vi) }

- YI(X) = exp(—BXDal(X).

We remark that qu (+) also satisfies the above properties (*1) and (*2) .

Lemma 2-3 For sufficiently large B the following estimates are valid ,
@
Wi \
—5— = @,
Xs0 '

where X » O means supp X 2 O and C(B)—~ O exponentially as B,
(i)

x|

—57— = exp(=BC(B—Bo),

X5 0,x|=k Xl

(2-6)

(2-7)

(2-8)

(2-9)
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if B— By is also sufficiently large.
From (2-3) and (2-7) we get,
1 vI(X)
Py)) = 7= exp{-BN- = —%h (2-10)
v XCV, X i A :

where X i A means some contour of supp X intersects X .

2.3. Geometrical description of the interface

For an interface A we shall introduce the conception of wall and ceilling. We call

S= {x = (xq, xp, x3,) €R3 ; x3= % } standard plane and define the projection p(x)

of a point x = (xq, x5 x3) on the standard plane by p(x) = ( xq, X3, —;‘ ).

We decompose all unit squares in the interface into two kinds of squares. We call
a square ¢ on N a wall square, or w—square, if the vertical line I(g) passing through a
center of ¢ intersects at more than one point of A. (I(g) is the line which is parallel

o the third axis.) If I(g) intersects N\ at exactly one point we call a unit square g
a ceilling square, or c—square. A set of W -squares and a set of C-squares are called
wall part of A, W(A) , and ceiling part of A, C(A), respectively.

We decompose W(X) into a finite number of connected components { W; W5, ...,
W,}, and C(A), {Cy, C3, ..., Cx }. We call each W; a wall* and C; a ceilling. If the set
of walls {Wy, ...,W,} is given then the set of ceillings { Cy, ...,Cy } is uniquely deter-
mined.

Now we introduce the notion of standard wall. For a wall W of A\ the complement

of p(W) contains exactly one infinite connected component , say Ag(W) . The
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base Cy(W)

of the wall W is defined as the ceilling which contacts with W and satisfies p( Co(W))
C Ag(W) . We call the wall W of \ standard wall if Co(W) is contained in the stan-
dard plane . When C(W) is contained in the plane { t€R3 ; 3=hg}, we say the height
of the base of W is hy. When the height of the base of W; is given by s #0, we
translate W; by (0,0,—s) and get the standard wall w;.

In such a way we get a family of standard walls {wy, ..., w,} from the interface A.
“"7e call a family w = { wy, ..., w, } of standard walls on Sy admissible if p(w;) N
p(w;) = & (i#j). If an admissible family of standard walls is given then we can
construct an interface in a unique way. There is a one—to—one correspondence of an

interface A and an admissible family of standard walls.

2.4. Interacting System of Standard Walls
We first introduce the notion of the excess area of the standard wall w by,
w| = (the area of w) — (the area of p(w))
When an interface \ is described by an admissible family w = {wy,...,w,} of standard
walls ,we get

A= |wl+ ISvl,

where [w] =

n
i=

w;| and Sy, = SUV. Then the probability distribution (2-10) is rewrit-
1

ten in the form ,

P\ = ;; exp{~BIw| = Uy(W)}, (2-11)

where
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vI(x) vIx)
8 B
Uy(w) T T (2-12)
XCV,Xi\ XCVv,XisS

and Zy is the normalized constant but it is not the same as in (2-10) . In (2-12) we sub-

tracted the constant term from the first one in order that Uy(J) = 0.
Letting M - in V; ) we consider the cylindrical region V* ,
Vv = V¥, ={teZ?; 0=<ty,t,=<L},
and consider the probability distribution of the interface N in V* . To do this we

—odify the definition of Uy(w) and introduce the potential Uy.(w) for an admissible

family of standard walls on Sy ,

VIX) I (69

Uys(w) = - ,
xcvs xam X! xcve xis X!

(2-13)

where A(w) is the interface in V* constructed from w . Using the translaticn invari-

ance of ‘I'g(-) we cancel the terms with p(X) N p( w) = & in (2-13) and get,

vIx) vIX)
Up(w) = 3 — - s TR (2-14)
XCV* X i M(w) ar XCV*, Xi§ :
pX)Np(w)# 0 pX)Np(w)*S

where p(Ww) = U,y p(w) and p(X) = p(supp X) .
From the estimates in lemma 2-3 we get the following estimate for Uyx(W) .

Lemma 2-4 For sufficiently large B > 0 the following estimate is valid ,

[Uys (W) = ko(B) W]
where ko(B) -0 exponentially as B-o .

The proof of this lemma is given in Appendix A .

Now we regard the interface A in V* as a configuration of "wall" particles

w={wy,...,w,} on Sy, and define the probability distribution P;(w) for wby ,
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1
Pr(w) = Zo exp{—B|w|— Uy (W)} (2-15)
for sufficiently large B .

Lemma 2-4 shows the convergence of Zy. ,

Zye = 3 exp{-Blw|-Up(m} < =,
wCv*
for sufficiently large B ,and this ensures that (2-15) is well defined .
It follows from the standrd argument that Py 4 (*) -~ Pr(*) weakly as M- .

We rewrite Uy+(w) as the sum of lccal potentials @y.(v), vCw,

Upe(w) = 3 Dya(v).

vCw

From the Mobius inversion formuila we get,

Qp(v) = (=D 3 (=D"Upu(a), (2-16)

aCyv
where !lvil is the number of standard walls in v .

It follows from (2-14) and (2-16) that

By (V) = Pha(v) + PZ.(V),

where
T
(I)%,‘(v) = (—1)”"iI 3 (_I)I!ai! > \I';('X)
P+al v Xi)\(u),XCV‘ !
pX)Np(a)# D
and
T
(I)%It(") = ("1)”"” 2 (__1)“11” z '\I’;('X)
B#+a Cv Xisxcys !
pX)Np(a)#QD

We treat @1.(v) and ®2Z.(v) separately. Exchanging the order of sums in D.(v)
we get ,

VE(X)
q,%"(v) = (_I)IEVH E ;i 2 (_1)llal|’ (2_17)
XCv* : a€v{X)

where
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vX) ={a;F#aCv, X iNa) ,p(X)Np(a)#T }

For a given standard wall w on Z? the complement of p(w) has just one infinite
connected component and several finite connected components. The set of these finite
connected components is called the interior part of p(w) and is denoted by
Int p(w). We say wy €v is the inner most unless there is a wall w €v such that p(w) C

Int p(wg) . Denote by vg the set of all inner most standard walls of v .

For v€vy and aCv we denote by v(a) the part of A(a) which projects on f(v) ,
~—~here f(v) = p(v)U Intp (v) . If v & a, v(a) is a part of ceilling of A(a).
Let us suppose that X C V* satisfy the condition (*) ,

(*)  there exists v* €vj such that X doesn’t intersect v¥(a) for all @ Cv .
We shall prove that ,

S (—D"®" =0 if X satisfies (*).
a€v(X)

To construct an interface which intersects X we only need standard walls of v v¥*.
If XiXa)and p(X) N p( a ) #J for aCv\ v* , X i A(aUv*) , since v* is the inner
most and X doesn’t intersect v¥(a) .

Hence v(X) is decomposed into two parts ,

viX) ={a;a €v\v)X)} + {aUv*; a€(v\ v¥)(X)},
and using this relation we get ,
E (__1)|Iu|| =0
a€v(X)
Therefore <I>‘1,.(v) is rewritten in the form,
YEX)
(D%/.(V) = (_l)llvll E —_‘;E|—- 2 (_l)llmll, (2-18)
X €I ha(v) : a€v(X)

where

Ji(v) = { X CV* ; For anyv € vy X i v(a) for some aCv }
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We say w is external in v unless there is a wall v such that p (w) C Int p (v) .
When we construct an interface A(w) in Z3 from a single standard wall w , the ceilling
part of A(w) has exactly one infinite connected component and several finite connected

components. These finite connected components are called inner ceillings of w .
Take any X GI},.(V). If p(X) N p(wy) = S for some external standard wall wy
€v , then there exists an inner ceilling C of wg such that p(X) C p(C) and p( vg) C
p(C). If C is contained in the plane { t=(t1,15,t3) ; t3=dg } , we say the height of C is
dy . We denote by X, , k€Z , the translation of X by ( 0,0,kdg )
When dg > 0 there is the positive integer kg > 0 satisfying
(i) v(Xp) = for all k>k,
(i) {x€v(Xy) ;a3 wg} #, and
(il) {a€v(Xy) ;o % wol = &,
and the negative integer k, < 0 satisfying
(i) v(Xy) = for any k < ky,
(ii) {aEv(Xkl) ;a dwol#J. and
i) {aev(Xy) a >wel = .
For any k with ky<k=k, we put,
v(X) = vi(Xp) + vi(Xp),
where v1(X;) = {a€v(X;) ; wo€a} and vi(X,) = {a€v(Xy) ;wg a} .
Then vi(X;) = {aUwg ; a €vE(X,_1)} for any ky<k=<kg .
Taking the translation invariance, \Ifg(Xk) = ‘I'g(Xk_l), into account we get ,
q,g(xk) s (-Dhell 4 ‘I’§(Xk-1) » (el =0,

aevi(xy) a€vi(X;_ 1)

and moreover
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T
\P;(IX) (-nlell =0,
Xelys(v) , p(X)Op(wo) = @ a€v(X)
since v3(X,) = & and V(X)) = @.
Hence we have the final formula ,
vix
Ql(v) = ("™ 3 ‘;((, ) (-l (2-19)
X €lys(v) ) a€v(X)

where
Iys(v) = { XCV* ; (i) p(X)Np(X)# for any w €w and (ii) forany w € vg
A.nere is some @ C vV such that X i w(a)} .
When dy < 0 the same formula is obtained .

In the same way as in (2-17) we get

VI

®hu(v) = (—1)"V"Xcv§Xis Xt 2 (=niel, (2-20)

where

viX] = {a;DB#a Cv,pX) N p(a)#T}
We put

A(v) ={vev;pX) Npv) #J}
and

B(v) = {vev;p(X) Np(v) =D}
then

viX] = { jUa, ; B#a; CA(V) ,a; CB(V) }
If B(v) # & then

s (=pet= x  (p'™ s =p"=o.

a€v[X] Z+a; CA(Y) a; C B(v)

Then we have
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(I)%/..(V) = (_l)llvll 2 2 (_l)llall’
X €llye(v) Xl a€v[X]
where

Iye(v) = {XC V*;XiS,pX)Np(v) # & for all vEv}

We summarize the above results as Lemma 2-5 .

Lemma 2-5 For sufficiently large B >0 we have ,

: vIx) -
(DV"‘(V) = (_l)hvi! 2 ___BX_'__ 2 (__1)!;11”
X €lys(v) : acv(X)

vix)
+ (=i 5 %__ » (=Dl
X €llye(yy aev[X]
where
Iye(v) = {XCV* ; (i) pX)Np(X)# for any w €w and (ii} for any wevg
there is some aCv such that X i w(a)}.

and

Ip(W) ={XCV*;XiS,pX)Np) # & forall vév}

Lemma 2-6 If B,Bg and B—B, are sufficiently large we have the following upper
bound of |Dy«(¥)],
|@ye(v)] = 4M*FLC(B=Bg)-Min, ¢y lw|-exp{—2Bod(M)}
= C(B—B¢) Min, ey lw|exp{—Bod(M},

where v is the set of all inner most standard walls in v and d(v) is the shortest length

of the path connecting all w€v .

Proof.
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We estimate the first term q)%,.(v) and the second term (D%,.(v) of @yu(V)

separately . For a given X and wg €v; we define the subset v(wg;X) of v by ,
v(iwg:X) = {aCv ; X i wo(a)}.

Moreover we denote the part of the interface A(a) which projects on p(wg) by
wo*(a). Evidently wo*(a) C wy(a) .

If X € Iyu(v) then v(wg;X) #& and X intersects wy(e) for some a€v(wg;X). But X
may not intersect wo*(a). We define the vertical distance p(wg*(a) , X ) between

,_wo*(a) and X by,

p(wo*(@),X) = Min{ |t—s|; t€suppX, s€wo*(a) s.t. p(t) = p(s) },
and put

d(wg,X) = Ming ¢y(wax)P(Wo*(@),X).
For any fixed wg€vy and X €ly.(v) with d(wg,X) = k=0 ,suppX must contain the
point g of the dual lattice (Z3)* such that the vertical distance between g and wo*(a)is

given by k . The number of such points ¢ is bounded by 2"""""-(jwoV2|p (wo)]) for any

wo€vo. We can also observe that [X|=2(d(v) +k) if d(w,X) = k

Hence we have ,

wix|

1 tvil, < i

|(I)V4(V)| = 2' XEIEV‘(V) X! “ W
; i)

< 4|1V||.Max{lwol,2|p(w0)l}E 2 -—BX_'—_——

k=0X O, [X|=2(k+d(v))

= 2:4"Vwg|-C(B—Bo)- § exp{—2Bo(k+d(Vv))}
k=0

<4Ivii+1, [wol-C(B—Bo)exp{—2Bod(V)}.
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For any X €lly«(v) we put,
d*(wg,X) = d(p(wg),suppX).

When d*(wg,X) =k, [X| = 2(k+d(v)) . Hence we can get the estimate of d>€',.(v) in

a similar way to <I>‘1,.(v) ,
[®2.(v)| = 3-2'""- jw|-C(B—Bg)-exp{—2Bod(W)}. (2-22)

From (2-21) and ( 2-22) we get the proof of lemma .

3. Statement of Results

In the previous section we regarded the interface A as the configuration
w={wy, ...,w,} of standard walls on S , and expressed the probability distribution
of A\ as the Gibbsian distribution of w with self energy |w] and potential Uy+(w). In
(2-14) the sum of X was restricted in V* and this caused the V*-dependence of
Uy«(w). To avoid the difficulty in V*-dependence of the potential we introduce the

potential U(w) for an admissible family of standard walls on 72,

vEX) ‘ L 4169)
xt 2 X1’
X iAW) p(X)Np(W)+D XiSpX)nplw)*2 )

U(w) = (3-1)

where A(w) is the interface in Z3 constructed from w. Using Lemma 2-3 we get the
same bound for Uy.(w)
[uw)| = ko(B)Iwl (3-2)
where ko(B) is the same function as Lemma 2-4.
The local potential ®(v) induced from U(-) is expressed in a similar way to
Pyu(V) ,

vi(x
®(v) = (=i 5 B(! ) 5 (— 1)ttt

X € I(v) X a€v(X)
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Ivil ‘I’g(X)
+ (_l)lv 2 Xi 2 (_1)|Ia|l (3-4)
X € I(v) Y @ ev[x]

where
I(v) = {XCZ3;(i) p(X)Np(w)#D for any w € v and
(ii) for any w € v, there is some a C v such that X i w(a)}
and
(V) = {XCZ3% X i S and p(X)Np(v)#Q for all v € v}

— Now we define the probability distribution P*;(w) of w on Sy by,

Pr(w) = z}z exp{~Bw| — U(W)} (3-4)

for sufficiently large 3 .

Let % be the set of standard walls on S and T : & -5 be the mapping which
maps every point of w € P to its mirror image with respect to the standard plane S .
( See Fig. )

We consider the functional F(w) defined for w € and assume the following two

conditions on F ;

) F(Tw) = —F(w)
(i) [F(w)| = colwl,
where ¢y > 0.

For a given w on Sy we define X’(‘m)(w) , 0=t,5<1, by

1
XE (W) = ——— s F(w),
©:5) o(B)L wew;w C[0,eL] X [0,sL]

where the sum runs over all w €w contained in

{z=(zl,z2,-%-) € Sy ;0=z;=<tL and 0=<z,=sL}
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Now we can state our first result .

Theorem 1

For sufficiently large B there exists a function o(B) > 0 and

P Xb (W€ [TiS] (=10 ) = P(W(ts) € T58]  (i=1,...0)

as Lo for any 0s¢; ,5; =1, T; < §; ( i=1,....,k) , where ( W(s,t) , P} is a Brownian
—~heet .

Next we define the continuous process Y{‘,’,)(w) ,0<= t,s <=1, as follows,

ki k
: L - yLo21 22
() YEs) = XA
. ky  kp
if (68) = (7, —i"’) kiky €N,
ky kp+1 ki+1 ky ky ks
. L = L~ L -_ —ey— L=,
(11) Y(t,S) elx 7 L )+82X( L ’L)+(1 ey eZ)X(L,L)
. ky ke
if (1) = (T +enp te) ,erten S1,(0ser,e,= D),
_and
ki +1 ky+ 1 ky kp+1
L - _ L ~ — L2
(111) Y (t,S) (e1 + ey l)x ( I , L ) + (1 81)X (L , L
ey + 1 ky
+ (1—e)XE( )
k1 k2

if (t,8) = (2—+e1,L +e) ,egtea>1 ,(0=¢e ,ep=1) .

On the triangular segment ,

k k
{ (t,5) = (—Li + ey —Li +ep) € [0,11X[0,1] ; 0= e;,e; =1, and 3 + ¢; = 1}
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YL(:) coincides with the plane passing through the three points

ky k1 kg kyt 1 k+1 Kk

ky + 1
(L) L ’ (L' L ’ L 7—L-l

XH(——, k) and

ki ky ki Kk . .
(T C T X (—I:- » =)). ( See Fig. ) It is obvious that YL(t,s) is continuous in (t,s)
€[0,11%x[0,1] . The finite dimensional distribution for YL(t,s) also converges to the

corresponding distribution of the Brownian Sheet .

Theorem 2

—

For sufficiently large B there exists a function a(B) > 0 and
Pr*( Y, s)(W) € [T,8]) (i =1,...k) )
-~ P(W(t,s) € [T3,8;] (i=1,...,k) )
as L - » forany 0 < 1,5, =1, T; < §; (i=1,...,k) , where (W(t,s),P) is a
Brownian Sheet .

Finally we state our final result . Let Cg be the space of continuous functions on
[0,11X[0,1] with supremum nerm , and pg* be the distribution of
{Yis ; 0=1,s =< 1}on Cqderived from P, * .

‘ Theorem 3
If B is sufficiently large , then p;* converges weakly to the distribution of a

Brownian sheet as L - o .,

4. Polymer expansion for the wall system
In§ 2.2 we developed the algebraic method for the contour expansion. In this
section we apply the polymer expansion to the standard wall system similarly.

Let ® be the set of all standard walls on the standard plane S, and ¥ () be the
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space of all mappings A from to the set of non-negative integers N satisfying

HAll=3 A(w) <
we

The functional space F= F(P), a convolution product *, subspaces 5'(‘] and \71’ the
exponetial mapping Exp, the logalism mapping Log and the mapping D, are defined
in the same way as in § 2.2.
Lemmas 2-1 and 2-2 hold true in this case,too.

We say A is admissible if A!=1 and p(w;) N p(w;) = J for any w; and w; €
supp A(i#J).

For an admissible A € X(P) we put

Ug(A) = Ug(w),
where w=suppA and Ug(w) is the same functions given by (3.1)in § 3.

Now we introduce the function ¢g€ F@,

. exp{ —BlA|-Ua(A)} if A is admissible,
bg(A) = 0 otherwise

where JA] = 3 |w|A(w). Then the partition function Z,« is rewritten in the form,
wE

Z,= 3 dp(A),

Acy’
where ACV" means p{w) C Sy, for all w€ supp A.
We shall introduce some terminologies which will be used in the sequel. For suffi-

ciently large B; and B, we consider the generalised function ¢Ble(A) from $5(4) ;

: { exp{—B1JA|-Up ()} if A is admissible
b8 A) = | 0 otherwise

If B;=B,, then dg 5, = ¢p. In § 2.2 the weight function ¢g(-) of the centour

expansion was, in a sense, multiplicative. But now we have the non-multiolicative fac-

tor Up,() and this cause the difficulty for the analysis of the polymer expansion.
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First, we introduce the lexicographic order in Z2 in order to introduce the order in
. We say we€v is the first element in v if w€vg and i(w) < i(u) for all u€vy , u#w ,
,where i( w ) is the first point of p(w) in the lexicographic order in Z2. Denote by w;

the first element of supp A.

For an admissible A we put

b= 3 (D),
w1€TCA

where
- Dp(T) = @B( supp T ).
Furthermore,for an admissibie A and B with ANB=(J and B#{J we put

WPB(4,B)= 3 @u(TUB),
WIETCA

and

L n
S 3 O(exp(~WPA,P)-1)
n=1{p; P N=1 ifE +
KP(A.B)= | 4 ifB=0

* n
where the sum 3 runs over all non-ordered sets Py,...,P, such that 'U1Pi=B
Py..P, t=

—-and PL?EP) ( l:lej ).

We define A () € }(P) for an admissible A by

Au(B) = (g, p,” " * Dadp,p) (B

Then they satisfy the following recursion relation.

Lemma 4-1 (Recursion Formula for A4(B))

For any w€ and A such that wUA is N.O. and w<A, we have

A B)
—_WUA,( = exp{—Bilw|-UPAAUW)} X KPYwUA R)-
B RCB; wUAUR: N.O.

Aurug(B\(QURY)
. — 1@l

3 DT guRy

U

QCB\R,Q1Iw,
QUAUR:N.O.
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where A is N.O. means that A is admissible , and Q I w means that all elements of

supp Q intersect w .

Put

In=In(B1,B2)
B
A8 ul
= sup —-——.—e
adsiaiism gy lnoan B

From the recursion formula for A (B) we get the estimate for /,, which will play

an impoertant role.

Lemma 4-2

For sufficiently large B1 and B,, we have
Insi = Ipk(B),

where k(f;) -0 as By ~o.

Cor.1 to Lemma 4-2

I, = (B}
_ where k(B1)~0 as By ~= .

Cor.2 to Lemma 4-2

For sufficiently iarge B; and B, ,

68,0080

B! = Clexp{_CZBi}

cel

where ¢y and c; are constants .

Proof of Cor.1

By induction we have
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L, = I {k(BP}"+1 .
Here

B1
5 Il B1
Iy =suplA,(D)]|e? = sup exp{—lel—KDBz(w)}
we wE

Using the estimate of ®"2, we get

1,(B1,B2) = exp(—cyB)
for sufficiently large B; and B, , where c; is the constant . Thus we get the estimate
_of I, as above.

Proof of Cor.2

It follows from Lemma 2-2 that

T — -1 —
Dwd’ﬁx,ﬂz - ¢31,32*DW¢B1|32 = A,.

Hence we have,

[6F,6,(B) s 68,8, (wUB)|
> g = — 5
BP0 B! ws0 B Bl
® By
= 3 Zlpexp{-5Iwh
w3 0 m=0
= ciexp{—cyBi} ,

where ¢, and ¢, are constants.

5. Proof of Theorem 1

We define functions x} , j=1,2,....k by

L 1 if wC[0,4L]X[0,sL],
= ‘o,
Xj 0 otherwise .
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For any y1,¥2,...,yr €R, we define the function f; = f;( y1,¥2,...,Y¢ ), of w, by

W) = Sy S Fw) xEw)

i=1 weEw
Consider the characteristic function ef(y) = Oi‘( ¥1,¥2, © * * »¥x ) of random vec-
tors
L spk L sp. £y defined b
oL 2F X1 - o 2F Xk y
0k(y) = < Pl >pr

~where o > 0.
To prove Thorem 1 it is sufficient to find some function ¢ = o{f) > 0 defined for

sufficiently large B and prove

. 1
Im0p(y) = exp{=5 5 (tn Aty ) (s A5y ) I Y }

m,n
where the right hand side is the characteristic function of the random vectors
(W(ty,51),...,W(tg, 5, ) ) with respect to the Brownian sheet.

First we rewrite 9,{‘ in terms of the polymer functional $g(4) ,A€ I (P),

~ S, explif,{A)/oL}dg(A)

L _  acv’
0k(y) T plA)
Acv”
where
A= Sy S AW Fon) xFow) . (5-1)
i=1 we€A

Since exp{if;(A)/cL} is a multiplicative function of A and

> | exp{ ifL(A)/cL}d)g(A)l < o for sufficiently large >0 ,
Acv’
we can apply Lemma 2-1 to 0L(y) and get,
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T

A
0L(y) = exp{ 3 )(exp{lfL(A)/ﬂL} 1) L (5-2)

Acvy’

Using the Taylar expansion we get

OF(A)  fhA)  fIA)
0E(y) = e"P{ACZV, Al VT 20212 416414

b3 :
('&‘Z‘) P, eOI=1,(5-3)

where the first and third terms in the Taylar expansion were cancelled from the fact

that

- i) fu(TA) = —fp (A) and i) F(TA) = dg(A) .

We use the translation invariance of <[>B(A) for the analysis of 9,7;(y) . In the con-
tour system the polymer function Wg(-) satisfies the useful property that ¥Z gX) =20
unless X is a polymer ,but this preperty does not hold true for ¢g(-).

With each ACV* we associate the minimal path in Sy connecting ali standard walls
of A in a unique way. We denote by A the union of such a minimal path and supp A .

We decompose the two-dimensional square [0,L] X [0,L] into the set of rectangu-
lars { G;;} as in the Fig. by using the line segments passing though the points ,

(#,L,0),....,(;L,0) and (0,5,L),...,(0,s5,L).

From (5-3) we have ,

—1 k $I(A)
ok = explz57 T3 P 1A
‘51_1 ACG,]
1 dF(A) f2(A) 1 ¢T
20.2L2 - E Al 4‘04L4 . fL 9( )} (5-4)
A i (Ui j3Gy) : ACY
ACV

where in the second terms A runs cver all A such that A intersects the boundary of

some Gi,j
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We prove the following two lemmas which will play a dominant role for the proof

of the Theorem .
Let s(L) be the set of line segments in [0,L]2 CZ? ,and the total length [s(L)] of all

line segments is bounded from above by cL .

For sufficiently large B we have ,

Lemma 5-1
T
(A)
lim — H’Z—'IF(A)Z" =0,
L= L®Fisw) ’
ACV*

_where F(A) = 3 F(w)A(w).

For sufficiently large B the following limits exist,

Lemma 5-2
T 2k
(AYF(A)
lim —1; '?LI'— = B;(B)ts
Lew L% ci0,L] x [0,sL] !
1,2)

and B,(B) > 0 (k=

For the proof of lemma 5-1 we introduce two functions

L)
v = 3 D

and
$E(A)
8d) = 3 QAE—I FA)*
i(4)=0
_ Al=d
where [A] = |p(A)| + total length of the minimal path connecting all w€A , and

i(A) is the initial point in Z2 of p(A) in lexicographic order .

It is easy to see that 0 < y(d) = d8(d) and

54|
s X - s = Bl pays <
d d i(A)=0
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Hence we have ,
li 1 é (d) 0
im — v =
L= L ;24

Using these two facts we have ,

1 lbZ(A)]
= S S Fa*
L? Ais) Al
A CV*
T T
(A A
= % —————N’:' ) FA® + 3 ———ld?':(, ) F(A)%
L® 50 A i(4)=0 :
— AlsL lAj>L

L e
= CLE y(d) + 8(d) - 0 as L-ww.
d=4

L d=L

This proves lemma 5-1. In the same way we can prove lemma 5-2.
1.

Now we shall use these two lemmas for the proof of Theorem

Let us remark that HJ'aG,J, |<=KL for some constant K > 0. From lemma 5-1 we
‘!J

get,
Toayi £2
(A)| fi(A)
___i > ————-ld)B Al‘fl‘ ~0as L - = (5-5)
20°L% 4 i (UaGy) !

ACV

The third term in (5-4) is estimated as follows ,

1 [$5(4) (4] WELAN

4r4 1
416°L4 S\ Al oL
2 T FYA) & 4
L M’_ﬂ(_i‘_'_(_)_ Sy) -~0as L » >, (5-6)
) i=1

4!0‘4L4 i(A)=0

The first summation I in (5-4) is rewritten in the form,

T

1 bp (4) &

I = =7"5322 _ BAv 2 ImYn
20°L7 i ACGy : n
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(S AW) Fw) xE(w) )+ (3 A(w) F(w) xE(w) ).
Here it is easily seen that
( S AW) F(w) xEw) ) (S Aw) F(w) xs(w) ) = 0

unless A C [0, (1A, )L 1% [0, (s,As,) L] .

Therefore, we get the following convergence from lemma 5-2

1 k
I - 5 S Ym¥n N (Sphs,) as L-
_ mun=1
1
Putting o = 31(3)2

,and using (5-5),(5-6),(5-7), we get

1 |
0f(y) =~ exp(=5 S m¥n (M) (sphs, )} as L =

m,n

This proves Theorem 1 .
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6. Proof of Theorem 2 and Theorem 3

6.1. Proof of Theorem 2

The proof is very similar to the proof of Theorem 1 . For simplicity we only

prove in the case of k=1. Fix (t,s) €[0,1]% and put ,

ky=ky(L)=[L] , kpy=kp(L)=I[sL] , and Vy(ky,kp) = [0,k;X[0,k5] .
YL(t,s) is described in the following form ,

Yh(t,s) = ey(L)XL(ky+1,ky+1) + eq(L)XE(ky,kp+1)
‘ +e3(L)XE(ky+ 1,ky) + eqlL)XE(kyky)
vhere e;(L)-e4(L) = 0 and ey(L) + e5(L) + e3(L) + eq(L) =1 .

Rewrite YZ(t,s) as follows ,

YL(tis) = XL(klikZ)
LL F(w)
a wCVy(k+1,k+ NV (ky,k2)

+81(L)'

1
+ey(l) —= > F(w)
wCVy(ky,ko+ I\ (k,k2)

1 .
+e3(L)- oL > F(w)
WCVL(k1+ 1,k7_)'\VL(k1,k2)
The first term is the volume term and remainder terms are boundary terms . In the

same way as the proof of Th 1, the following convergence is obtained ,
L yL 1 2
<exp{iy-Y"(£,5)}>ps, - exp{——2—tsy } .

6.2. Proof of Theorem 3
We have proved the convergence of the finite-dimensional distribution for YX(z,s)
in 6.1 . Now we shall prove the convergence as the distribution on C([0,112~R).

From the definition of YX(¢,s) we know that

Yo(e,s) = 0 if tXs =10
with probability one .
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We have only to prove the following condition (*) to prove Theorem 3 ;

(*)  there exist constants ¢>0,e>0,8>0 such that
< | YE(r)—YE(Ty) | ¢ > =c | Ti—7, | 278
for every T, and 1, € [0,1]%, if L is large enough .
For fixed 7,=(t1,51) and 1,=(t,,5,) €[0,1]% we first show that ,
< | X=Xt |® > = 8(B) I—mf (6D
for sufficiently large 8 , where 8(B) > 0. Put
L L'r L'r
G*(w) = X (w) — X ¥(w)
1

= { F{iw) — Fw) h
o®mL' 2, =,
wC[0,1,L}X[0,55L] wC[0,0,L]x[0,s,L]

Applying the method of polymer expansion , we get

S exp {iGE(A)y } bg(A)

ACS
< exp {iG*(W)y } S = T dpd)
Aé‘SV
$F(A) . :
=exp { I . - (exp{iG“{A)y}—1) } ,

ACSy

where

1 .
{ F(w)A(w) — F(w)A(w) }
c(PIL w.chL(n) wc%oz)

and V(1) = [0,4L1X[0,5L] (i=1,2) .

GL(A) =

From the standard argument ,

< GL()S >

T A T A A A)
- 2 EEA_(T_)GL(A)ﬁ + 15 Z "‘b—i'(—!‘lGL(A)4 2 ¢B(g GL(A)2
ACSy : ACSy ACSy
T(A
+15( 3 4%‘,—)—6‘(/4)2 )? (6—2)
ACSy ’

Employing the properties of polymer expansion for ¢4(X), we shall show that
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$E(A) L?
GL A 2k -
IACESV Al W= = (o(B)L)**

for sufficiently large B , where 8,;(B)-0 as B~°.

Bok(B):lri—7a|  (k=1,2,3) (6-3).

Let us first consider the case that S,<S; and t; =< 1t, . ( See Fig. )
Let h(w) = (t,5;) and r(w) = (t,,5,) be the points in p(w) characterized by the
condition (k) and (r) respectively ;
(k) Sp=s forall (t,5) € p(w) and f;=t forall (1,5,) € p(w)

(r t,=t forall (t,5) € p(w) and s,< forall (£,5)€ p(w) .
( See Fig. )

In this case GX(A) is rewritten in the following form,

Gh(Ay = { T FmAw) - T FwWAMW) },

eAL wéAL2

(B)L

where

AL = {w : standard wall in V; (71} such that h(w) € V (TP\V (1) }

and

Az = {w: standard wall in Vi(7;) such that r(w) € Vi (7o\Vp(71) } .

Using the inequality (¥¥) ;
1 2 1 =
(**) = 2 = = S af* for >0, m>1,
n < n 2
and the properties of polymer functionals , we get

T
3 SO G
ACSy
T(A) \ 2
1 - l¢ﬂ' ]{ s lp(w);A(w)}‘k
(a(B)L)™" acCsy Al weattual
T(A

(a(BIL)** 4Cs, ! wéAL‘UAL2
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c* LHC .
= GeD® 2 ar AT = (klae)®
ACSy wealiuale
= _C—z'i' 5 |¢g(:1)l 4
@B T . ags, Al
c )|
= —— V() © V(1) | IPRAVRIL 4 14k
e@n Ve Vit |- 3 T
L?
= —3 _ ,
(O.(B)L)Zk Zk(B) ITl T I
where 8 (B) -0 as B - .
When s;<s, and t;<t, ( See Fig. Case 2 ) , we get the same estimate. Hence

we could prove the estimate (6-3).
From (6-1) and (6-3) we get,
L, \6
< G*(.) >PZ
36(B) Kako _ Bu(B)S(B) Jy—hoff 82(8)° [ki—k,f

1

a(®)® L’ T (Pt L c(B)f L3
6 5,(B)® |ki—k,
o(B)® L3
= 3(B) |r—7,f
. . 1 n1 mi
for sufficiently large L , where T = Zki = (T’T) and
1 ny mj;
= k= (T

Hence we get the proof of (6-1).

The estimate (6-1) implies that the moment condition (*) of YE(7) is satisfied
. . 1
with €e=6 and 8=1 for any discrete points (77, Ty} given by 7, = -L—(n,c , my)

Ny ,Mg €N (k=1,2).

Next, let us consider the case that 7;=(f;,s;) and 7,=(f3,s;) are contained in a
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single block enclosed by line segments passing through three points A0='Ilj("1,m1) ,
1 1
A1=z-(n1,m1+1) ’ and A2=2-(n1+l,m1) N (nl,ml EN).

It is easily seen that ,

[ ¥E(r) = YE(1) | =< =1 [P (A) ~YE(AQ) | = Isy—s, I (AD —YE(A)| -
From the above estimate and the inequality (**) , we get

< P -YE(rpf > o= |Tl—¢2]6-—“’L”—;"
— < const.-|r;—7,
for sufficiently large L .
For arbitrarily given 7, and 7, € [0,1]% , we get the following estimate by using
(6-1) and (*¥),
< [P =YE(rp)| > o = B8(B)-Iry—72P

for sufficiently large B and L . This proves Theorem 3 .

7. Appendix A

~7.1. Proof of (2-6)

k
Let X = 3 +; be a possible rearrangement of X = %ni'yi. We define the func-
i=1 i=1

tion f( v;,Y;) by

—1ify;Ny;# D
FOuY) = 10 otherwise

Then o(X) is rewritten in the form,

X) (u)esm{ oY

where g(X) = {(i.)) ; 1=i<j=k }.
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We proceed in the same way as usual,

a(X)= 1+ I f(vy;)
Bc%(x)("»f)“’f YirYj

=1+ 3 (_1)#(8)'
BCGyX)

where G,(X) = {(i,j) €g(X) ; v;Nv;#}.
Let w(.) be the right hand side of (2-4) , i.e.

w(x) = E (_1)# of bonds in C“
— CCG(X):conn.

For any BCG,(X) we put

vB)y= U {ij}
(i,j)€B

We rewrite w(X) in the form,

o(X) = > ) (A-1)
BCGy(X);conn.v(B)={1,2,....,k}

where we say BCG,(X) is connected if for any i and j€v(B) there exist a path
i=ig, iy, . . . .i,=j in v(B) such that 'y,-Pﬂ'y,-pH#@ forallp.

- We shall prove that Exp o = a From (A-1) we have

- n
Exp w(X) 1+3 > Tl 3v)
n=1 {Yy,...,Y,}non ezrdered;':1 i€y,
Y1,U...UY,= {1,...k}

YNY = (i#))

(-] n
-1+ 3 % 5 Tl 3 v
Yc{1,2,....k} n=1 {¥y,....,Y,}:non ordered j=1 i€Y;
#r=2 YiU..UY,=Y

Y‘an=g(l'$j)

M=

#(B
) ="
1 By ..., B,CGy(X): connd=1
v(BYU - - - Uv(B=Y
vBINV(B)=2 (%))

]

+

™M
tMe
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=1+ 3 s (—D*®
Yc{1,2,....k} BCG,X),v(B)=Y

1+ 3 (-D¥*®
BCG(X)

a(X)

7.2. The proof of Lemma 2-3 (ii)

First of all, recall that W}(X) is rewritten in the form,
viX)= exp(—BXDaT(X).

Hence we have

i) exp(—(B—Bo) X Da’(X)
exp(Bok): 3 —er— S S =
o€X,|X|=k : Xae,[X|=k :
[ E—-p X!
- s S—— = (BB
X350

This prove lemma 2-3 (ii).
7.3. The proof of Lemma 2-4

First we put

UV'(W) = [1 - 12

where

viX)
’1 = 2 X!
X i N(w) :
pX)Np(w)#* D
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and

vEX)
Xis Xt
pX)Np(w)#Q
Moreover we decompose I into the sum of I; and I4,,

12=

\Pg(X)
I,= X1
XiwQh
p(X)nNn ,(:(9;2@
W%(X)
I13= X1
- X i x(w)
X not i W{(i(w))
pX)Np(w)*Q

where W(A(w)) means the wall part of the interface A(w), and X not i W(A(W))
means that any contour in supp X doesn’t intersect W(\(W)).

Since X i W(A(w)), supp X contains at least one pcint of W{A{w}) and we get the
following estimate for Iy from Lemma 2-3,(1},

[PEXO|

[I11l= lthe total area of WIN(W)| 3 X1

X330
=2w| c(B).

Next we shall estimate 7, . Take any X from the summand in 7y, . We define the
vertical distance between X and W{ A(w) ) by
p(X ,WOA(W)) = Min{jt—s| teW(MW)), s€supp X, p(t) = p(s)}.
For X in the summand of 1I;;, we get p( X,W(\(w))) >0. When
p( X W(AW))) =k suppX must. contain a point ¢ €(ZH* satisfying
Min {t—qlteW(A(W) ) ,p(8) = p()} = k. The number of such points g is
bounded by 2|w|, so that we have,

T
F1pi= § > M
k=1 d@X,W(w)=k X!
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@ [wEX) |
= 2w 3 [;(!
k=1 X O
X|=2k
= const w|exp(—2Bg) C(B—Bg)

if B—By is sufficiently large .
Therefore we get
Il=<Iwi{2C(B) + Ciexp(=2Bo)C( B~ Bo)}-
In a similar way to Iy we have

[wEx)|

|12] =32 > X!
k=0 Xis :

pX)Np(w)+2

p(xip{w))=k

SZ‘p(W)i' i = ——'X—""'

=2|w|C(B—By) § exp{—2Bok}
k=0

=const.\Ww|C(B—Bg)
if B— By is sufficiently large .
Hence we get the estimate for Uy.(w),

[Uye(w) | = k(B W],
where k(B)-0 as B~ .

7.4. The proof of the recursion formula for A, gy,

First we write A,y,/B! explicitely ;

-1
A,Uw(B) $g,,8, (B1)
——i—B-'—-—-— = E —f—lé—%‘é‘—ll—— CXP{—BIIAUWUle_UBZ(AUWUBz)}.
: (EIIB?/\ 1-72!
B+B,=B

AUwWUBN.O.
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Moreover it is easily seen that ,

UPHAUWUB,) = UPA(AUw) + UPHAUB) + 3 WPXAUW,S).
B+SCB,

In the usual way we proceed ;

O exp( —WP2(AUW,S))
SCB,
S*J

I {(exp( —WPH AUW,S))—1) + 1}
SCBZ
S+Q

=1+ 3 s ~ﬁ1 {exp (WPAAUW,P))—1}

n=1 {Py...,P} '
P,CY, foranyi
P+Q

=1+3 3 z ﬁl {exp( ~WPH AUW,P)) ) —1 }

n=1RCB; {Py,...,P} '~

=1+ 3 kP2 (AUw,R)
RCB,
R+J

= s KP2(AUW,R)
RCB,

Using these results we get ,

Ay (B
Awu(_) = exp {(~Byw|-UP2AUW,R)} 3 KP(AUWR)
B! RCB

RN.O.

b5, BARUQ)) dg, 6, (AURUQ)
ook (B\RUQ))!
AUwUQUR IN.O.

Here we put,
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I = 5 dpls, (BARUQ) ) bg, 8, (AURUQ)
QCBR (B\(RUQ))! ’

AUwUQUR: N.O.

and remark that Q in the summand deos not intersect w , because AUWUQUR is
N.O..

Thus we get,

51, (BARUD)) (Daurdp,p)(Q)

I = -
ng QQCE‘B\R (B\(RUQ)) !
_ ALuR(Q) o5 ks, (BYRUQ)) (Daurdp,p)(Q)
BB GG (B\(RUQ))!
Qiw

where Q i w means that some element in suppQ intersects w .

Let ©, Qy, ..., ©,, ... be as follow,
® = {QCBR;Qiw}
0, ={TCBR;IITII=1, TIw } n=1,

where T I w means that all wl€T intersect w .

" Then we get
0= 36,
n=1
=3
QTBR Q€O
giw
= 3 T -5 3 DTS OF 4
T€@,SCB\R TEOSCBR T€©,SCB\R
TCS TCS TCS
Therefore,
, ¢§11,';;2(B\(RUS)) Dyurdp,,s,(S)
— — n—
I = 3D 2 2 (B\RUS))!

n=1 T€¢O,SCB\R
TCT
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A ( B\(RUT))
= —1\yn—1 AURUT
.El( D T?&,ﬂ ( B\RUT) !
A urur ( B\CRUT))
= — _\IiTl
@#7%:3\1&( D ( B\( RUT) )!
Blw

The result follows from this form .

7.5. Proof of lemma 4-2

For any fixed A with 0 < |lAll = m , it follows from the recursion formula for

aAuw (B) that

A uw(B)] 1
—— exp{7RiXUw]}
BB = m—tan B! 2™
= exp{—%61]w|—-Uf2(AUw)} . 3 > [kPxAUW,R)|

B:lIBll=m~1lAll RCB AURUwN.O.

|Asurue( BMRUQ))|
D> (B\RUQ))!

QCB\R, QIw
0 :N.O.

exp{=B;AURUQ -exp{— 3B, RUCD

1
= exp{—5[31|w I—UfZ(A Uw)}

1
> KPAuw B - ) exp{~5B1RUQ[}
R:AAUWUR; N.O. Q:QURUA;N.O.,Q I'w
HRIl=m~=1IAll N+ IRII=m—1lAll
1A4uruo (W) 1
A > —Ae - exp(;B1AURVC)D }
WAIWH+ U+ RII=m— 1Al :
WUQUR; N.O.
1 B2
= I, exp{—7ﬁ1|w|—U1 (AUwW)}
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1
) k%A UW,R)| ) exp{~5B1IRUQI},
R:AUWUR:N.O. Q:QURUAN.0.,Q Iw
HRII=m= 1Al NN+ NRI=m-11Al]

where w is the first element in wUA .

Therefore ,we have only to estimate J given by
1
J = exp{~7Bibw| = UAAUW)}

1
S KPavwm)] - 3 exp{-gBiRUQH
R:AUWUR; N.O. Q:QUSLIJA;N.O.
w

We prepare several lemmas for the estimate of J .
Lemma A-1

Let w be the first element in AUw . When B,,B,— Bg,Bg are sufficiently large the

following estimate holds ,

UPAUW)| = k(B Wl

Proof
Put suppA =v.

We rewrite Uy %(viUw) in the form ,

U vuw) = UPvUw) — UPY(w)
VX YEX)
= ( > X! - > X!
X i N(vUw) : X iN(W) '
p(X)Np(vUw)#D pX)Np(V)#2
VLX) v |
+( — - —
p(XINP(VUW)# D p(X)np(v)#J

= 11 + 12.
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Bearing in mind that w is the inner most element in wUv we get ,

I = > - s ,
X i N(VvUw) X iy

p(MNP (D% piwgnpﬁxzaeg

p(w)Np(v)+J

where the terms with p(w)Up(X)=& were cancelled by using the translation invari-

ance of ‘I'gz(X) .

From the above formula and using the method developped in the proof of lemma

2-4 we get ,

Il = kBl
where k(B,)-0 exponentially fast as B,~o .

In a similar way to I; we get the estimate for I, ,

Il = KBl
where k' (B,)-0 exponentially fast as B,~.

This proves the lemma .
Lemma A-2

For sufficiently large B we have

s expl-Liplol = (1+ g@EOM,
Qlw 2
Q :N.O.

where g(B) -0 as B - .

Proof Since all element of suppQ intersect w , we have ,

wl+ i N - k
ML P 5 expt 5Bl

k=0 o€v

> exp{5Blol =
Q

Iw
Q :N.O.
The number of elements of the set

{v ; standard wall s.t. o€p(v) and [v| + m } is bounded by ¢™ for some ¢ > 0, so
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that we have
1 Y 1
S exp{-5BlM} = 3 cfexp{—7Bk} .
k=4

o€y

Combining these facts we get the proof .

Using lemma A-1 and lemma A-2 we have ,
1 )
7= exp{—5Bibw| + ki(By) ] } 1+ g(Bp)™

11 exp{—W(AUw,P)}—1]|

== ]

{1+ S .

n=1 {Pl!"'vpn}

PyU...UP,UAUWN.O.
1
- exp{—5B1IP1U...UP, ]} }

=<

exp(—B1bw| + k(B } (1+ (B )M

-] n
{1+ 3 > I [W(AUw,P)) |
n=1 {P1reeesPp} =1
PiU...UP,UAUW : N.O.
n 1
exp( > IW(AUw,P,-)I—EBIKPlu...UP,,I) }

i=1

) 1
exp { —7Bs |+ kBl (1+ BT
To obtain estimates for W(AUw,P;) we prepare the following lemma .

Lemma A-3
If B—B, is sufficiently large , then the following estimate holds for any w and

wew ,
S @M exp{Bed(M} = ky(B)wi .

vCw
wEvy
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It follows from the explicit formula of <I)B(v) that

wix)|
S @gW| BedMi= T 3 —— exp{Bed(M}#v(X)
vCw vCewxel(v) :
wevg
wEX)|
+ 2 2 X! CXP{Bod(V)}'#V[X]
vCwX€lI(v) :
wEvg
= [1 + 12

Exchanging the order of sums in 7{ we have ,

i)
Ii= ¥ T T exp{Bedm}
XeJ(w,w) ve(w,w)(X) !
where
J(ww) = {X;X€I(v) for some vCw s.t. w€vp} ,
and

(w,w)X) = {vCw ; X€I(v) and w€v; } .

- For a given X €J(w,w) we put,
H(X,w) = {vew ; p(WNp{X)#I}
If p(X)| = k , then #H(X,w) =< k and d(v)=<k for any v€(w,w)(X) .

We introduce the following distance between w and X ,

p¥(w,X) = Min Min p{w*(a),suppX) .
vCH(X,w) aCyv
Xel(v) Xiw(a)
WEVO

Suppose that p*(w,X) = h and [p(X)| =k . There exists « CH(X,w) such that
X i w(a) for such X . Since p*(w,X) = h, p(w*(a) , suppX) =h . Hence we have x|

>= 2h + k.



KSTS/RR-86/006
June 19, 1986

.47 -

Therefore we have ,

o W)
S 3 o exp{Bok}2t
k=4 k=0 XeJ(w,w) :

px)| =k

p*(wX)=h

Ms

© R x1eell
2wl S 3 2exp(Bokl—o—
k=4 h=0 X O '
Xi=2n+k

IA

(Bl ,

where ¢(8)-0 as B~ .

In a similar way to I; , we have ,

I, = B
where ¢'(B)~® as B .

n
Now we shall estimate J* . Let wy,..,w; be the standrd walls of 'U1Pi contained in
i=

f( w) . Using lemma A-3 we have ,

S WP AUWP)| = 3 3 [@PABUWUP)|
pX p>

i=1 i=1BcCA
=< s [oPB)| + s |©PxB)|
i=1BCAUP,U - - - UP, BCAUPU...UP,
wi€Bp w€Bg
= ky(B)(w| + wi| + -+ e
< ky(B)(w|+ |PjU - - UP,D
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Hence we have the following estimate for J* for sufficiently large B; and B, ,

J* © n 1
—_———— = W(AUwW,P)| exp{—=B{P1U - - - UP,|
CXP{kz(Bz) lw I} ”§0 {pl,g,P"} iI=I1 l i I P 3 Bll 1 nlJ
AUWUP; -+ UP, : N.O.
1 1 -
= 3 exp{—-?BI[Ti-— ?BIJ(WUT);
TUAUw : N.O.

D> lW(AUw,P)!exp(%Bld(wUP))}"
n=0"' pcr

In the same way as before we get ,

S [W(AUw P)lexp{Bd(wUP))
PCT

=< ky(B(wi+ ITD
Therefore , we have ,

i 1 }
s eploBl X expl-gBillI=3BidwUD}
TUAUw : N.O. ¥

IA

exp{ka(B) w}t % exp{— ';'311}
1=1

!
3 (¢ 5 exp(=Bobw ) bl
k=1 w O

[wlexp{ka(B2) w[}e(By)
where ¢(1)~0 as By .

Putting above estimates together we have ,

J = CXP{"%'31|W| + (ky(B) + kz(Bz))iwi}(l"'g(i-’il));w!'EWiC(ﬁl)

1
= c(Bl)iie‘k-exp(— Z-Bl)
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This proves lemma 4-2 .
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