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LIntroduction
Let MI(RY) be the class of functions which are locally integrable such that

1 T
supor f_T[f(x)|dx<°°. (1.1)

Suppose K(x) is an absolutely continuous even function which satisfies the condition

(1+x)K(x)| =C, x€R!, (1.2)
C being an constant. Then if

lim= 7 f(x) dx = M(f) (1.3)

T-x 2T9-T :

exists, then we have the so called Wiener formula [4][5][6][7][15]

lim S f(f) K(x) dx = M(f) [, K() dx, (1.4)

provided fEM!(R!) .
This formula was extended to the R2 case by the author [9] and also by Anzai-Koizumi-
Matsuoka [1] with some restricted limit process. When f(x)= 0, the existence of either M(f) or the
left hand side of (1.4) implies the existence of the other. This was shown with X (x)=sin%x/(wx?) by

Wiener [14] [15], rather deep Tauberian theorem being used.
In 3 and 4 we shall give further extensions of above results to the R " case.

Now let f(x) be a function satisfying (1+ [x[)~'f(x)€L>(R"). Wiener [14] [15] defined

oy 1 e”ix — 1 e
s(u) = 1',{'..?'_——(27,)1/2 [ et — f(x) dx + 1<[{|sA e fx)dx1], (1.5)

where 1.i.m. means limit in L2(R1). s(u) is called Wiener Transform. See also Bochner 2-transform

for f(x)/(1+ |x[) €EL'(RY) [2] . Wiener has shown the Wiener identity

MR = limd [ It h) = s(u=mP du, (1.6)

in the sense that if either side exists, then the other side exists and the equality holds.
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We shall give the R” generalization of this identity in 7. The R 2 case was given by Matsuoka
[13].

Let f(x), x€R! be the characteristic function of a probability distribution function F(u),

f(x)=_fle"’”‘ dF (u). 1.7n
R
M(f) and M(|fP) exist and the inversion formula gives
S S |
F(u) — F(0) = ll.!.lalci’l—r- !A Tf(x) dx, (1.8)

where F(u) is modified to be —;—[F(u+0)—F(u—0)] for discontinuities u of F .
The function

ch) = %JI[F(u-kh) — F(u—h) P du, h>0 (1.9)
is called the mean concentration function of a distribution function F () [8] [10].
Actually the right hand side of (1.9) exists and C(h) is a nondecreasing function of he
Rl, Rl= (0,»).
We have, from the Wiener formula,
;.13}1 c(r) = M(IfP). (1.10)

In 8, we define the mean concentration function in R " and show some basic properties of it.

"~ 2.Lemmas.
Let  a=(aq,---s8n)s b=(b1s0sbp), x={(x1,.-.,%y)- The interval (a,b) in R" is
{x:ay<xy<by,1<k=n}. [a,b],(a,b],[a,b) are defined in a similar way. We write the integral of f(x) in

several ways like :

b by b, n by
f bf(x) dx = [ f(x) dx= [dx;- - - [dx, f(x) = &&f dxy) f(x).

We first note the formula for integration by parts.

J
9 g(x) exists for every

Lemma 1. Suppose f(x)€L!(a,b), a,b€R" being finite and o Tox
ky

ki

x€[a,b] and distinct (ky, . . . ,k;) (1=k,=n, m=1,..,j) and continuous in [a,b]. Then for such f,g we

have
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S f)g(x)dx= [ f(x)dxg (b)

b, 2 4 i
'_j; dxz a—-g(bl, [N ,bk_l,xk,bk+1,....,b")'-’; f(xl, “ e ,xk_l,uk,xH1,....,x,,)duk
k=1 Xy &

b )
+I dx 2 _—’_g(bl, ...,bk_l,xk bk+1¥ ...,bk_lxk ,bk +1 ...,b)
- axklaxkz 1 1Yk 2—197ky2% kg n
i X
1 2
'f duhf dusz(xl, [N ,xkl_1,uk1,xkl+1,....,xk1_1,ukz,xkz+1,....,x,,)
ag, ax,
o e
b " x
+(-D)| dx———— du. 2.1
(07T g () @.1)

We frequently use the following lemma.

Lemma 2. Suppse f(x) is locally integrable in R} (={x€R" : x>0, 1=<k=n}) and

n
nag 5 @)lax=D (2.2)
for A=(Ay, ...,A,)>0, where D is a constant independent of A. Then, for every a>0

(a=(ay, . - .,a,)), we have, for 0sa<b=x, a,bER", 0=(0,...,0) ( no confusion will be expected ),

n n
j;b[f(x)lkg](1+a%x,%)”ldst,,Dkr_Ilak_l(1+akak)_1 (2.3)

and

n n
~ j;b[f(x)lkl_ll(1+a%x,%)"‘deC,,Dkr_Ilbk'l (2.4)

if b<w, where C, is a constant depending only on n.

Proof. Take |f(x)] in place of f(x) and

n
g(= 1 (+ap:p) ™!
in Lemma 1. We then see, for 1=k;<...<k;=n,
a7
axkl....axk

7
The first term with |f(x)| in place of f(x) on the right hand side of (2.1), we have

g(x)=(—1)"2)'01,%1....(;L%ka1 ..... xk’k=k13...k,(1+a%xf)nzlsksmkgkl .... k](l+a%x,§)_l. 2.5)

S () ldxg (9)=D I by T (1+afa) ™ 26)

‘ spkﬁl[a,;l(nakxk)-l]. @.7)
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We also see, for the general term, that it is not greater than

Y

b
3 dx I—'—"_ax - ax g(bl, .. ,bkl_l,xkl,bkﬁ1,....,bkj_1,xkj,bk!+1,....,b,,)|
1sk<...<k=n 9%k k
b
"
.(H {[ kJ.a“ dup)v(xlb LR 'xkl—liuerxk1+1:--~')xkj—-1:uk_,’xkl+l)"")xn)lr
=K1Ky

where 3 runs over all (k;, . . . ,k;) with 1=k <...<k;=n and the similar for II. The above is
"

b ;
FY

=(_ I [ 'dx) P e

p=ky ... k% L Ish<ks... <kSn axy, * -t axkj

b, b,
g(bl' .. ,bh_l,xkl,bklﬂ,, PPN ,bkj_l,xkj,bklﬂ, [N 'bn).(laﬁkll-.l...k]j;’ dXI)(v=kIE..,k/f“v dxk,)

'[f(xl, .o ,xh_l,ukl,xkﬁ.1,....,xk,_1,ukl,xkl+1,....,x,,)|.

Using the condition (2.2) for the integral inside =, we see that the last one does not exceed

b ;
£y,
II “dx — (b1, - - Fppeenb)P2" T by T
(p.=k1....k]fa» “)15k1<§<k15n| 311:1 . axk} g( 1 Xiy n)lD kg Ky Iv=k1.~~.k}xv
which is, because of (2.5) and the fact that
i 2,2y-1 % -2 -1 -1
_};‘ (1+ agxf) dxkssz (1+agx) 2dn=2a; '(1+azar) ™, (2.8)

not greater than

b
II “ix )2 T aixg(l+aixd)2 I 1+a?b)" D2 1 b I =x
(“=k1,...kj‘£’» k) k=ky.. ks pr(1+ apxe) I#k;...,k,( ofbr) Pl L T

b
= I “d 2rtip 11 1+ a? -1 11 ~1(1+a,b -1, 2.9
(P-=k1,...k,f“u %) k=k1,..,kl( agxE) Hkhwk]"‘l (1+a;b)) (2.9)

Using (2.8), this is not greater than

. .n
2tip T 2a;'(l+e,a,)”! T ai {(1+ob) " 1=2"*UD I o Y(1+aya) ™
k; 1#ky,.0k k=1

p=ky ...y 4
Inserting this estimate and (2.7) into the right hand side of(2.1) with |f(x)| for f(x)

. n
Ll @dz=(1+ 3 272D I ap'(1+aa) ™
i=1 =
which is (2.3).
b
Since j; *(1+a}x?)"ldx, = b, , we immediately have (2.4) using (2.9).
k

Lemma 3. Supposes, for any 8>0, we may find TOERl, To>0 such that for T;>Tg k=1,2,...,n,

I T <, (2.10)

where T=(Ty, . . . ,T,) . Let 0<a<l and B=1be fixed numbers in R}. Take m €R! such that a/m>Ty.
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Then for 0=A,=<B, 0<¢€,<n, k=1,2,...,n,

x X,
|_[;Af(::—,....-e—:—)dxls2"8"8, (2.11)

where A=(Aq,......,A,), a=(a,.....,a)

Proof. Denote the integral on the left side of (2.11) by J. We have

€

_ n A‘ a Xy Xy
J—kgl(jo dx fodx,,)f(El ,.)

n A, n—1 A A,
=[(k1-.=11“;) )t 3 D (—1)"_J(k=k1,r.1..,k;-’;) 4x)

j=l1sk<...<k=n

(T k/j(')"dx,)+(-—1)”(k£11_gadxk)y(i—i,....,i—:). (2.12)

n=1 n—jn Afe,
S DRl T )

j=llskh<..<ksnp  MTL  EERLeee g] 1#ky, o0,

u=(uy, . . . ,Uy), which is, because of { 20), not greater, in absolute value, than

I A" /8=B"s.
k=ky ..., K
We have the similar estimates for the first and the third on the right hand side of (2.12). Hence we
have altogether

-1
Vl=2B"8+S 3 B"8"=2"B"S

j=11sk<...<k=n
which proves (2.11).

3.Wiener formula.
Write R%={x€R"x;>0, k=1,2,...,n}, x=(x1, . . . ,x,). Let MI!(R%) be the class of functions

f(x), x€R% which are locally integrable in R} such that

ggg(kélT{ ‘)J(')Tlf(x) ldx<oo o
with T=(T4y,...,T,) . Denote
e T, hn} -oc(k[;ilTk— I)J:)Tf(X)dx 62

when the limit on the right hand side exists as T4,...,T, go to infinity independently.

ar

xy, - - - axkp

Let K(R%) be the class of functions K(x), x€R? such that K (x) exists for any

1=k <..<k,=n,inR%,p =1,...,n and is integrable in every compact domain in R}, and moreover
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n
kI_II(1+x,%)K(x)SC<°° (3.3)
holds for x€R”%, where C is a positive constant.
We then have the following Theorems 1 in which (3.4) is called the Wiener formula.

Theorem 1. If f(x) EM!(R1), X(x) €K(R%), and M .. (f) exists, then

tim [, 1f(’:—:, . ,{-:—)K(x)dx=M+(f) f K G)dx. (3.4)
Now write the class of locally integrable functions f(x) in R} for which (3.1) holds with T, =c,u,
w€RL as u-», ¢y, k=1,2,...,n being fixed constants, by M;*(R1). M, .(f) is similarly defined by
(3.2) with Ty=c;u, u~e , when it exists. We then have
Theorem 2 . If f(x) EM!(R%:), K(x)€EK(R}) and M, , (f) exists, then for e€R{,

1%y

tim [ ( ) ,5’f—")K(x)dx=M,,+ (N K@)z, (3.5)

-0+
(3.5) is also called the Wiener formula.

y oo
€

Furthermore we define M!(R") to be the class of locally integrable functions f(x) in R", for

which
sup 1l 27717, () lax<o. (3.6)

Write
ur=, tiy (RIEOL 6

when the limit on the right hand side exists.

Let K(R") be the class of functions K(x), x€R" defined in a way similar to K(R1) with R" in

aP

n n
place of R%. Namely for K(x) €EK(R"), Xy, - - -3k

K (x) exists, for any 1<k;<...<k,=n in R"
1
and is integrable in every compact domain in R” and satisties (3.3) for all x€R".

Then we have

Theorem 3. If f(x) EM!(R™), K(x) €K(R") and M(f) exists, then

tim S, j(%, . ,z—:)K(x)dx=M(f) J, K (x)dx (.8)

Define M}(R%) and M,(f) in ways just similar to those of M}(R%) and M, (f) replacing R” by
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We then have

Theorem 4. If f(x) EMI(R™), K(x)€K(R%) and M,(f) exists and moreover K(x) is an even func-

tion for each variables x,k=1,2,...,n, then

C1Xy

tim [ 5( R (x)dx =M, (1) f K (). (3.9)

'
4.Proofs of Theorems 1-4

Proof of Theorem 1. We may and do suppose M, (f)=0. LetA>1, A €RL. We write

X Xy
I={ 1f(:1—, ... ,:”—)K(x)dx
=[k1:11( J;Adxk+ I “dx,,)lf(z—i, .o .i::—)K(x)

S[Ch [faxy+ s s fi [Pam T [dx)+ (I [ dxlf (2 K
_[(k=1"; %) j=llsk1<‘..<k',5n(k=lj(') xk1=j+1'£l %) (k=1 A If( e’ e,,) )
=11+12+I3, (4.1)
say. We shall estimate I, first. From (3.3), we have

-1

n Ale, © n
=CZ p> II € duy: I € d I (1+e2u2)™!
Il j=115k1<...<k,$n(k=k1 ..... K kj;) Kien, .., K 'L/q u')lf(u)lm=1( )~

where u=(uy, . . . ,u,). Appliying (2.3) of Lemma 2 and letting 0<¢,<1, k=1,2,...,n, we have

n-1
=C,D = > 1+4) "ti=C,D(1+A)7], 4.2
lIZI n j=115k1<...<kJSn( ) Cn ( ) ( )

where D is the quantity on the left hand side of (3.1) and C,, is a constant depending only on n and

may be different on each occurrence.

In just the same way, we see that
Isl=c,D(+4)~". (4.3)
We now consider I;. We split it in the following way. Take a positive number a<A and write
B WL S
Il—kI:II(j;) dxk+_[; dx)f( PR VK (x)
noo, n—-1 a A LAY} X1 Xn

= + 2 p) I d I de)+ (I | d. —, ...,—/)K(x

[(kglj;) 4xy) j=11skl<...<k,5n(k=k1,...,k,j;> xk)(1=k1 ..... k,‘[' ) (k=1J:1 I € €,,) )

=I+112t 13,

say. Because of (3.3).

n(e 2l Iy 21-1
|11,1|5C(kr=11,];) dx)If( PR )IkI=Il(1+xl)
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n n _ale, n 2 2v—1
Scmr=[1€'”(kr=11‘];> d"k)lf(")|lr=11(1+€1"1)

(u=(uy, . . . ,u,)), which is, by (2.4) of Lemma 2

=C,Da®, (4.4)
where we suppose
1>a>¢, k=12,....n. (4.5)

In a similar way, we easily have

|11 2]=C,Da’A""i=<C,DaA". » (4.6)

We use Lemma 1 to estimate I 3 and have

I

n x x,
=(kr=[1f:dxk)f(—£%, - ,—e-;-)K(A,...,A)

=i
(- @) 3 ¥k
- X, _— geenen ,
)k=1 o P < <l FENETS yeeesf Xp A A A A)
iy x4 Xp—1 Uy Xkg+l Xp—1 u; x
Nf du)f(— s L e T |
=170 €1 €r—1 €k €ky+1 €y—1 €k €,
Foaeeeenaes
nooA aj nox uy u,
+(-1D* [Tdx))———Kx) MO | du)f(—, ...,7)- 4.7
( )k(=1fa X 8Xp,... 8%y, ()k(=l"; Wf( € €n) *1
~ The general term I3; of this is , in absolute value, not greater than
T T S 11 ) i LISy SO ey WU Ve SO 3
; X ) |——— e A XAl XA genes
B < <ymmi=1a W a8y, ky ks
i A
|| (1 du 1l dx
l,,,(=1j:: "')(paeh ..... k,‘I; 2
Xy Xg—1 Uy Xkl Xk—1 Uj Fgt+1 X,
'f(—' sy : s s : ’ ! )_j"’ ! 32 o s __"_)l. (48)
€ €p—1 €k Ek+1 €y—1 €k €1 €n

Now take To=Ty(8)>1 such that (2.10) in Lemma 3 holds, which is possible by our assumption
M (f)=0.
Take 1>0, so small that

a/n>T, 4.9)

Since a=<x;<A'in the integral in (4.8), we have from Lemma 3
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and hence

I3;l=2mA"8C, j(a A),
where

j j
Cn,j(a,A)= 3 (11 fAdxk’)lﬁK(A,.,.A,xklﬂ, ..... ,A,xkl,A,....,A)|.
10 s

1sk<..<k=nl=1"a ..8
n
Writing C"(a’A)=j§1C"'j(a’A)’ we have

I113|=Cr(a,A)27A"S. (4.10)
(4.4), (4.6) and (4.10) give us

I |<C,[D(a” +aA”+C,(a,A)A™8]= C,[Da(1+A") + Cp(a,A)A™S]
Putting this together with (4.2) and (4.3) we finally have

[f=C,[D(1+A4) '+ Da(1+A™)+C,(a,4)A"3] (4.11)
Now let €>0 be an arbitrary positive number. Choose A so large that C,D(1+A~)<e/3 and
then choose a so small that 0<a<1 and C,Da(1+A")<e/3 For such A and a, we take m so small that

(4.9) holds . Then for €, with 0<e,<m<a, we have

r<e

which completes the proof of Theorem 1.
The proof of Theorem 2 will go on just in the similar way as in that of Theorem 1.

We shall now give the ProofofTheorem3 . Write

1
d’(xl' L ,x,,)=¢(x)=;!— Z f('nlxlr .. »'“nxn)’ (4'12)
v
where S means the summation for all f(nyxy, . . . ,Ma%,) each of my, ...,m, assuming +1 or —1
independently. Let T=(Ty, ...,T,). We have
n n
- (T =n-n —1\ (T
(I Teh Jy #()dx=27"( L T J_ fx)dx (4.13)
(x=(xy, - . . ,X,)) Which converges to M(f) as Ty, . . . , T~ by assumption. Then by Theorem 1,
lim  [fCE, L K@) de=M ) f K (x)dx. (4.14)
€1, .., 6,~0+"RY T € €, R

Since ¢(x) and K (x) are symmetric for each variable x , (4.14) is still true if we lete;, . . . ,€, go tO
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zero in any manner and the integral of the left hand side of (4.14) can be written by

ni¥1 MNnXn
P e ey T
€ €y

= = Lt KEz=Lf A L TR

mn=x

and the right hand side of (4.14) is equal to
M) —[ K(x)dx
2 R )
Thus (4.14) turns out to be (3.8), which proves Theorem 3 .

The proof of Theorem 4 is carried out in just the similar way as in that of Theorem 3.

5. Wiener formula and the general Tauberian theorems

Suppose F(x), x€R% is bounded in R%. Then it belongs to M!(R?) and Theorem 1 holds with
K(x)€K(R%). We shall show that when f(x)=0 and is bounded, the existence of the left hand side of
(3.4) is equivalent to the existence of M, (f) under a suitable condition on K(x). Precisely we shall
show the following theorem.

Theorem 5. Suppose f(x), x€RY, is bounded and nonnegative in R, and K(x) satisfies the condi-

tion that (3.3) holds for x€RY and

[ K(@x)dx=1 (5.1)
If the Melin transform of K (x)
n iu .
I "K(x)kl;llxk tdx#0 (5.2)
for all u=(uy, . .. ,u,)€ER", then for some constant m the limit relations
I 1 1Y [T r(x)d 5.3
p, m I T ), fx)dx=m (53)
T=(Ty ...,Ty)
and
X1 Xn
li —, e, —)K(x)dx= 5.4
.. .%I,Ii,-0+J.R¢f(El e, JK()dx=m (5-4)

are equivalent to each other in the sense that the limit in (5.3) or in (5.4) exists, then the other limit

exists and either relation (5.3) or (5.4) implies the other.

Theorem 6. If ¢,>0, k=1,2,...,n and all the conditions in Theorem 5 are satisfied, then the limit

relations
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n T
}_imT"’(kI_Ilck'l_j; dx)f(x)=m, TE€R! (5.5)
and
. C1X1 Cn¥n _
E1_1(1’11.]'11»)’( e YK (x)dx=m (5.6)

are equivalent to each other in the sense that if either of the limit in (5.5) or in (5.6) exists, then the other

limit exists and either relation (5.5) or (5.6) imlpies the other.

In other to prove theses Theorems, we follow the lines of the proofs of Wiener [ ] and Anzai-

Koizumi-Matsuoka [ ] in the following section and appeal to the general Tauberian theorems.

Denote by U(R") a subclass of L'(R") of continuous functions f(x) for which

5 m <o, 5.7
mz_xmsxsarf+llf(x)l ( )
where m=(my, . . . ,m,) , a lattice point in R*, 1=(1,...,1) and 3 means
E 2 ‘e 2
my=—xmy=—% my=—%

Moreover let Uy(R") be a subspace of U(R") for which, for each u€R”, there exists an
f(x) €Uo(R™) with the property that

] 1 —ixu
f(u)=W e’ 'f(x)dx+#0. (5.8)

_ The class of a single function f(x) € U(R") with Ff(u)#0 for all u€R" is an Uy(R™).

We now introduce a notation , for a function g(x),x€R" and a,b€R", a<b,

n
Ab_g(x)=g(by, .. ..by)— 3 gby, - - - sbx—1,00bks1s - - - D) 5.9
E=1 )
+ 3 gy - - by 1Bpbr 1 - - - o Pr=1,8kpbly s - - 5 ba)
1ski<k;=n
=t e

+(—-Dg(ay, . . . ,a,)-
We note that
b b b
A.€=ag(x)= Ax11=a1-'“Ax::ll= u,,..le:=a,,g (x)'

The meaning of the right hand side will be obvious. Define as usual
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[ Mg (@) =supS A8 (),
Y]

2ﬂ
where D:(Ay, . .. ,Ap) ,_UlAj=[a,b] is a decomposition of [a,b] into closed nonoverlapping subin-
=

tervals A;(j=1,2,...,2") and sup is taken for all such divisions. A function f(x), x€R" with finite

j;b]dg(x)l is of bounded variation over [a,b] in R”.

Let V(R") be the class of functions of bounded variation in every compact interval in R”, for

which

srfnpfm'"HIdg (®)l<,

where m runs over all lattice points in R”. Then as is easily seen, the integral

S S = 2)dg ), x€R”
exists for every pair of fEU(R") and g€V(R").

The Tauberian theorems we are going to appeal to are the followings.

Theorem A (Wiener) Let g(x) €V(R") and K(x)€Uo(R™) . If

. lim‘ . . XK(G—x)dg(x)=m[ K(x)dx

for some constant m, then

. 1imc [ LE—x)dg(x)=m[ L(x)dx
) ] Piated
holds for every L(x)€U(R™).
Theorem B ( Anzai-Koizumi-Matsuoka ) Let g(x)€V(R") and
£(t) = (£1(1),-.-,E,(2)),tERL, be a continuous function with
£(0)=0 and £i(f)~, j=1,2,...,n, as t-».
If ‘
lri_rgj;(,.K (E()—t—x)dg(x)=m [ K(x)dx
for some {€R" and a constant m, then
lim [, L(§()—L-x)dg(x)=m [, L(2)dx
holds for every L(x) €U(R"™).

(5.10)

(5.11)

(5.12)

(5.13)

K(x)EU(R™). Let

(5.14)

(5.15)

The R? case of this theorem was given by Anzai-Koizumi-Matsuoka [1] and it is easy to general-

ize to the R" case.
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6. Proofs of Theorems 5 and 6.

Proof of Theorem 5. Let x=(xy, . . . ,x,) €R%:. We write x;=e®, k=1,2,...,n, £=(by, . . .

and define §(£) by

YE)=f(Y, .. . e").

$(£)=0 and is bounded in R”. Also we write Tk=et",ek=Tk“’=e_"‘, k=1,2,...,n, T=(Ty, . . .

c=(§l: ... 'gn)! €=(€1, PPN ,G"). Then

n n [N
LT = (I ™5 e de)u(®)

and (5.3) turns out to be

i oY e
lim 11 e =80 ge Yy, —m.
[ ST ,C,,-x(k=1f—ac £0)-W(E)

On the other hand, the integral in (5.4) is

n n n
T ex o fOIK (e, epmndx= e[ W(ER(e™ @0, T T bt
and hence (5.4) turns out to be
n
lim J‘ RIGR e_({k—Ek)K(e_(CI—El)’““’e—(Cu_En))dE=m'
[T S k=1
Therefore for our purpose, it is sufficient to prove the equivalence of (6.2) and (6.3).
Now write
n E*
g(6)=(1 [, dndv(n)

(n=(M1, - - - »m,)) - Note that g({)=0, Af_,g(£)=0 and then

m+1

I g @)= Aple®=f u(®dt

Since ¥(£) is bounded

m+1
supf " ldg ()<,

namely g € V(R").
Write
Ky(©)= JLe™8, for geRY
=0, elsewhere in R"

and

Ky(®)=K(e ™%, . .. ,e—E")kﬁle_E* , ECR™.

’ gn)

(6.1)
Tn)s

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

6.7)
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We easily see that
S K@= f Ka(E)dE=1. (6.8)
(6.2) and (6.3) then take the following forms respectively,
L lim K@= Ddg@®=m, (6.9)
L lim [KG-Ddg@®=m. (6.10)

In order to show the equivalence of these relations, we appeal to Theorem A. For this, we first

check that K,(£) satisfies the condition of X in Theorem A.
K, (&) is continuous and because of (3.3)

n n n
lK2(§)|kal:I‘e—5‘11;11(1+e—2€‘)"15CkI_IIe_IE", for £€R"

so that K,(£) € U(R"). Moreover we see that

Ifg(u)=(71;1)—"zf nK(e—(‘, R ,e_c"))kl::Ile_E‘(Hi"‘)d§~—((2—:T—;);’;-2—‘[;11K(x)killx,iu*dx¢0 , (u€RM)
by (5.2) and hence K,(u) €Up(R"). Therefore K,(x) satisfies the condition of K in Theorem A.

Next we consider K;(£). This does not satisfy the condition in Theorem A, since it is not con-
tinuous. We then take I—(l(g,e), in place of K,(£), defined in the following way, € being any positive
number of R}.

Write e=(e, . . . ,€).

Denote, for 1=k;<...<k;=n, 1=j=n-—1,

kj={ E : ngO (k=k1, N ,kj), 0>§IZ—€, (l?‘:kl, “e ,kj)},
..... K=l &1 620 (k=ky ... k), 0>&, (L # k. k) Dy
E={ £ 0>¢§=—¢, (1=k=n)}

.....

and
E'={ £t :0>¢§, (1=k=n}-E.
Obviously

n—1
R"'=RTU(U U D
* (j=llsk1<...<k15n( ky

LUD'k, ... i)UEUE'. (6.11)

.....

We now define

Ki&o=Cl et dndx,m) 6.12)

n=(ny, - - - »Mg)- We then have
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Ky(ge)=e (1=~ e 8T, for £€RY,
KEo=( 1 ey m et Wy
i(6e _(k=kl ..... e ) I=ky ok 0 )
=€"‘(1—e")~"e—h Hy ol (1_8-61-6), for £€D, .
I#ky, oo K Troeee 7
=0, for £€D'y, .. ., K >
( 1Sj5"—1 ):
and
- n 1 §k+€
K1(§,€)=(kl-—-[1€ j(') dﬂk)Kl('n))
n
—enfiametY, or e,
=0, for E€E'.

It is easy to see that K;(£,€) is continuous in R” and belongs to U(R").

We shall show that the class of I} 1(E,€),0<e , is an Uy(R")

a~

1%(u)=1'<1(u,e)=—(513)7 L (6

_ 1 —iwb-n n e
- (2_“),,/2.’-," € (kglfﬁt dn)Ki(n.€)

! o Lem e ™( I_"I fidﬂk)Kl(E""ﬂ,E)
(2w) k=10

_—_—1_— N —iu:
T e (2m)"? (kl;ll-’;) dny) [, Ki(E+m,e)e” " EdE

D S-S Ly W % —E(L+iuy)
€ (2mw)"? kI=11'I(.>e dm“r-me 48

iuge
1 no gt -1

€"(2m)"2 k=1 iup(1+ iuy)

(l)mﬁ ™2 sin(uye/2)
w’ k=11+iu ue

I

a

Hence I—<1(u,e)=0 only for some u,=2mym/e (m=0,%1,..). Since there is no u such that

a

I—(l(u,e)=0 for all €>0, K,(£,¢) belongs to an Uy(R") and therefore from Theorem A
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o Mmoo L Ki(t-E)dg()=m (6.13)

is equivalent to (6.10).
Thus what remains for the proof of Theorem 5 is to prove that (6.13) and (6.9) are equivalent to
each other.

We prove this in what follows. First we shall show that (6.9) implies (6.13).

[Pl

L&t ®) = ds@®CT e [ andri-g 0.0
—e (I [ f K (L +m)dg (B).
Since the inner integral is bounded as was mentioned before, the bounded convergence theorem and
(6.8) give us that the last one converges, as {, . . . ,{,~%, to m and we have (6.13).

Next we suppose (6.13) holds good. Note that, for £§€R”,

e "(1- e~ YK (£, ) <Ky (E,€) <€ (e — 1)K (E+ €,€) (6.14)

e=(e, . ..,€). Also note that X(£,e), I_(l(g,e)zo and Af.,g(£)=0 for any a<b. We then have

€ "(1=em)" limsup [ K(L=E,e)dg(0)

.....

se""(e‘—-l)"c1 liminf &AK1(§—§+€,e)dg(§)

,,,,, [

- Se"’(e‘—l)";1 liminf fR‘Kl(C—E,e)dg(ﬁ). (6.15)

..... [ S

Since by (6.13), the right hand side of (6.15) is equal to m, and we may take € as close to zero as we
want, the above inequality relation shows the validity of (6.9). This completes the proof of Theorem

5.

Theorem 6 is proved in a way quite similar to the proof of Theorem 5, if Theorem B is used.
See Anzai-Koizumi-Matsuoka [1].
7. Wiener’s identity in R"

We denote by N2(R") the class of functions f(x), x€R", satisfying

froR fi (a1 -

x=(x1, . . .,x,). We define by W2(R™) the class of functions with the property that
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sup Il 277 () Paz<o (7:2)
and
 tim 11T ) Pas =M (P) .3)

exists, T=(Tq,..,T»)-
Now we define the Wiener transform of f(x) €N2(R") x€R" by

—lu,x,,_ 1 —xuk

< (2w )"’2 [k 1(fxt|<1—";';c——dxk+'ﬁ<lnl<d —ix, dxk)]f(x) (7.4)

(A€R!, A>1). The lLi.m. means the limit in L?(R™). This is well defined. Note that

s(u)= 11m

W2(R")CN2(R"). This was shown in the course of proof of Theorem 3 (or Theorem 1 ) with

K(x)=k1'=11(1+x,3)_1.

=——1 & .
s(u) (Zﬂ)”/zj-}:‘ojl(u)’ (7.5)
where
Jo(u)= ( fl<|x,|<A “ix dxk)f(x)’ (7.6)
1= (0L f,‘,q‘—_—;;‘—dxk)f(x) (7.7)
and for 1=j<n-1 ,
B e—iu,xk__l . —mx
Jj(u)~(k=k, ..... kj,rllsk1<...<k15n‘ﬁxk|51 —ixy dx,) (szl,ljl.. fl<|XrlSA —ix; dx)f(x)- (7-8)

Now for v,h€R", v=(vy,...,v,), h=(hy, ....,h,), h>0, we have, noting that

b - - b b,
& X Xy A b —A%
Au,=a( 1) Auk—a,, ’ Au=a "Au1=a1 “-Au:=a,:

AVEE_,s(u)=1im.S ALtE_,J,(u)
ij 0

i (e T A )
¥ lell‘{-IaIcl (k kyoons kijESk1<...<k]5n‘ﬁxt|51%Ax:::‘:‘hke— ium)
L DU SRR W R T
+ (kI-:I 1"1«‘3&15 1 %A l‘::: c:— hge - i"hxk)f(x) .
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. v,+h —i sinkgx, _;
Since At  tpe” " = 2— "% we have
&
AYER Ls(u -1 X+ I dx,
w()= 2wy [k 1‘f1<|1k|SA i El(k=k .,k,.lsk1<...<k,5n'ﬁxt|51 2

n n sinh,x,
. I + n oomTm L —ixy
( L k,-rx<|x,|s W2+ I _ﬂXIISIdxk]Z n e f(x)
2 " n smh,,,x,,,

=(;T._)n/21_};[£. El(f |sldxk+fl<lx lsAdxk) I

—ix-Vf(x)

A smh,‘ k

=( )”’zllm (, H Ja dxi)e ™S (x).

Hence we have shown that if f(x) EN2(R") then the Fourier transform &(v,h) of

n sin hkxk

b(x,h)= 1 ——f(x)  in L*R")

is given by

dv,m)= —A"if,’_,,s(u)
(h=(hy, . . ., hy)>0).
Then Parseval relation gives us

n sin’ hkxk

2y, B S ) Pax= ol ne 1 AT s ()P

(h>0) .
We now have the following theorems.

Theorem 7. If f(x) € W*(R"), then

1
2y — H 1 +h 2
M(lfl)—h’..lgr_r}l sl 1hk LALh ps(u)Pdu.

(1.9)

(7.10)

(7.11)

In (7.2) we suppose Ty=¢;T, >0, k=1,...,n, T>0, T¢R! and let T-». Namely we consider the

class of functions such that M,(|fP) exists. Such class is denoted by W7(R").

Theorem 8. If f(x)EW2(R™), then

M (lflz)" lim H Ck" f..lAu v— ns(u)qu’

-0+2”"k 1

where n=_(eci!, . .. Jec ).
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8. Mean concentration function in R”

Let F(x) be a probability distribution function of a R! -valued random variable X(w) on a given
probabilty space ({1,F,P), @ €Q. The function of h€R},

C(h)—-—— le[I-‘(x+h) F(x—h)Pdx (8.1)
always exists and is called the mean concentration function of X(w) or of the distribution function
F(x). This was defined by the author [8] or see [10], as a counterpart of the Levy’s concentration
function.( Levy [11],[12] or see Doob [3] ).

We shall make the generalization of C(k) in R” and give analogues of some basic properties of

Let F(x), x€R", be the distribution function of an R"-valued random variable,

X(0)=(X (), . . - .X,(0)) . Write the characteristic functiuon of X(w) by

fH= J'R"e“ “*dF(x), (8.2)
t=(t1,-.st,) - We write sometimes dF(x) as d,,  ,,F(x) or d.F(x). We define the mean concen-
tration function C(h), h€R} of X(w) by

n
C ()= [T @) ] [ [AFEA- WP (). (8.3)

From the inversion formula for a chacteristic function, it follows that, for a continuity interval
(x—h,x+h) of the distribution function F(x).
n -"k(xr" hy) _. e_i'k(xt_hlz)
x = di
Au=x h ( ) (21‘_)" Ty f Tf(t) —ity t
(T=(Ty, ..., Tw)

L Smhkk ity

- LT i =
Since the integrand on the right hand side is a function of L2(R"), the Parseval relation gives us the
following theorem.

Theorem 9. The mean concentration function C(h), h€R", h=(hy, . . . ,h,)>0, satisfies

n sin hkk

chy=—f S OF T d, (8.4)

=1

where f(t) is the characteristic function.
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We mention the following result which is an obvious generalization of the well known theorem for ,
R! case, and may be known.
Lemma 4. Let a=(ay,...a,)€R". If f(¢) is the characteristic function of an R" valued random

variable X, then

1imrn_ku:11(2Tk)-1 JTf@eivedi=P(X=a) (8.5)

(T=(Ty, . .., Ty)).

This is easily shown from

n sinTk(xk-— dk)

kr:11(2Tk)-1- ST fyeivads=f T

k=1 Ti(xx—ap) dF ()

sinT (x,—ax) : g
and the fact that ——————— boundedly converges to 0 if x;#a, and is 1 if x,=a;.
Ty (xe—ax)

We also note the following identity (8.6) which might be usefull in a further study of sequence

of random variables.

Lemma 5. For h=(hy, . . . ,h;)>0

in2
ud —1 2k 1 nosin“ht .
1 x+u — K —ix
klll(th) fo AZLE_ F(v)du —~ N ,f(:)kg1 " e dr. (8.6)
For R! case of this Lemma, see [10] ( Theorem 9.3.1)
The proof is quite analogous. The right hand side of (8.6) is equal to

in?
. n o sin“hyt,
_1._f dF(u) [ =0 11 Bl A
7" R" R* k=1 ht}

2
n sin“hty 50—
=J' dF(u)( 11 1 adbd P CT x')dtk)

- 1 2
k=1T"R hktk

no1
=f ndF(u)(kl;Ilh_k-U(uk_xk’hk)’

where
0, lyl=2e,
Uly,a)=qa+y/2, —2a<y=0,
a—y/2, 0<y=2a,

a,y€R!, a>0. The last integral is

[ Bl UORDAFG+)

2k, 4 n

LN 2h, -1
=(k1;[1hk )f-2h1 o f-Zh._xknlU(vk’hk)
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2h,
-j;) U(v,,,h,,)d,,[F(xl-l-vl,....,x,,_1+v,,_1,x,,+v,,)—F(x1+v1,....,x,,_1+v,,_1,x,,—v,,)]
which is , by ordinary integration by parts applied to the integration regarding v,, equal to

n—=11 2k _
[0 f_thU(vk,hk)]d,,l vt TF @V e Xy 1 Vam 1 X V)

k=1 hy I-2h N TRV
2k,
_F(xl+le--“)xn—-l+vn—lrxn_vn)]v,‘=0

1 2h
+—2h J(') "[F(x1+vl,....,xn_1+v,,_1,x,,+v,,)—F(x1+v1,....,x,,_1+v,,,l,x,,—v,,)]dv,,}
n

n—-11 2k 1 2h, x4y
=[kglEf—zhlv(vhhk)]dvb...,_vn_l{mj; Aw",=;,,—v,F(x1+v1»""rxn—'l+Vn—l)wn)dwn}'

Repeating this procedure, we have that the above is

nt —1(% ) 2+
kEl(th) j; Aw=x—vF(W)dV
(w=(wyp, . .., W)
We now give the following basic properties of C (k)

Theorem 10. The mean concentration function C(h) of a distribution function F(x), h,x€R", h>0,

satisfies the following properties:
(i) C(h) is nondecreasing, namely, if 0<hy<h, (hy,h,€R}) then

C(h)=C(hy), 8.7

(ii) 0=C(h)=<1, (8.8)
(iif) C(h)-0, as hy, . . . ,h,~0+, if and only if F (x) is contiuous in R".

Proof. Let X=X(w)=(Xy, . . ..X,) be the R" valued random variable whose distribution func-

tion is F(x), (x€R"). LetX'=(X'y, ....X',) be a random variable which has the same distribution

as X and is independent of X. Then the characteristic function of X—X' is given by IF®OP . Writing

the distribution function of X—X’ by G(x), we have, from Lemma 5,(8.6) and Theorem 9,

LA | 2h, v
C(h)—(kf__ll—zz,f; dvi)Ay =G (w)
(v=(vy, . . - ,¥)). Since A},—_,G(w) is nondecreasing, (i) is obvious.
" 1, sinat, 1
(ii) also follows from Theorem 9, because f(")|=1 and -;le——;z—dt——l, a€R3.
o
n sin’x,
The proof of (iii) is done in the following way. From Theorem 3 with K(x)=kl'Il > and
=1 mxg

Lemma 3, we have

i h)=P(X—-X'=0
1m}..o+c() P(. )

[Ny ™
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in which P(X—X' =0)=0 is equivalent to the fact that the distribution function F(x) of X is continu-
ous, and the proof of Theorem 10 is complete.

The fact of the last part of the proof will be probably known. But for completeness we give the
proof of it.

First note that the continuity of F(x) means by definition, that F(s), the measure generated by
F(x) has no atom, which is, in turn, equivalent to the fact that all marginal distribution functions
Fi(x) = P(Xx<x}) of X', k=1,2,...,n, are continuous in x €R!

Now we show that, for any 1<j=n,

3 PAX,=vD)sP(X-X'=0)S 3, 5 PX(X=v?) (8.8)
yv=1 k=1ly=1

where {y{®,v=1,2,...} are the discontinuities of Fi(x), x€R!'.

Proof of this is done in the following way. The distribution function G(x) of X—X' (X' is as in
the proof of Theorem 10 ) is given by [, F1(x—y)dF (y), where Fi(x)=P(-X'<x) = Aj~_,F(u) and
hence for h>0, h€R”,

P(—th—X’<h)=J;U[A,fsy_hF(u)—A,f=y+,,F(u)]dF(y). (8.9)
Here we note
Ar—y_yF(u)=P(X=y-h)
n
=1- 2 F(w’"':m:yk—'hk»m;-"rw)— 2 F(wr“-,m:ykl—hkpmr--)w)ykz_hkzym""’w)
k=1 1sk<k;sn

+ -t (‘— 1)"F(yl—h1,...,y,,—h,,)
and a similar relaton for Aj_,,,F(u) . From theses the integrand of the integral on the right hand

side of (8.9) can be written

n
S P— =X <yxth)—  F POr—hS X<yt oy~ IES) RS )

k=1 1=k <kysn
+—...+(—1)"P(yl—h15X1<y1+hl,....,,y,,—hnsX,,<y,,+h,,).
Letting hy, . . . ,h,~0+, we have

PX-X' =0)=fR,.dF()')[P(Xk=yk) - . S P(X =Yk Xr = Vi)

=k <ky=n

Hence we have the relation

P(X=X'=0)= [, P(0 (Xe=y)dF ) (8.10)
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The right hand side is not greater than

3 [PEar0)=3 [P0 = 3 S PO )

and is not smaller than, for any 1<j=n,

L P(X;=y)dF(y)= §1P2(xj=19>)_

(8.8) is thus proved. With the remark given above, the fact we wanted to show is now obvious.
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