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1. Introduction

For a non-compact riemannian manifold, how it spreads at infinity is one of
the most interesting problems we have to study, and, in this pont of view, its local
geometry and topology are of no matter to us. The notion of rough isometry was
introduced in [K1] in this spirit: '

Definition. A map ¢ : X — Y, not necessarily continuous, between metric
spaces X and Y, is called a rough tsometry, if the following two conditions are satisfied:

(i) for a sufficiently large € > 0, the e-neighborhood of the image of ¢ in ¥
coincides with Y itself; '

(i) there are constants a > 1 and b > 0 such that
a ld(zy,z2) — b < d(p(z1),p(22)) <ad(z1,z2) + b

for all z,,z; € X.
We say that X is roughly isometric to Y if there is a rough isometry of X into Y.

It is quite easy to see that being roughly isometric is an equivalence relation.
In fact, (1) the composition ¢ o ¢ : X — Z of two rough isometries ¢ : X—-Y
and ¢ : Y — Z is again a rough isometry: (2) For a rough isometry ¢ : XY,
an “inverse” rough isometry ¢~ : Y — X is constructed as follows; for y € ¥ take
z € X so that d(ip(z),y) < €, where € is the constant in the definition above, and
set ¢~ (y) = z. Here, we should note that the above construction of the inverse
rough isometry ¢~ is possible because we do not assume that a rough isometry is
to be continuous: In general, ™ is not continuous even if ¢ is continuous. This is
a remarkable feature of rough isometries, and by virtue of it, we can identify some
spaces of different topological types by rough isometries. For example, the inclusion
map of the complete “periodic” surface in Fig.1 into the euclidean 3-space R3 is a
rough isometry, and therefore the surface is roughly isometric to R3.

As we have just seen, a rough isometry does not, in general, preserve the topolog-
ical structures of spaces, but in the preceding papers [K1] and [K 2] we have exhibited
that some geometric invariants and properties of non-compact riemannian manifolds
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Fig.1

are inherited through rough isometries. One of them is the validity of isoperimet-
ric inequalities. First of all, recall the classical isoperimetric inequality: It suggests
that, for a bounded domain 1 in the euclidean space R™ with smooth boundary, the
inequality

(vol Q)™ < ¢, - (area dQ) Y/ (n—1)

alway holds with a constant ¢, depending only on the dimension n. This leads us to
the following definition of the isoperimetric constant Irn(X) for a general complete
riemannian manifold X with dim X < m < oo:

: ) area df)

where 0 ranges through all the non-empty bounded domains in X with smooth
boundaries, and, in the definition, we adopt the natural convention that (m—1)/m =
1 for m = oo; in other words, Ioo(X) is, so-called, Cheeger’s isoperimetric constant
(for a non-compact riemannian manifold). Now the classical isoperimetric inequality
is nothing but I,(R™) > 0. And a theorem in the previous paper [K1] says that the
validity of the isoperimetric inequality I, (X) > 0 is preserved by rough isometries,
under the additional condition that

(+) the Ricci curvature is bounded below, and the injectivity radius is positive,
which ensures the uniformness of local geometry: More precisely we proved

Theorem 1.1. Let X and Y be complete riemannian manifolds satisfying the
condition (%) and roughly isometric to each other. Then, for max{dim X,dimY} <
m < oo, the inequality I,(X) > 0 is equivalent to the inequality I, (Y') > 0.
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A reason why isoperimetric inequalities have a lot of applications is that they
are closely related to analytic inequalities. An application of this kind was, in fact,
done in [K1], where we proved the Liouville theorem generalized in terms of rough
isometries:

Theorem 1.2. Let X be a complete riemannian manifold satisfying the condi-
tion (%) and roughly isometric to the euclidean m-space with m > dim X. Then any
posttive harmonic function on X is constant.

One of the crucial steps of the proof of the above theorem is to translate Theorem
1.1 into an assertion concerned with a Sobolev inequality, and, to state it in.a more
concrete form, we should introduce the analytic constants Simn(X) for a complete
riemannian manifold X:

{fx |Vu|ld:z:}l/l

inf VY 1>1,1<m< oo,
ue€CE (X) {fX luim/(m—l)dx} m m

(12) Sim(X) =

where C$°(X) denotes the space of C* functions on X with compact supports, and
we again assume that (m —1)/m = m/(m —1) = 1 provided m = co. A fundamental
fact relating isoperimetric inequalities to Sobolev inequalities is the identity

(1.3) In(X) = Sim(X)

due to Federer-Fleming [FF| and Maz’ya [M] (see also Osserman [O]), and, by virtue
of it, Theorem 1.1 have

Corollary 1.3. Let X and Y be as in Theorem 1.1. Then, for max{dim X,
dimY} <m < 00, S1,m(X) > 0 if and only if S1,m(Y) > 0.

For the euclidean space R™, we have the Sobolev inequality Sy,m(R™) > 0,
and, by the corollary above, we obtain Sy ,,(X) > 0 for X as in Theorem 1.2, and
this is one of the inequalities we need to prove Theorem 1.2.

Also, there are relations between an. isoperimetric constant and an analytic
constant other than the Federer-Fleming-Maz’ya identity (1.3). In fact, Cheeger
[Ch] established the inequality

(1.4) %Iw(X) < S2a(X)

for an arbitrary complete riemannian manifold X (cf. Yau [Y]), while Buser proved
in [B] that if X is a complete riemannian manifold with Ricci curvature bounded

below then
(1.5) S2.2(X)? < const - Too(X),

where the constant in the inequality depends only on the dimension of X and on the
infimum of the Ricci curvature. Note that Sz 2 (X)? appears as the best constant in
the Poincaré inequality [, |Vu|?dz > const- [ u?dz for u € C§° (X), and therefore
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S2,2(X )2 is equal to the infimum of the spectrum of —A, the Laplace operator multi-
plied by —1, acting on L2-functions on X. In particular, the inequalities of Cheeger
(1.4) and of Buser (1.5) imply that

(1.6) Io(X)>0 ifandonlyif S22(X)>0

for a complete riemannian manifold X with Ricci curvature bounded below, and
consequently, together with Theorem 1.1, we have

Corollary 1.4. Let X and Y be as in Theorem 1.1. Then S32(X) > 0 1s
equivalent to Sz 2(Y) > 0. :

Now these two corollaries of Theorem 1.1 lead us to the natural question: To
what extent are the analytic constants Si,(X) preserved by rough isometries? In
the present article, we will prove the following generalization of Corollary 1.4 without
use of isoperimetric inequalities or Theorem 1.1.

Theorem 1.5. Suppose that X and Y are complete riemannian manifolds
satisfying the condition () and roughly isometric to each other. Then, for 1 <m < oo
and | > m/(m — 1), S;,m(X) > 0 if and only if S;,»(Y) > 0.

This theorem is also motivated by author’s previous work [K2], in which he
showed that the parabolicity is preserved by rough isometries: By definition, a rie-
mannian manifold X is said to be parabolic if there is no positive superharmonic
function on X other than constants, and the main result obtained in [K2] is

Theorem 1.68. Let X and Y be complete riemannian manifolds which satisfy
the condition (*) and are roughly isometric to each other. Then X 1s parabolic if and
onlyif sois Y.

To prove the theorem, we first showed that a complete riemannian manifold X
is non-parabolic if and only if cap 2 > 0 for a non-empty bounded domain 2 in X
with smooth boundary, where the capacity cap (1 of (1 is defined by

ca_pﬂ =inf{'/;(|Vu|2dz tu € CSO(X)) u’|n = 1}‘

Then Theorem 1.6 is reduced to the problem of showing that the non-vanishing of
the capacity is preserved by rough isometries, and the proof of this fact is almost the
same with that of Theorem 1.5, because the behavior of the capacity under rough
isometries is quite similar to that of the analytic constant Sz 2(X), as is expected
from their similarity in the definitions.

The construction of this article is as follows. §§2 and 3 are devoted to the proof of
Theorem 1.5, which will be done, as in the preceding works [K1] and [K2], by approx-
imating “continuous” geometry of a riemannian manifold, say X, by “combinatorial®
geometry of a certain discrete subset P of X endowed with a suitable combinatorial
structure. We will call P a net in X, and its “intrinsic” aspects are considered in §2.
In the next section, we will show that P actually approximates X, and will complete
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the proof of Theorem 1.5. Finally, in §4, we will discuss another application of the
discrete approximation method. In particular we will reveal relationship between
the work of Kesten [Ks2] on the random walks and the Cheeger-Buser inequalities -
(1.4) and (1.5): With the aid of our discrete approximation theorems, the latter (in
a weaker form) will be followed from the former.

2. Intrinsic Studies of Nets

We begin this section with the precise “intrinsic” definition of nets. A netis a
countable set P equipped with a family {Np,},cp indexed by the elements of P itself
such that

(i) each N, is a finite subset of P, and that
(i) for p,g € P, p € N, if and only if ¢ € Np.

A net is nothing but a kind of 1-dimensional graphs: In fact, each element of P can
be considered as a vertex of a graph, and two vertices p and ¢ are considered to
be combined by an edge if p € N;. Now.let P be a net. P is said to be uniform
if sup,cp #Np < oo, where, for a set S, #5 denotes its cardinality. A sequence
p = (po,.--,pr) of elements of P is called a path from po to py of length L if
Pk € Np,_, for k=1,...,L, and the net Pis said to be connected if any two points
of P are combined by a path. In the case when P is connected, the combinatorial
metric 6 of P is defined by

6(p, q) = min{the lengths of paths from p to ¢}

for p,q € P. We always consider a connected net as a metric space with the combi-
natorial metric 8.

Next we introduce the analytic constants for the nets. Again let P be a net.
For real-valued functions v and v on P, put

(Du,Dv)(p) = Y {u(q) — u(p)Hr(a) — v(p)},

(2.1) gEN,

|Du|(p) = +/(Du,Du)(p), peEP:

The former is a combinatorial analogue of the inner product of the gradients of the
functions « and v, and the latter the norm of the gradient of u. Now, for each 1>1
and 1 < m < oo, the analytic constant of the net P is defined by ’

(SoerDul@)}”

(m—-1)/m’
{Sper lul™ ™)}

(2.2) Sim(P) = inf

u

where u ranges over all finitely supported functions on P. Now we have a combina-
torial version of Theorem 1.5:
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Proposition 2.1. Let P and Q be uniform connected nets. If P is roughly
isometric to Q, then Sym(P) > 0 is equivalent to S;,;m(Q) > 0 for any ! > 1 and
1<m< oo.

Proof. In the proof, denote by B,(q) the “closed” p-ball in Q around ¢ € Q;
ie.,, By(q) = {r € Q:6(r,q) < p}. Also, let o : P — @ be a rough isometry such
that Q@ = {U,ep Br(p(p)) for some constant 7 > 0.

To begin with, suppose that v is an arbitrary non-negative function on @ with
finite support, and define another finitely supported function 7 on @ by

vl = —-—1— v{r
U(Q) B #BT(Q) Z ( )

reB,(q)

Our first purpose is to derive the inequality (2.3) below. Let ¢ and ¢’ be points of @
with 6(¢,¢') = 1. Then we have

(') — v =t v(r’ S S v(r
]v(q)_v(Q)l - #Br(q’) E ( ) #BT(Q) Z ()

r'€B,(¢') r€B, ()

1 N —u(r
= %5 #5.@) ,GB,(q),?eB,(q,){”") )

1
< D>
< ) 7 \ :
#B:(q) #B:(¢') r€B,(q),r' €B,(q")

lv(r') = v(r)].

Moreover, for r € B,(q) and r' € B;(q'), combining them by a length-minimizing
path q = (go,---,qz) With go =7, gr =r', and of length L < 2r + 1, we obtain

lo(r') —v(r)] < |v(g0) —v(@1)l+ -+~ + |v(gr-1) — v(gz)|
< |Dv|(go) + -+ + [Dv|(qr—1)
< Y IDvl(d")
q''€B,(q)

since 6(gi,q) <7 for i =0,...,L — 1, and therefore we get

w(¢) -v(@) < > |Dvl(¢")

q"€B,(q)

Thus, for any ¢ € Q, we have

1/2
|D7|(q) ={Z{v(q')—v(q)}2} <vdi Y |Du(r),

q'ENg réB, (q)
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and .
1D3)'(q) <viid S IDvl(r)} < viust ST IDvl(r)
r€B,(q) r€B,(q)

by the Holder inequality, where for any p > 0, we put vq,, = supgcq #B,(q) which
has a finite value by the assumption of uniformness of . This yields

Z|Dﬁ|l(q) < l/l/2 TIZ Z |Dv|'(r) < ugzluq, ZleI'(q)

9€Q 9E€EQ rEB.(q) 9€Q

i.e.,

1/1 1/1
(2.3) {Z IDUI’(q)} <er- {Z IDvl’(q)}
q9€Q q9€Q

with a suitable constant c¢;.

Now define a finitely supported non-negative function v on P by u =Top. The
next purpose of ours is to obtain the estimates (2.4) and (2.5) below. First note that,
for p,p’ € P with 6(p,p’) = 1, there is a constant Lo such that 6(p(p), v(p")) < Lo
since ¢ is a rough isometry. Therefore, combining ¢(p) and ©(p') by a path q =
(g0s---,91) in Q with go = ©(p), g = ©(p'), and of length L < Lo, we have

lu(p) — u(p")| ) —v(qz)]
g0) = T(g1)| + -+ + [v(gr—-1) — v(az)| -
Dv|(g0) + -+ + |Dv|(9z-1)

> |Dv|(q),

g€BL,—1(p(p))

€|

IA A IA

and this implies, as above,

vl > |Dul(9)

qE€BL -1 (p(p))

7 ST S 2 ()
qE€EBLy-1(p(p))

|Dul'(p)

IA

IA

with vp, = sup,cp #{p' € P: §(p',p) < p} < oo for p > 0. Hence we obtain

1/1 1/1
(2-4) {Z IDUI'(P)} <ez {Z IDFII(Q)}

pEP qGQ

7
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with a certain constant cz. Finally, for each p € P, we have

m/(m—1)
W) ={#Br(1s0(p)) 2 v(q)}

9€B-(»(p))
> Va:?/(m—l) Z ,Um/(m—l)(q)’
9€B; (¢(p))

and consequently we get

Z um/(m—-l)(p) > Ual':/(m—l) Z vm/(m—l)(q)
pEP 9€Q

since Q@ = U,ep Br(#(p)). This shows

(m—1)/m (m-1)/m
(2.5) { > u"‘/("‘“)(p)} >cs- {Z v™/(m=1)(g) }

PEP 9€Q

with a constant ¢z > 0.
By (2.3), (2.4) and (2.5) we conclude

162 {quq |D”Il(q)}1/l

c (m—1)/m
’ {quo v/ (m=1) (Q)}

{Sper D0}
) {Sher um/(m—1)(p)}(m_1)/m

for an arbitrary non-negative function v on Q with finite support. Moreover because
|Dv| > |D|v|| for any function v on Q, we obtain (cic2/ca)* Si,m(Q) = Sy,m(P). This
completes the proof of the proposition.

Z Sl,m(P)

3. Discrete Approximation Theorem

In this section, we construct a net P in a complete riemannian manifold X, and
show that P indeed approximates X combinatorially. Then Theorem 1.5 will follow
immediately.

Now let X be a complete riemannian manifold. A subset P of X is said to be
e-separated if d(p, g¢) > € whenever p and g are distinct points of P, and for a maximal
e-separated subset of X, a structure of net on it is canonically defined by

N, = {geP:0<d(p,g) <3¢}, pEP

8
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We call a maximal e-separated subset P of X with this structure of net, an e-net in
X. Suppose that P is an e-net in X. Then we have the following facts since P is
maximally e-separated in X:

(3.1)  The open geodesic balls B./3(p) in X of radius €/2 and with centers at p € P
are disjoint;

(3.2) The geodesic balls B.(p), p € P, cover X.

Moreover we can easily show that

(3.3) P is connected if X is connected.

So, in the rest of this paper, we assume that all manifolds and nets are connected.
To relate geometry of P to that of X, the following lemma proved in [K1] is

fundamental.
Lemma 3.1. Suppose that the Riccs curvature of X is bounded below. Then
(1) for r > 0 and z € X, we have

(3-4) #(P N B,(z)) < v(r),

where v(r) is a constant independent of x. In particular, P is uniform.

(2) P is roughly isometric to X: In fact, there are constants a > 1 and b > 0
such that

(3.5) ad(p,q) < 6(p,q) < ad(p,q) + b for p,g€P.

Consequently any two nets in X are roughly isometric to each other.

The most crucial part of the proof of Theorem 1.5 is the following discrete
approximation theorem.

Theorem 3.2. Let P be an e-net in a complete riemannian manifold X satis-
fying the condition (x). Then, for any 1<m < 00 and I > m/(m —1), S;,m(X) >0
if and only if Sym(P) > 0.

We begin the proof of this theorem with referring to volume estimates of geodesic
balls. For a complete riemannian manifold X with Ricci curvature bounded below, a
standard comparison theorem gives

(3.6) vol B,(z) < V4(r) forz€ X and r > 0.

On the other hand, for a complete riemannian manifold X with injectivity radius
inj X > 0, Croke [Cr] showed the inequality

1
(3.7 vol B,.(z) > V_(r) forzre Xand0<r< 3 inj X.

Note that both V. (r) and V_(r) above are constants independent of z € X.
Another necessity for the proof of Theorem 3.2 is

9
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Lemma 3.3 (see, for the proof, [K2]). Let X be a complete riemannian manifold
with Ricei curvature bounded below. Then for the geodesic ball B = B(p) in X of
radius r and with the center p, there is a constant 8 = B(r) > 0 independent of p for

which
/qu}d:c > ﬂ/ lu —u*|dz
B B

holds for all u € C*®(B), where u* denotes the integral mean of u over B; u* =
(vol B)™! [ udz.

And this lemma. yields

Corollary 3.4. Let X and B be as in the lemma. Then for each 1 <m < oo
and I > m[(m — 1), there is a constant ¥ = ~(r) > O independent of p such that

1/1
(3.8) u*l/(fﬂ—l) {/ Ivulldx} ny'/ ’Iulm/(m—l) _u*m/(m—l) dz
B B

for all u € C*®°(B) with N

1 1 ) (m—1)/m
* = m m-— d .
“ {volB /B [uf” I}

Proof. Apply Lemma 3.3 to |u[™/(™~1): Then with the Hélder inequality and
(3.6), we have

ﬂ./ Ilu{'"/('"'l)—u*"‘/('"—l)ldx
B

< / IV[u]m/("’_l)l dz
B

_'E_lf [/ (m=1)| V] dz
m—1J/p

1/m (m—1)/m
_m_ {/ |u|m/(m—1)d,,} {/ ]Vu|m/('”_1)da:}
m—1 /g B

(m—1)/m
m (volB)l/mu*l/(m—l) {/ ivulm/(m——l)dm}
m-—1 B

1/1
e R ALY
B

IA

I

IA

IA

m—1

1/
m V+(r)(l—1)/1u*1/(m—1){/;[Vulld:v} . l

Proof of Theorem 3.2. We may prove the theorem only in the case when
€ < inj X/2, because any two nets in X are uniform and roughly isometric to each

10
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other by Lemma 3.1, and consequently, by Proposition 2.1, whether S;,m(P) > 0 or
not is independent of the choice of the net P in X.

First we prove the “if” part of the theorem, and to do this it is sufficient to
show that

{fx IVulldx}l/’
{fx !ulm/(m—-l)dz}(m—l)/m

for all u € C°(X) with a suitable constant ¢; > 0. Now take u € C§°(X) arbitrarily,
and define a finitely supported non-negative function u* on P by

1 (m-1)/m
R S T m/(m=1)4 :
u*(p) {volB.;e(P) </-Btc(p) 4 x}

Then we immediately have

(3.10) /[ul"’/("‘—l)dx <
X

(3.9) > e1 - Sim(P)

Z/; luim/(m—l)dz < V+(4E)Zu*m/(m_1)(p),

peP ’ Bae(P) peP
because {Byc(p) : p € P} covers X and because of (3.6). On the other hand, for
p,q € P with 6(p, q) = 1, we have
11
|Vu|ld:c}

{wt/r =0 (p) + w D ()} { /

BTc(p)
1/1
2 uﬁl/(m'—l)(p) {/ |Vu|ld:1:}
BA:(P)

11
+ ut/m=1(g) {/ |Vu|ldz}
B‘e(q)

> (4e) - /B ()||u|m/(m-1)(z)—u*m/<m-1>(p)ldz
4e\P

(3.11) + ~(4e) - /B @ “ulm/(m—l)(x) _ u*m/(m—l)(q)l dz

> (49 | {[furm/ @) - w0 )|
Bie(p)NBae (9)

+ /= (a) - w0 )|}

u*m/(m—l)(p) _ u*m/(m—l)(q)\ dz

> ~l4e /
1) Bye(p)NBac(q)

= ~(4€) vol(Bae(p) N Bac(g)) -
~(4€) vol B¢(p) - u*m/(m_l)(l’) - U*m/(m’—l)(Q)I

HAQV_(9) -[ur ™/ D (p) - wm/ P D (g)| :

u,cm/(m—l) (P) _ u*m/(m—.l) (q)‘

v

A%

11
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The first inequality follows from the fact that Bac(p), B4e(q) C Bre(p) because d(p, q)
< 3¢; the second inequality just follows from (3.8); the inequality before last is a
consequence of the fact that B.(p) C Byc(p) N Buc(g), and the last is by Croke'’s
inequality (3.7). Here note that for any real numbers £,n > 0 and a > 0 we always
have

2|£1+a___nl+a] > |£_n|(£a+’7a).

Applying this to ¢ = u*(p), n = v*(g), @« =1/(m — 1) in (3.11), we obtain

11
{ Lo |Vu|‘dx} > 31(49V-(9 - lu*(p) " (a)

for p,q € P with 6(p,q) =1, and therefore, by (3.4), we get

1/1
/ |Vu|ld:c > -1—7(46)V_(e)1/(3e)—1/2 - |Du*|(p),
BTe(P) 2 i
with v(3€) > sup,cp #Np. This yields, again by (3.4),

Z‘/B [Vulldz > ¢z Y |Du*l'(p)

(3.12) / [Vulldz > v(7€)7?
X pep? Br(p) peP

with a suitable constant ¢; > 0. Now the inequality (3.9) immediately follows from
(3.10) and (3.12).

Next we give the “only if” part of the theorem; i.e., we will show that for any
function u* on P with finite support, the inequality

{Sper v}

{Epep [u*|m/(m=1)(p) }(m_l)/m

(3.13) > c3- Sim(X)

always holds with a certain constant ¢z > 0. The proof of this inequality is rather
easier than that of (3.9), and is done by “smoothing” u* by use of a partition of unity
of X. So, first of all, we construct a partition of unity associated to a covering of X
by geodesic balls around p € P. For each p € P, define a function flp on X with finite
support by

(@) = {(1) — %d(x,p) if z € Bae(p)

T otherwise, -
and then define a partition of unity, {n, : p € P}, by

1 ~
np(z) = > fip()-

qep 7g(%)

12
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It is easy to see that there are constants ¢4 > 0 and ¢ independent of p € P such that
fNp > ¢4 on B/s(p) and |Vn,| < ¢5. Now let u* be an arbitrary finitely supported
function on P. We may consider only non-negative u*, because for general u* we
have |Du*| > |D|u*||. Define a non-negative function u on X by

u(@) = ) mp(z)u’(p).

peP

This function u on X is not smooth but is Lipschitz continuous, and therefore dif-
ferentiable almost everywhere. So we can treat this function v as a smooth function.
Then, with Croke’s inequality (3.7), we immediately have

/ W M=V gg > / n/ (m =) () o/ (m=1) ()
B./2(p) Be/a(p)
> c‘r‘n/(m——l) vol Be/z(P) . u*m/(m—l)(p)
> c;n/(m—l)v_(e/z) . u*m/(m—l) (p)

and this implies from (3.1) that

R I D 3 M L ) Dl
X pEP Be/n(P) peEP

with some constant ¢g > 0. On the other hand, at a point = € B.(p),

u(@) = Y, u(g)ng(e)
qEN,U{p}

since each 7 is supported on Bz.(g), and

Vu(z) = Y uw(@Vmelz) = D {u'(@) —uw ()} V()

gqEN,U{p} gEN,

because quN,;U{p} Vng(z) = O (recall that - png = 1). Thus by the Schwarz
inequality, (3.4), and the fact that [Vn,| < c5, we obtain

[Vul(z) < esv(3)"/% - |Du*|(p)

for z € B(p). This implies with (3.6) that
/ . |Vulldz < ckv(36)/2V, (¢) - |Du*|t(p),
Be(p

and therefore we have

(3.15) /X Vul'dz <

Z /B [Vul'dz < ec7- E |Du*|(p).

pEP «(p) pEP
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Finally (3.13) follows from (3.14) and (3.15). ]
Now we can complete

Proof of Theorem 1.5. Let X and Y be complete riemannian manifolds satis-
fying the condition (*) which are roughly isometric to each other, and take nets P
and Q in X and Y, respectively. Then, by Lemma 3.1 (2) and the assumption that
X is roughly isometric to Y, P and @, both of which are also uniform by Lemma 3.1
(1), are roughly isometric to each other, and consequently Sjm,(P) > 0 if and only
if S;,m(@) > 0 by Proposition 2.1. On the other hand, Theorem 3.2 says that the
inequalities Si,m (P) > 0 and S1,,m(Q) > 0 are, respectively, equivalent to Si,m(X) >0
and S;;m(Y) > 0. Thus we conclude that Sim(X) > 0 if and only if Si,m(Y) > 0.
This completes the proof of the theorem. 1

4. Inequalities of Kesten and of Cheeger-Buser

In the preceding sections as well as our earlier works [K1] and [K2|, we have
seen that nets are enriched with combinatorial geometry: They have a lot of geomet-
ric notions corresponding to those for riemannian manifolds, such as volume growth
rate, isoperimetric and analytic inequalities, and potential-theoretic and probability-
theoretic notions. Also nets relate to riemannian manifolds through discrete approx-
imation theorems, such as Theorem 3.2, which suggest that a net in a riemannian
manifold is similar to the manifold. Furthermore we often find that problems are
much easier in combinatorial category than riemannian category. So we may expect
that by the aid of discrete approximation theorems we can utilize combinatorial ge-
ometry of nets to obtain results in riemannian geometry. In this section, we revisit the
work of Kesten, which can be considered as a combinatorial version of the Cheeger-
Buser inequalities, and from it, we will refind a weaker version of the Cheeger-Buser
inequalities applying our discrete approximation theorems. :

For this purpose, we should first recall the notion of isoperimetric constants for
nets. Now let P be a net. For a subset S of P, its boundary is defined by

3S = {pe S : N, ¢ S},
and, for each 1 < m < oo, the isoperimetric constant I, (P) of P is introduced by

#05

In(P) = Hslf #s) 7

where S runs over all finite subsets of P. Then we have the following discrete ap-
proximation theorem which was the most essential in the proof of Theorem 1.1 (see
[K1)):

Theorem 4.1. Suppose that X 1s a complete riemannian manifold satisfying
the condition () and P is an e-net in X with arbitrary € > 0. Then, for any dim X <
m < 00, Im(P) > 0 is equivalent to In(X) >o0. ‘

We will utilize this theorem later.

14
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Now we refer to the work of Kesten [Ks2], which is stated in the following form
in our language. (This work of Kesten was motivated by the study of random walks
on discrete groups: For the probabilistic aspects, see Kesten’s original papers [Ks1]

and [Ks2].)

Proposition 4.2. For a net P, we always have
(4.1) $21(P) > 3 Io(P).
Moreover if P is uniform, then
(4.2) : 52,2(P)* <e¢-Iw(P),

where ¢ is a constant depending only on sup,cp #Np < 0o.

Proof. First we prove the second inequality (4.2). Let S be an arbitrary
non-empty finite subset of a uniform net P, and u the characteristic function of §.
Then it is immediate to see that ZpeP u?(p) = #5S and EpeP |Du|?(p) < c- #3885,
and consequently we have ¢ (#3S5/#5S) > 3° cp |Dul*(p)/ Xpep u?(p) 2 S2,2(P)?,
which implies (4.2). ,

Next we prove the first inequality (4.1). Let u be any non-negative finitely
supported function on P. We will prove the inequality

(SperDul@)} "
{}:pep u?(p) } v

which implies (4.1) because |Dv| > |D|v|| for any function v on P. Put S = {p €
P : u?(p) >t} for t > 0. Then, by the definition of I,(P), we get

(4.3) > = Ino(P),

1
2

(4.4) /Ooo #0Sydt > Ino(P) - /ooo #Sdt =Ioo(P)- Y u?(p).

pEP

On the other hand, put Po = {p € P : mingen, u(q) < u(p)}. Then p € 85} if and
only if p € Py and mingen, u*(g) <t < u?(p), and therefore we have

oo . .

/ #0S;dt = Z {u%(p) — min u?*(g)}.
0 rE€Po 9€Ny
Now, for each p € Py, take go € Np which minimizes u(g) among ¢ € Np. Then
u?(p) — u*(q0) = {u(p) +v(20)Hu(p) — v(90)}

< 2u(p){u(p) — u(g0)}
< 2u(p)| Du|(p),
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and this implies, by Schwarz’s inequality, that

1/2 1/2

(4.5) /(;oo #0S;dt < ZZ (p)|Du|(p) < 2 Zuz(p) Z ]Du[2(p)

pEP pEP PEP

Now combining (4.4) and (4.5) we conclude (4.3). I

Note that, as was seen in the proof given above, the combinatorial version of
Buser inequality, (4.2), is almost trivial, while Buser’s inequality (1.5) needs more
works, and using the combinatorial inequalities (4.1) and {4.2) proved just now, we
can obtain the following assertion which is just (1.6) under a superfluous condition
on the injectivity radius.

Corollary 4.3. Let X be a complete riemannian manifold sattsfymg the con-
dition (x). Then Io(X) > 0 if and only if S32(X) > 0.

This follows immediately from our discrete approximation theorems and Kesten’s
inequalities. In fact, for X in the corollary, take an e-net P in it: Then Io(X) >0 -
iff Ioo(P) > 0 by Theorem 4.1, Io(P) > O iff S3,2(P) > 0 by Proposition 4.2, and
S3,2(P) > 0 iff S3.2(X) > 0 by Theorem 3.2.

So Corollary 4.3 can be considered as a typical example of applications of com-
binatorial geometry of nets to riemannian geometry.
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