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1. Introduction.

Let Z(a)(t) be a strictly stable process with index a (0<as2) and
let {Xj}j:1 be a sequence of independent, identically distributed (i.i.d.)
random variables such that {1/¢(n)} ijlxj Jl» Z(a)(l) as n — « for
some ¢(n) ( — o as n-—>® ) , (Throughout this paper — denotes

the convergence in distribution.) It is well known that
[nt] L
(1.1) Z (t) = {1/¢(m)} } X,—2Z, (t) as n—>
n j=1 4 (o)

over the function space D([0, «) >~ R) (see [1} and [7] for the definition).

In our previous paper [5], we studied the convergence of

(1.2) X = Io £ (w) dZ_(v)

[ =1, £,0m) xfotm) |, n= 1,2, ee
to
(1.3) X = Io f(u) dZ(a)(u)

under suitable assumptions on fn(u) and f(u). (The most restrictive
condition is that {fn(u)}n is uniformly bounded.) As we discussed in
the same paper the results are useful in various kinds of limit theorems
where i.i.d. random variables are involved, and the purpose of this paper
is to extend the above result to give an application to self-similar
processes. A process {Y(t)}tzO is said to be self-similar with

parameter H (€R) if {Y(Ct)}tzO is identical in law to {CHY(t)} T

z0 £©
every c > O. Z(u)(t) is of course self-similar with H = 1/0 and

among others another example of self-similar processes which we shall be

-1 -
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concerned with in this paper (section 6) is the fractional stable process

defined by

(1.4) W = [ de-ul’ -l gz, vz o,

—co

where 0<a<2, -1/a<y<1l-1/a, Y 20 (see [8]), or by

(1.5) Y(t) = J At - -t dZgy(@) » €20,

with the notation at= max(0, a), where 0 < a <2, -1/a <y<1-1/a.
(See [31,[10] for the case o = 2, and [11] for 0 < a < 2.) Y(t) in

(1.5) is called the fractional Brownian motion or the fractional Lévz

motion according as a =2 or 0<a < 2.
Since self-similar processes are always obtained as the limiting
processes of time-space scaled processes, it would be of interest to find

their domain of attraction. Here we say that a sequence of stationary

random variables {Yj} belongs to the domain of attraction of {Y(t)} if
all finite-dimensional distributions of Zg:§] Yj , with a suitable
normalization d(n), converges to those of {Y(t)}. It is known that, if
{Y(t)} is non-degenerate, continuous in probability and has a non-empty
domain of attraction, then {Y(t)} is self-similar with a parameter H > O
and d(n) = nH L(n), where L(¢) is a slowly varying function at infinity
(see Lamperti [61]). A domain of attraction of (1.4) was found by one of
the authors ([8]) and of the fractional Brownian motion was studied in [3].
Since the proof of [8] heavily depends on the computation of the
Fourier transforms, we did not have an intuitive explanation to the
result. However, we obtain a very natural heuristic proof if we formally

apply the above argument of [5]. The only problem of this approach is
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that the integrand of (1.4) is not bounded in general and consequently we
cannot apply the result of [5]. Hence, in this paper, we first relax
the conditions of [5] so that the unbounded integrands can be treated and
then we apply them to the above problems on the fractional stable
process. As a byproduct of our new approach, we can extend the result of
[8] in a few directions: Firstly, in (1.1), ¢(n) is generally of the form
nl/aL(n), where L(n) is a slowly varying function, while in [8], mainly
due to technical difficulties, L(n) is confined to be constant, which
condition will be removed now. Secondly, the case of a = 2 (the
fractional Brownian motion) can be treated in parallel even in the case of
infinite variance. Thirdly the class of fractional stable processes will
be extended a little.

We shall start with non-Gaussian case (0 < o < 2). In section 2,
the definition of stochastic integrals based on stable processes is given
and in section 3 we shall prove a basic inequality, which plays the
crucial role to extend the results of [5]. In section 4 we shall study
the general theory for the convergence of (1.2) to (1.3). The case of
o = 2 will be examined in section 5, and the results in sections 4 and 5
will be applied to the fractional stable process and the fractional

Brownian motion in section 6.
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Let Z(t) = Z(a)(t), t 20, be a strictly stable Lévy process of

index @ (0<0<2) with the Lévy measure

l—(l—].

(2.1) W(dx) = a{C+I[x > 0] +CI[x<O0l} |x dx

on R\ {0}. Here I[°*] is the indicator function and C+, c_z0,

C++ c_>0. Namely,

t J(eie" - 1) Wdx) ,0<a<l,
log B[ 1%(0) - 1 ¢ J(eie" S 1 - A6xI[ x| S DWdx) , @ =1,
t J(eieX -1 -i8x) wWdx)  , 1< a< 2.

Note that C+ = C_ in case & = 1 since we assumed that Z(t) is strictly
stable .

Let N(dt dx) be the Poisson random measure defined by the
discontinuities of Z(t). As is well known the intensity measure is
equal to Vv(dx) (i.e., E[ N(dt dx) ] = dt v(dx) ) and the Lévy-Itd

representation theorem gives us

t+
lim J J x N(dudx) a.s., 0<a<l,
| x]>8

S+ 0 0
Z(t) =
t+ "
lim J I x N(dudx) a.s., 1 sac<?2,
§4+w ‘0 ‘|x|s6
~

where N(dudx) = N(dudx) - du v(dx).
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Definition 2.1. Let Te (0, «] . For a real-valued measurable

function f(u) on [0, T]n [0, «) , we define

t+
(2.2) J f(u) dZ(u), 0 st =T,
0
by
t+ v t+
(2.3) J J f(u)x N(dudx) + J J f(u)x N(dudx) + a(t),
0/ ]f(u)x|s1 0/ ]E(u)x|> 1
where
t
J f f(u)x du v(dx), 0<a<l,
0/ |f(uwx|s 1
a(t) = 0 ’ o = 1y
t
- J J f(u)x du v(dx), 1<a<2,
0 |f(u)x|> 1
’ t+
provided that all terms of (2.3) are well-defined. (Throughout J is
0
understood to be J when t = @, )
(0, =)
Lema 2.1 If
T o
(2.4) J [f(W]” du <=,
0

then (2.2) is well-defined and there exists a positive constant C

depending only on Vv(dx) such that for any f satisfying (2.4) and any

€ > 0 we have that
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t+
(2.5) P{ sup | f f(u) dZ(u) | > e }
Ost<T 0

T
sc( e+ 1) J [£(u)|* du .
0

Proof. Let D= {(u, x): |f(u)x| £1} and let I be its indicator

D
function. Since
T ) T
I (£(u)x)” du v(dx) = C [£(u) % du < o,
0l D Lo

where Cl = (C+ + C)a/(2 - a) , the integral
t+ "
K z [ [ 1y fwxN@eay , 0scsT,
0 N

exists and is a square-integrable martingale. Therefore, we have that

(2.6) P{ e IX()] z e} s e B X(D?)

sts
-2 T
= Cpe J [£(u)|® du .
0
On the other hand, since

JZ J IDC du v(dx) = C, Iz [E)[® du < o,

where C2 = C++ C_, we see that N restricted on D¢ is almost surely a

sum of finite numbers of Dirac measures. Hence,
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t+
J I I f(u)x N(dudx) , 0st =T,
0 D¢

Y(t)

1]

is finite almost surely. Also we have that

T
(2.7) P{ sup |Y(t)| >0} =P{ J J I _ N(du dx) 2 1}
OstsT 0 D

< IZ J IDC du v(dx) = C, JZ [£(u)|% du

Furthermore, when 0 < a < 1,

T
(2.8) sup |a(t)| = J J ID [f(u)x] du v(dx)
O=st<T 0

T
a
= C3 J If(u)[ du ,
0
where C3 =a/(l —a), and when 1 <a < 2,

(2.9) sup |a(t)|
OstsT

(1Y

T
Io J IDC]f(u)x| du v(dx)

T a
= Ca J |f(u)| du ,

where C4 =af(a - 1). (2.6)-(2.9) conclude (2.5). (q.e.d.)

t+
Notice that J f(u) dZ(u) is a functional of {Z(t)} because so is
0

N(dt du). It should also be noticed that (2.3) may formally be

rewritten as follows.
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t+
J J f(u)x N(dudx) , 0<a<l,
0 .

t+
J f(u) dZ(u) =
0

t+ v
J J f(u)x N(dudx), 1l 20 <2,
0

Therefore, the integral (2.2) can be expressed in various ways. Indeed

we have the following. The proof is easy and left to the reader.

Lemma 2.2. Let f(u) be a measurable function on [0, T] N[0, «)

satisfying (2.4) . For any measurable set D in [0, T] x (R\{0}) such

that

J JD (E(wx)? du v(dx) + f J'DC du v(dx) <

it holds that

j”f( )dzZ(u) j“j I F(u)x N(dudx) JHf I £(u)x N(dudx) + a(t)
u u = ujXx udax + u)x uax + a N
0 0o/ D 0! ¢ D

where

t

J J ID f(u)x du v(dx), 0<a<l,
0

aD(t) = 0 , a = ]-r

t

- J J I f(u)x du v(dx), 1 <a < 2.
o’ »¢
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Remark. Once (2.5) is established we can prove the following properties

by approximating the integrands by step functions.

(i) For any constants a and b ,

t+
JO (a £(u) + b g(u)) dz(u)

t+ t+
=a f f(u) dZ(u) + b J g(u) dZ(u).
0 0

(ii) If £(u) is continuous, then
t+ . 11 .
j f(u) dZ(u) = 1l.i.p. § f(;}){Z(Jn— At) - 2(;11 Aol
0 n>o j

where a A b = min (a, b).
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3. A basic inequality.

Throughout this paper the notation in the previous section is
preserved. Let {Xj}jo_o1 be a sequence of independent random variables
having common distribution function F(x) and suppose that for some ¢(n)

(—>® as n— o),

(3.1) - Ex L, W as n —
. z (a) ? L

where L, denotes the convergence in distribution. A necessary and

sufficient condition for (3.1) is that vn(dx) = n dF(¢(n)x) converges to

vw(dx) (in (2.1)) and in addition, when 1 < a < 2, J X Vn(dx) =0 and

when o = 1, X vn(dx) — 0 as n — o, (see section 2 of [5]).

J]Xl(l

Definition 3.1. Put
Z(t) == J X. ,tzo0,
n ¢(n) jent 3
and
t+f S i
Jo (W) 42,(0) = 50 jént f(yx, . czo.

Furthermore, we define

o T+
(3.2) JO f(u) dZn(u) .p. J f(u) dZn(u)

=

when the right-hand side exists.

- 10 -
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IS ) j21 [f(j/n)!b { o for some b with 0 < b < o, then we can show
that the right-hand side of (3.2) exists (see Theorem 3.1).
The purpose of this section is to prove the following theorem which is

an analogue of Lemma 2.1.

Theorem 3.1. For any € (>0) , there exists a positive constant C

depending only on ¢ and F(x) such that

t+
(3.3) P{ sup | f f(u) dZn(u) lzal
Osts<T 0

) T ate a-€
sC(a“+1 JO {I£f(u)] + £ } dpn(u)

for every a > 0, every Te (0, =], every n 21 and for f(u) such

that the right-hand side of (3.3) is finite. Here, pn(u) = [nu]/n .

For the proof we first prepare two lemmas.

Lemma 3.1. For e > 0, put C. = J' min {|x|%*€, [x|%7) v (dx).

(i) When 0 =8 <a,

T+ B
(3.4) jo J[f(u)x];l l£Cwx|® do_(u) v_(dx)

s C fTJr{ [£(w)[*™ + [£(u)|**) 4
*%n |, (u) + [ £(u)] p (u) .

- 11 -
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(ii) When B > o »

T+

(3.5) £(wx [P dp (w) v (dx)

J0 Jlf(u)x|§1

T+ _ +
S Cen Jo (1R |0 + [£Qu) |HEY dp_(u) .

Proof. Since a‘€+ a® is monotone increasing in € > 0 , so are the
right-hand sides of (3.4) and (3.5). Hence it is enough to prove (3.4)
and (3.5) for all sufficiently small € > O. Therefore, we shall assume
that 0 < € o - B in (i) and 0< € =B - o in (ii).

(i) Since B 2a-e < a+ €, we have
I[If(u)x|§1] |f(u)x|B < ]f(u)x|m_E A |f(u)x|a+€ .

Thus we obtain

T+ 8
J J If(u)x| dp (u) v _(dx)
0 ‘|f(ux] z1 n n

A

T+
fo J {T0lx]21] [£(wx|*F + I[|x[s1] [£w)x|*} do_(w)v_(dx)

[

c JT+{|f |o€ Fw) %} g
e ), (W) + [ £(uw)] p (W) .

(ii) Similarly, since Bz a +€ >a - € , we have

T E(wx] s 17 |£wx|® |£(uw)x|%C A | £(u)x| %€ .

A

- 12 =
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Hence we obtain

T+
J J l£(wx |® do (u) v (dx)
o Jlf(ux| =1 n n

T+
sC. h {le@) [*7% + £ %" }dp (w) . (qg.e.d.)

Lemma 3.2. We consider the case o = 1. Put

X vn(dx) , z > 0.

Ed
A

= Z

Then, for every € > 0 , there exists a constant C(e) > 0 depending only

on € >0 and F(x) such that

(3.6) sup |n (2)]| s C(e) F+2% , z>o0.

n

Proof. We have that for z 2 1,

In | = I ]+ | x| v, ()
‘ 15|x| sz
< € 1-e
s |[h (D] + 2 I1§[x [x| "7 v (@)
and for z < 1,
b = Il + | x| v, (dx)
z £|x|=l

- 13 -
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-€ l+e
s lhn(l)] +z J|XI§1 |x| v (dx) .

By our assuption for the case o =1, we have that hn(l) ~0 as n > o,

Also note that, as n — o,

J x| 17 v (ax) — J 1x|177€ wdx) < =
|x|§1 |x|zl
and
[ @0 — [ M v <
|x]s1 [x|sl
All together above conclude (3.6). (q.e.d)
Proof of Theorem 3.1. The idea of the proof is essentially the same as

that of Lemma 2.1 if we adopt the following notation: Define

(3.7) Nn(dudx) = 5 g . 6(j/n, Xj/¢(n))(dudx)
and

"
(3.8) Nn(dudx) = Nn(dudx) - E[Nn(dudx)]

Nn(dudx) - dpn( u) vn(dx) .

Here, denotes the Dirac measure at (uo, xo).

§
(ugsxq)

With this notation, the analogue of (2.2)-(2.3) is as follows:

t+ t+
(3.9) JO f(u) dZn(u) = JO f flu)x Nn(dudx)

- 14 -
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= Xn(t) + Yn(t) + an(t) , t %0,

where

t+ i
(3.10) Xn(t) = JO J]f(u)xlgl f(u)x Nn(dudx) ,

t+
(3.11) Y (t) = J J f(u)x N _(dudx)

n 0 ’lf(wxl>1 n

and

t+
(3.12) an(t) = JO J[f(u)xlél f(u)x dpn(u) Vn(dx) .

As to Xn(t) , we have

(3.13) P{ sup | Xn(t)] z a/2 }
OSt=T

T+
-2 2
s 4 (E(wx)” dp_(u) Vv _(dx)
a Jo J]f(u)X|§1 u)x 0 u h X

(cf. (2.6)) Applying Lemma 3.1 (ii) with B = 2 , we have from (3.13)

that
. (3.14)  P{ sup | Xn(t)[ 2 a/2}
0StsT
saao, [P s i)
S 4 a Cﬁ,n 0 f(u) + [f(u) dpn(u) .

As to Yn(t)’ we see in a similar way to (2.7) that

P{ sup l Y (t)! >0 }
osts "

- 15 -
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T+
s dp_(u) v_(dx)
Jo J]f(u)x] >1 n n

Applying Lemma 3.1(i) with B = 0, we obtain

(3.15) P{ sup | Y ()] >0}
0

stsT
T+ a-€ a+e
< C { £} + [£)]77) dp (u) .
e,n g n
It remains to evaluate an(t). When 0 <a <1,

n = I
a (t) H f(ll)x dp (u) (dx)
| | JO Jlf(“)xl <1 ] n Vn

A

T+
Cen Jo U 1E@ ] + [£ ¥} dp (u) .

by Lemma 3.1 (ii) with B = 1.

When 1 < a < 2, note that

t+ '
a (t) = - J J f(u)x dp_(u) v_(dx) ,
f 0 J|f(u)x|>1 f f
by J X vn(dx) = 0. Therefore, if we apply Lemma 3.1 (i) with B =1,

(0]

IA

T+
Coon | CIE@IYF 4 JEWI™E) dp ()
’ 0
Finally, when o =1, it follows from Lemma 3.2 that

t+
la_ ()] = | JO £(u) h_(1/£(u)) do_(u) |

- 16 -
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T+
scte) [ IE@ 7 e M dp )
0

Hence in any case, we have

~ T+ —€ at+
co | IR+ 15w dp, ()
0

IA

(3.16) sup |an(t)|

Ost<T €

o
where CE = C(g) or CE n according as a =1 or not.
’

Now combining (3.14), (3.15) and (3.16) , we see that

P{ OZEZT | Xn(t) + Yn(t) + an(t)] za}

= P{ sup | Xn(t)] z %—} + P{ sup | Yn(t)l >0}
OstsT OstsT

+ P{ sup | an(t)l 2 %—}

O=tsT
-2 Y T+ 0-€ ate
< (4a Ca,n+ Cg,n+ 2a CE) fo { |£(uw)] + |£(u)| } dpn(u) .
Since
CE n J min {Ix[a+€, |x]a—E} v(dx) , as n — ® ,

~ we have the assertion.

- 17 -
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4. Convergence to stochastic integrals.

In the previous sections we considered f8+ f(u) dZ(a)(u) and
f8+ f(u) dZn(u). We now give a mild condition which assures the

convergence of Xn(t) = f8+ fn(u) dZn(U) to X(t) = f8+ £(u) dZ(u)(u)

Theorem 4.1. Let fn(u),

[=
v

0, (n=1, 2, =+ ) be real-valued

functions and let f(u), u z 0, be a measurable function satisfying

(Al) fn(u) Laley f(u) , du-a.e.,
(where fn(u) Sy f(u) at u = uy means that fn(un) — f(uo)

whenever u > Uy ), and

(A2) for every T > 0, there exists B > a such that

T+
sup JO |fn(u)|B dp (u) < =, (p (u) = [nu]/u).

n

Then
t+

(4.1) [ J;Jr £ () 4Z_(v), Z_(t) ] LN [ Jo £(u) dZ(u), Z(t)

as n - o in D([0, «) — Rz).

Proof. It is enough to consider the convergence in every finite interval
[0, T]. 1In our previous paper [5], we discussed the case where {fn(u)}

is uniformly bounded with a slightly different formulation; we proved that

- 18 -
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if |fn(u)| sA (nzl, uz0) for some A >0 and if (Al) is

satisfied then

t+ " t+
(4.2) J J f (u)x N_(dudx) + J J f (u)x N _(dudx)
0 Jlx|ss " f 0 lx|>s " "
L t+ " t+
—_— f J f(u)x N(dudx) + J I f(u)x N(dudx) .
0 |x| =8 0 [x[>8
However, it is easy to see that
t+
(4.3) J J f (u)x dp (u) v (dx) — b(t) , as n — o ,
0 Jlxlss ™ nton
where
t+
J J f(u)x du v(dx) , O0<a<l,
0 |x[§5
b(t) = 0 , a=1,

t+
- J J f(u)x du v(dx), l1<a<2.
0 |x|>6

Hence (4.2) and (4.3) yield that ft+ f (u) dZ (u) converges in
0 "n n

distribution to

t+ N t+
f j f(u)x N(dudx) + J J f(u)x N(dudx) + b(t)
0 ‘x| =6 0 /x| >

which is equal to f8+ f(u) dZ(u) by Lemma 2.2. We thus have (4.1)

for uniformly bounded {fn(u)}n . (The joint convergence can be proved by
the Cramér-Wold method.)

We next consider the general case where {fn(u)}n is not necessarily

- 19 -
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bounded. Put

A

fg(u) £(u) I[ £ ()] M ]

and

fMeu) = FQu) I[ |£(u)| sM 1, (M>0).

As we have seen in the above, (4.1) holds for {fz(u)}n and fM(u) for

every fixed M > O. Therefore, it suffices to show that for any a > O,

t+
(4.4)  1im  P{ sup | J (fM(u) -f(uW)dZ(w |>al= 0, nzli,
M+ o OstsT ‘o0 " n n

oM
(4.5) 1im P{ sup | f (f7(u) - £(u)) dZ(u) | >a} = 0,
M> OstsT 0

and

t+
(4.6) lim 1im sup P{ sup | J (fM(u) - £ (u)) dZ_(u) | >al =0
M>® n-o ostsT ‘o " n n

(see for example Theorem 4.2 of Billingsley [1]). (4.4) and (4.5) are

clear from Theorem 3.1 and Lemma 2.1, respectively. As to (4.6), choose

€ so that 0 <a +¢e <B . Then by Theorem 3.1,

t oM
(4.7) P{ OZEET | Jo (£,(w) = £ (u)) dZ (u) | >a}
-2 T+ M a-€ M o+e
sC(a“+1) JO{Ifn_fnl +|fn—fn| } dp_(u)

-2 T+ o€ o+e
Ca“+1) fo (| + £ 177 I0IE M T do (u)

A

T+
C (a2 + 1) (MPBHE, yBiate Jo 1215 do_(u) .

- 20 -
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Therefore, we obtain (4.6) from the assumption (A2). (q.e.d.)

Theorem 4.2. In addition to the assumptions (Al)-(A2) in Theorem 4.1 we

assume

(A3) there exists an € > 0 such that

(4.8) lim  lim sup J U 1%+ £ () |™F) do_(u) = 0.
T

T+ew n»ow

Then we have that

[ J: £ (u) dZ_(u), Z (t) ] __L__+ [ roo £(u) dZ(u), Z(t)

in R X D([0, ) — R ). A sufficient condition for (A2) and (A3) is

(A4) there exist B and & such that B>a , 6§ > B/a -1 and

(4.9)  sup J e @ 1+ wbap () < =
n 0

Proof. The story of the proof is the same as that of Theorem 4.1:

Because of Theorem 4.1, it is enough to check

0 t+
(4.10) lim  lim sup P{ | J f dzZ_ - J f dZ | >al} =0
O n n n n

t>® pn->wo 0

for every a > 0. However, as in (4.7) we can apply Theorem 3.1 to see
® t+

P{ | {0 £ dZ - Jo £dZ_ | >al
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IA

a2+ 1) j ULE ) [* 75 |6 () [*F) do_(w)
t

which combined with (A3) proves (4.10). It remains to prove the
latter half of the theorem. The sufficiency of (A4) for (A2) is clear
and to see that for (A3) we need the next lemma the proof of which will be

given later.

Lemma 4.1. For any B, B, §, 8" > 0 satisfying

§°+ 1 Ihe

(4.11)
S+ 1 B

and for any measurable function f£(u) 2z 0, we have

J, rof a0t e m

w B°/B
< ¢ fo £w? 1+ W do () } ,

where C > 0 is independent of f(u) and n.

We continue the proof of Theorem 4.2. Choose ¢ > O so that

0<a-g€<a+e <P and that
(4.12) 1< ((a -€)/B)ES +1) < ((a +€)/BY(S +1) .

This is possible because 0 <a < B and 1< (a/B)(§ + 1) by the

assumption. We apply Lemma 4.1 with B” =qa +€ or o -e and with
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8§ = (1/2){((a - €)/B)(§ + 1)-1} (>0 by (4.12) ). It is easy to check

that (4.11) is satisfied. Hence,
® a-€ a+e
[ G515 1, @™ do, (0

’

78 jT C1E %8 £ (0]*) (@ + 0 dp_(w)

A

(o - €)/8

A

c 18] [ J: £ [® o+ wd dpn(u)]

o (o + €)/B
B S
+ [ JO |fn(u)| (1 + u) dpn(u)J }

Letting T — «, we get (4.8) from (4.9). (q.e.d.)

Proof of Lemma 4.1. It is enough to consider the case where B°/B8 < 1.

Put p = B/B” and let q be its conjugate (i.e., 1/p + 1/q = 1). Then,
{ee] ’ ’
[ e a s w e w
0 n

(o o)

f f)B/P (14 wS/P (1 4 )8 - 8P do_(u)
0

1A

1/ 1/q

A

< [ J: FP1 + w0 dp_(u) ] P [ J:(l + w)(87=6/p)a do_(u)

Therefore, we get the conclusion with

C= [ J:(l + )87 8/p)a ]1/q

which is finite because (8§ - 8/p)q < -1 by (4.11). (q.e.d.)
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It is easy to extend the result of Theorem 4.2 to the case of Rd~valued
functions:
)

Theorem 4.3. Suppose that, for every k =1, 2, eee , d (d 2 2),

{flg(u)}n and fk(u) satisfy the assumptions (Al1)-(A3) in Theorem 4.2,

Then we have

[ J: £lw dzn(g) s een J: £90u) az_(u) ]

{ee)

b H: elu) dz(u) , eee JO £y dz(w) ] 85 10— o .

Proof. By the Cramér-Wold method we have the assertion immediately

from Theorem 4.2. (q.e.d)

To conclude this section we consider the two-sided case. Let
{Z—(t)}tgo be an independent copy of {Z(t)}th , and extend Z(t) in

such a way that
Z(t) = - Z_(-t+0) if £t<O0.
We call this {Z(t): — o < t < @ } a two-sided stable process with index .
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For a measurable function f(u) , uéR, we define

f f(u) dZ(u)

by
0 0
(4.13) J f(u) dZ (u) + J f(-u) dZ (u)
+ —
0 0
provided that the both terms of (4.13) are well-defined.
So far we considered i.i.d. random variables {XJ.}J.T1 with

distribution function F(x) satisfying (3.1) but in the rest of this

section we shall consider the bilateral sequence {Xj}jo_o_°° of i.i.d.
random variables with the above distribution function. We define
[ 7w ez - g 1 () x
u u) = —— - .
—00 n ‘D(H) jé Z n J

provided that the right-hand side exists. Then we have the next theorem

immediately from Theorem 4.3.

Theorem 4.4. Suppose that, for every k =1, 2, ¢ , d (dz 1),

functions {fﬁ(u)]nzl and fk(u) on R satisfy that

(A1)’ fﬁ(u) LeCy fk(u) du-a.e, as n—
and

(A4)" there exist B and & such that B >a , § > B/o - 1 and

1) s [ 11 e b a0 <@, Cop) = Dnul/n ).
n —
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Then we have that, as n — o,

[ wafrll(u) dz_(u) , +=+ Jw fg(u) dz,_(u) ]

— -0

{e o}

L

—_ flew) dzqu) , eee , | Y0 dz@u)
[ | )

—00

as n — o« ,
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2. The case of ¢ = 2.

The purpose of this section is to establish the statements of Theorems
4.1 and 4.4 for the case d = 2. (Theorems 4.2 and 4.3 can be similarly
established, but will be omitted.) Let Z(t) ( = 2(2)(t) ) = oB(t) or
= -0oB (-t) according as t z 0 or t <O, where {B(t)} and

t20
{B_(t)} are independent standard Brownian motions and ¢ > O.

tz0

Further, let {Xj}jfLw be a sequence of independent random variables with a

common distribution function F(x) such that for some ¢(n) ( — « as n >
n L

® ), (1/6(0)) L0 Xy = 2(1) . Put Z(6) = (1/6(m) To jgne ¥y OF

—(1/¢(n)) Znt<j§0 Xj according as t > O or not as before.

Theorem 5.1. For any € > O, there exists a positive constant C

depending only on € and F(x) such that, for every T g,

t+
(5.1) P{ sup | IO f(u) dZn(u) | >a}

T+
sc@?e [0l e P do )
0

Proof. When E[ Xf ] < » , the Kolmogorov inequality gives us

t+
P sup | J £(u) 4z (v) | >a )
0st=T 0

A

T+
-2
G ) [ el g
0
which proves (5.1). When E[ X% ] = » , we define Xn(t), Yn(t) and
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an(t) by (3.7)-(3.12). Then, (3.13) remains valid and hence by the

next Lemma 5.1 we obtain

(5.2) P{ sup | X (1) | >a/2}
0stsT

T+
s wac fO Cle|? + 15 125 dp_(u)

As to Yn(t), we have

P{ sup l Yn(t) [ >0}
O=tsT

T4
s [0 J I[ |f(u)x| > 1] dpn(u) vn(dx)

| 2-€

IA

T+
fo J [CE? T x| 511 + £ 781 |x|>1]) do_(u) v _(dx) .

Keeping in mind that, in the case where E[ X? ] = oo,

(5.3) J x2 v (dx) —— 02 as n— o,
n
x| £1
- and that
2-€
(5.4) j |x] vn(dx) —— 0 as n—» o ,
[x] >1
we have
(5.5) P{ sup | Y(t)| >0}
OstsT n

T+
< const. JO { If(u)]2 + [f(u)lz_e} dOn(u) .
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As to an(t), we similarly have

T4
5.6 a1 5 [ [0 Il > 11 I apyw) v

IA

T+
const. J { |f(u)|2 + |f(u)|2_€} dp_(u) .
0

The assertion of the theorem follows from (5.2),(5.5) and (5.6).

Lemma 5.1. If F(x) belongs to the domain of attraction of a normal

law and has infinite variance, then for every € > 0 there exists C

depending only on € and F(x) such that

€

(5.7) J x2 Vn(dx) < C€ (1 +2z ), for every z > 0 ,

xl sz

where vn(dx) = n dF(¢(n)x) as before.

Proof. We have that for z 2 1
_(5.8) [ x2 v (dx)
|x] sz o
s [ x2 v _(dx) + J x2 v_(dx)
|x| 1 n 1 §|x| sz n
< f X2 v (dx) + z J lezuE vn(dx) .
|x| =1 n 1 s|x]
For z such that 0< z <1,
(5.9) J K2V (dx) = j |x]2°€ v_(dx) .
|x| sz f ]xl 1
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Thus (5.7) follows from (5.8) and (5.9) (see (5.3) and (5.4)). (q.e.d.)

Recall that we proved Theorems 4.1-4.4 using Theorem 3.1. Therefore,
once we establish Theorem 5.1, which corresponds to Theorem 3.1, we obtain

the following theorems in the same way.

Theorem 5.2. Let fn(u),

20, (n=1, 2, *+* ) be real-valued

=
I

[\

functions and let f(u), u 2 O, be a measurable function satisfying

(Al) in Theorem 4.1 and

(A2) for every T > O,

T+ 2
s [ r @l o < o, (o) = [mul/u).
n 0

Then,

[ J;+ £ (u) dZ_(u), Z (t) ] L, [ J;+ £(u) dz(u), Z(t)

as n—>w in D([0, =) — R).

Theorem 5.3. The assertion of Theorem 4.4 is still valid even in the

case of & = 2 replacing the condition (A4)” by

(ALY’ there exists & > 0 such that

(5.10) sup J £+ lu])® do_(0) < = .
n 00
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6. The fractional stable process.

In this section we shall apply the results in sections 4 and 5 to the
fractional stable process ([8],[11],[12]) and the fractional Brownian
motion ([3],{10}). Throughout this section, Z(t) = Z(a)(t)’ ( teR ) is
the two-sided stable Lévy process of index o (0<as2) considered in the
previous sections (i.e., for negative t, we define Z(t) = -Z_(-t+0)
where Z (t) is an independent copy of {Z(a)(t):t z 0}).

Let a, sa_ e¢R and let Y be a real number such that
(6.1) -1/a<y<1l-1/a and Y %0,

Define for t ( >0 ), u ( #0, t ),

{ - J[ © W(x) dx , if Y <O and 0 < u < t,
-u,t-u

f(tiu) =

P(x) dx , otherwise ,

J[—u.,t—u]

where

(6.2) U(x) = w(a+,a_;Y:x) = { a+I[X>O] - a_I[x(O]}IxIY_l.

Notice that f(t:u) = |t - u|Y - Iu]Y when a, =a_=Y , while

f(t:u) = {(t - u)+}Y - {(- u)+}Y when a, =Y and a =0,

Definition 6.1. For 7Y satisfying (6.1), we call the process {A(t)}tZO’

defined by the following stochastic integral the fractional stable
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process;

Alt) = A(a+,a_;Y:t)

{ 0
J B f(t:u) dz(u) , t > O.

—00

Of course the stochastic integral is well-defined (see Lemma 2.1) and
it is easy to see that A(t) is a self-similar process having parameter

H = 1/a+y. We can also show that A(t) has stationary increments (i.e.,

for every c > O, {A(t+c)—A(c)}t and {A(t)}t have the same finite-
dimensional distributions.). These facts can be proved directly but also
follow from Theorems 6.1 and 6.2 below. The regularity of the sample
paths of A(t) will be mentioned at the end of this section. (See [12]
for some basic properties of self-similar processes having stationary

increments.)

servve) = [ Cle =l = [l @z
is the fractional stable process considered in [8].
(2)
O+ t
p0r07vie) = [ (e - wY - (0 a2+ [ (e - wY a2
~o0 0
is the fractional Brownian in [3] and [10] or the fractional Lévy motion

in [11] according as a =2 or 0 <a < 2. Also see [12] for fractional

processes.

- 32 -



KSTS/RR-86/003
March 4, 1986

In this section we shall find some stationary sequences of random
variables belonging to the domain of attraction of the process A(t).
Our result will extend the limit theorems in [3] and [8]:

Let {cj}jfLw be a sequence of real numbers such that

J a, nY_1 L(n) , as n— o ,

(6.3)

c N
1 a_ |r1]Y—1 L(|n]) , as n— —=,

where a_, a_ and Y are the same as before and L(n) is slowly varying at

+9

infinity. Here, a_ ~ b_ means that lim a /b = 1. Let (x.}.” be
n n n n =
as before; a sequence of i.i.d. random variables such that, for some ¢(n),
1/ ny L2oa
(1/¢(n)) Zj=1 P (a)( ) as n— o,

Define a stationay sequence {Yk}kjl of random variables by

(6.4) Y, = )} c.X . , k=1,2, e ,

and consider the partial sum
[nt]
Dn(t) = kzl Yo, t>0, n=1, 2, s .

Then we have

Theorem 6.1. When 0 <y <1l-1/a ,
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1

————— D (t) — Ala_,a_s;yit) as n— o,
aL(n)o(n) f.d. +90Y

where —¢ 4 denotes the convergence of all finite-dimensional

distributions.

Theorem 6.2. When - 1/q < y <0,

1

(6.5) 5y D) —p g, A2y . as e,

where A = zj Cj' Furthermore, if in addition A = 0, we have

1
- D (t) — Ala, ,a ;y:t) , as n o .
nYL(n)¢(n) n f.d. +° - Y -
Proofs of Theorems 6.1 and 6.2. We have
1 1 [nt]
s = kZI R
1 ([nt] ) x
= c .
o(n) % kil k-j J
CTT ) Kety - [T e (e dz,(w
= X, = t: ,
b0y o) e Jﬂw I
where
[nt]-[nu]
(6.6) g (t:u) = c
n k=§-[nu] ko
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Hence, to apply Theorem 4.4 ( 5.3 when «a = 2 ) it is enough to check the
continuous convergence of fﬁ(u) = {1/(nYL(n)} gn(tk:u) (or gn(tk:u) in

the case of (6.5) ) and the condition (4.14) ( (5.10) when a = 2 ) for

every 0 < t1 < t2 < eos ( t To this end we prepare two lemmas.

4
Since in Theorem 6.3 below the first half of Theorem 6.2 will be proved in

a more general situation, we shall omit the proof of this part and assume

that A =0 in the proof of Theorem 6.2.

Lemma 6.1. Let Yy >0 and t > 0. Then

gn(t:u) Lecey f(tiu) , u=0, t,

nYL(n)

and for any ¢ > 0 , there exists a constant C = C(e) > O such that

c, -t sus2t |,
1

L(n)

(6.7) ]gn(t:u)[ s

o'

C |u|Y—1+€ , elsewhere,

Lemma 6.2. Let y< 0 and t > 0. If A= zj c. = 0, then

1
nYL(n)

gn(t:u) _L.c., f(t:u) , u=0, t,

1]
aQ
~
™
~
v
o

and for any € > 0, there exists a constant C such that
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C {|u]Y_€ + |t - u|Y_€} , -t = u g 2t,
1
n'L(n)

(6.9)

|8 (t:u)] =

C |11|Y_1+E , elsewhere.

We postpone the proof of above lemmas and continue the proof of
Theorems 6.1 and 6.2, Since -1/yg <y <1 - 1/a , we have that
a(y-1) < -1 and oy > -1. Therefore, we can choose ¢ > 0 so that
a(y-1)+8 < -1. Then if we take € > O small enough, it holds that
(o +e)y -1 +e)+8<-1 and € <ab ,

and that

(@ +e)(y —g) >-1

Namely, if we let B =ao + €, then

(6.10) By - 1+e)+86<-1.

and

(6.11) Bly —e)>-1 .

It also holds that B >a and & > B/a - 1. Therefore, combining

(6.10) and (6.11) with (6.7) or (6.9) we see that fﬁ(u) satisfies (A4)
of Theorem 4.3. Since (Al) is also proved in the above two lemmas, the

assertions of the theorems follow from Theorem 4.3 (Theorem 5.3 when

o =2). (q.e.d.)
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It remains to prove Lemmas 6.1 and 6.2. Since the proof of these

two are essentially the same, we shall prove the latter only.

Proof of Lemma 6.2. Put &(x) = C[x] , x€R . Then,

nt-nu
(6.12) Yl g (tiw) = j L0 gy 4oe ()

n'L(n) -nu  n'L(n)
Jt—u £(nx)
= ——— dx + € (t:u) ,
-u nYQlL(n) n
where
le (t:u) s 1 {le - nu)| + |&(nt - nu)|} = 0(1) .
T | 1} = ol

If we note that g(nx)/nYulL(n) converges to Y(x) (in (6.2)) uniformly

for x on every compact subset of R\ {0}, we have from (6.12) that

t-u
g (t:u) ey f P(x) dx as n — o ,
nYL(n) n ~-u

when ué€ (-, O)U (t, »). When ue€(0, t), using the assumption A =0 ,

we have from (6.12) that

£(nx)
g (tiu) = - —2=~— dx - g _(t:u)
n'L(n) ® ¢ J[-u,t—u]C 2 L(n) T
C.C.
- J[_u’t_u]c P(x) dx , as n — o .

Thus (6.8) is proved.

We finally show (6.9). To this end we note that for every g > O,
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there exist K1 >0 and

L
(6.13) 1 L(x) < K1
for any x, y 2 ng - (Th

representation of slowly varying

(n + nO)Y_lL(n + no)

for some K2,

(6.14) [cjl <

Using (6.13), we have from

| 5= |
nYnlL(n)

Y-l _ Y-

where x max { x

Thus we have

- (6.15) Ign(t:u)

nYL(n)

IA

1
K3 a

1A
=
=T

[
~
[SY]
—_—

[nt]-[nu]
g |

such that

—
~
<

€ —-£€
IrechHh™t,

is can

(6.14) that
|jl+H0

K2 [ n

|3]+n
0
K3 [ n

1+e, Xy—l—e }

L(l3l+ng)
L(n)

A

Jy-1

, for all

A

]y—lie

and K3 = K1-K2 .

| l.[nt%—[nu] lc.[
j=1-[nu] nY_lL(n)

A

|j]+“0

n

]y—lis

j=1-[nu]

]Y—lis

nt-nu+l |x|+n0
J [ dx
n
-nu-1

easily be seen by the canonical

functions (see page 282 of [41]).

Since

4y nY—lL(n) as n — o, we have from (6.3) that,

. -1 1. .
K, (1] + )" L(l3] + ng ) , for all jez .

jez,
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x Y-l

IA

K

(3/2)t-u
3 J dx

-(1/2)t-u

for nz 2/t. If u€ (-», -t)U(2t, ») , then the last integral is
-1+
dominated by const.X IuIY 1xe , which is also bounded by another constant

Iy—1+e

times |u on these intervals. This proves the second line of (6.9).

If ue(-t, 2t), using the assumption Ej ¢y = 0, we have
g (t:u) = - Y e o+ ) c. J .
n j<l-nu J ]

Similarly to (6.15), we obtain

lg (t:u)
n'L(n) |

—u+l/n © n .
s K, + Fo(lx] o+ =2)Y 1€ gy,
3 [ —0 Jt--u—l/n n

The first integral is dominated by

-u n
const.x J (x - l| + 2 )Y_lig dx
- n n

A

-u
const.x [ |X|Y_1i€ dx
-0

A

const.x |u|T7¢ ,

while the second one is similarly bounded by comst.x [t - u]Y_E. This

concludes the first line of (6.9) completeing the proof of Lemma 6.2.

Remark 1. As we mentioned before, the process A(t) generalizes the
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fractional stable process and the fractional Brownian motion studied in
[3]1,[8]1,[10],[11] and [12}. Therefore, Theorems 6.1 and 6.2 are
generalizations of the limit theorems related to those processes in the
following sense. First, the limiting processes are generalized and
secondly, even in the cases of the fractional stable process and the
fractional Brownian motion, the domain of attraction is extended. Namely,

for the fractional stable process, the case studied in [8] is that Cj=

J , =0, or = —|j|Y—1 according as j > 0, = 0 or <O and ¢(n) = nl/a

. For the fractional Brownian motion, [3] studied the case of E[X%] < o,
although {Cj} are more general, while our theorem includes the case

where X has infinite variance.

1

The first half of Theorem 6.2 can be generalized as follows:

Theorem 6.3. Let {Xj} and Z( be as and let

be a sequence of real numbers such that

) ]c.|b < o for some O<b<a,bsl.

Define {Yk}k=1 by (6.4). Then,

(nt]
1

Y, —
L

¢ (n)

£.d. A°Z(a)(t) , as n—> o ,

where A =1).c. .
- J ]

- 40 -



KSTS/RR-86/003
March 4, 1986

Proof. The idea of the proof is the same as that of Theorems 6.1 and 6.2.
It is enough to check the conditions of Theorem 4.3 (or Theorem 5. 3 when
o = 2) for f:(u) = gn(tk:u) , which is defined in (6.6). Since (Al)’ is
almost obvious, we need only to prove (AA)' or (Aé)" according as O < 2
or = 2. Since we can choose € sufficiently small so that b < 0-€

ot€, it is enough to show that , for every p > b ,

(6.16) lim lim sup Ig (t:u)lp de (u) = 0,
T > = n*® J ul>T n n
When p < 1,
|g (t:u)lp de_(u)
J|11|>T f n
[nt]=[nu]
= J | ! 1 o cy [P dp (u)
[ul)T k=1-[nu] n
[nt]=[nj]
= C % ) |ck|p
131> k=1-[nj]
[t-k/n]
s cCl o+ 1 )lel? ) 1
k>1-nT  k<nt-nT j=[1/n-k/n]

A

ceC L + 1 )legl? ——o0,
k>1-nT  k<nt-nT

[\
—
-

as n—*>*® if T > t , which proves (6.16). When p

|

s ¢ w7l

lg (t:u)|P do (u)
IU|>T n n

[nt]=[nj]
T el — o,

lj%>T k=1-[nj]
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)

as n—o if T > t because Zj |cj| < o, (Here M = max |ck

Thus (6.16) is proved. (q.e.d.)

Remark 2. Theorem 6.3 generalizes a result in [2], where only the

one—dimendional distribution is considered with an additional restriction

that a@ # 2 and cj =0, j=sO0.

To conclude this section we remark the following simple result on

self-similar processes with stationary increments.

Theorem 6.4. Suppose that X(t) is a self-similar process with

parameter H > O having stationary increments. If E |X(l)|p < @

for some p > 1/H, then X(t) has a sample continuous version.

Proof. Observe that

B[ |x(t) - X(s)|P 1 = E[ |X(t-s)|P ]

= |t - s’pH E[ |X(1)|p ] = const.|t - s]pH

Since pH > 1 by asssumption, Kolmogorov's condition is satisfied.

(q.e.d.)

Notice that E[]A(1)]9] < = if 0 < g <a because the law of A(1)

is the stable law of index «a. Therefore, by the above theorem our A(t)
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has a sample continuous version when Yy > O even though Z(a)(t) does not
unless a = 2. This fact is reasonable in some sense because A(t) is
some sort of the fractional integral or derivative of Z(a)(t) according
as Y > 0or vy <O. Hence, we can naturally expect that, when 7Y > O,
the process A(t) is more regular than Z(a)(t)' On the other hand, when Yy
< 0, there is an example where A(t) has completely irregular sample paths

(see [9]).
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