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ABSTRACT

A generalized Marcinkiewicz space M4 (R) (1sp<e,0<a<w) is defined as the
class of locally p-integrable functions f on a real field R such that

1flpgs =1ix}1_s;;p[-zz—;3; f_TT[f(x)de]I/Km.
Also-we define the space VE(R) (1sp<w,0<a<w) as the class of tempered distri-
butions f for which
11flly, =limsup heC=VDR[[* [ (L h)*fPdx]VP <eo,
where W(.,k) is a Gauss-Weierstrass kernel. We study on the relation between
Marcinkiewicz space MZ(R) and Tauberian theorems, and show that Fourier
transform ~ is a bounded linear operator from M%(R) into VZ(R) and from VZ(R)

into M{(R) (1<p=2, -;—+%=1) which is seemed to be an extension of Hausdorf{-

Young’s inequality. -

LIntroduction
Let R be a real field. Let p be a real number such that 1=sp<w. A Marcinkiewicz space M? (R)

is defined in [3] as the set of locally p-integrable functions f on R such that

. 1 o7
_ llfllw=hl;l_sgp[-z-ff_,lf(x)}”dxl”’<°°-
The space had been studied by many mathematicians in the theory of almost periodic functions ( see,

for example, [1],[2] and [3] ). It is known ([11,[3]) that MP(R) is a Banach space with norm 1.1,
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under the identification that f=g in MP(R) if and only if 1lf—gll,»=0. Recently, Lau and Lee have
studied in [2] on the relation between Marcinkiewicz space MP(R) and Tauberian theorems, and
shown that M” (R) was characterized as the set of locally p-integrable functions f on R such that
11l yg=limsup[[_if(Tx)P h(x)ds]'P <o,

where h is a non-negative bounded continuous function on R such that A(x)€L'(R),
k|a(x)~0 (Jx|~=) where E(x)=Tt‘l1£x h(f) and that there exist positive numbers b,g such that
h(x)Zbx(-q,q(*) , Where x5 5 is 2 characteristic function on a closed set [a,b].

In this paper, we shall consider the class ME(R) ( 1sp<w, 0<a<w ) of locally p-integrable

functions f on R such that

!

1 are =1i1]r_x§1p[—(—2;? fjrlf(x)}vdx]llp<m.
We call the class a generalized Marcinkiewicz space.
In thc»section II, we show that MZ(R) is a Banach space with norm li.llyp under the identification
that f=g in M2 (R) if and only if |If—gll)z=0.
In the section I, we study on the relation between a generalized Marcinkiewicz space M4 (R) and
Tauberian theorems, and show another characterization of MZ(R), which is similar to the results
obtained by Lau and Lee ([2]) in the case a=1.
In the section IV, we define the space VE(R) (1=p<«,0<a<x) as the class of tempered distribu-
tions f for which

11flly, =limsup BeO-VPR{[* [W(_h)efpdx]VP<eo
where W(.,h) is a Gauss-Weierstrass kernel. And we show that Fourier transform * is a bounded

linear operator from M2 (R) into V§(R) and from VZ(R) into MI(R) (1<p=2, —;—+%=1) which is

seemed to be an extension of Hausdorff-Young’s incquality.

IL. The completeness of a generalized Marcinkiewicz space.

Let MZ(R) be the generalized Marcinkiewicz space defined as in the introduction. In this sec-
tion, we prove the following;

Theorem 2.1. A generalized Marcinkiewicz space M, (R) (1sp<w,0<a<w) is a Banach space

with norm |1.11) under the identification that f=g in M5 (R) if and only if lif—gllyz=0.
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Proof. It is clear that 1111, M (R)~[0,%) satisfics the conditions of norm under the identifica-
tion that f=0 if and only if 11f11,,=0 .
It suffices to prove the completeness of M2 (R)
Let {f,} be a Cauchy sequence in M5 (R) . Let {¢,};=; be a positive non-increasing sequence with the
limit O such that
: 1 T

”fn—fn+q”Kl{=h?ﬂlp[ @1)" f_rlfn+q(x)—fn(x)lpdx]<en forallnandg . @

We shall prove that a function f(x) can be founded in M%(R) such that

1 =Ful = limsup| (2717“ ST @)~ f@)Pdx<2e, foralla,

that is, for any n, there exists a T,>0 such that !

1
@27)°

We can take a positive number T; such that

. T‘; T[f(x) —fr(x)Pdx<2e, fo; all T>T,. 2)

1 _
@)

Suppose we have chosen T),_;. Select T,(>T,-) satisfying the following conditions (i),(ii) and (iii);

le‘; Tlfz(x)“f 1(x)Pdx<e; forall 7>T; (by (1)).

1

® )f [fus1(x)—fix)Pdx<e; for all T>T, andi=1,2,...n (by(1)),
(ZT)“l xi<T
PO S _r _ L _
@ (2T,)" - (@2T,-1)* T.-x<{x|<r.lfn(x) fix)Pdr<e, for alli=12,...m-1 ®ym)
and
1 _ _
@D (21,)* [o<l£.<2‘,lfl(X) f”(z)de+T,<[€|<1,lf2(X) )b ds
+...t I[ Vn-—l(x)_fn(x)lpdx]éeu' !
N Tp-2< |<Tu—1 .
Define
1(x) 0= x|<T,
fa(x) Ty<[g|<T,

T 5 ki<,

.....................

Let n be any non-negative integer. Let T be any real number such that T>7,. Then there exists a

non-negative integer m(=n) such that

T, <T<Tpii
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Hence we see, by the conditions (iii),(ii) and (i), that

ST @)~ Fux)Pds

= f lfl(x)_fn(x)de+ """" + .r lfn-l(x)_fn(x)lpdx
o<""<11 Tn—1<|‘|<rl-1

+ .r lfn(x)_fn(x)lpdx
Tl—1<lx'<rl

+ f lfn+1(x)—fn(x)lpdr+""+ f lfm(x)_fn(x)lpdx
Ta<|x|<Tys1 Tu1<fx|<Ta

+ lfm+1(x)—fn(x)lpdx
Tu<lkx|<T

S€,(27,,)%+ 0+ €,[((2T 5+ 1)~ (2T,)™) + (2T +2)" = (T4 D)+ o+ ((2T,0)* = (2T -1)*)]
+ Y{ Vim+1(x)=£u(x)Pdx  (by (iif) and (i)
|<T
=€,(2T,)* + €[~ (2T,)* + (2T,) ]+ €, (2T)* (by ()
=2e,(27)* for all T=T,,

which implies (2). This completes the proof.

III. Another characterization of M%(R) and Tauberian Theorems
The following Lemmas immediately follow (see [2]).

Lemma 3.1. Let f,g be measurable functions on [a,b] such that f is integrable and g is of bounded

variation. Then,
[ 1@)g@)dx= ([ f(x)dn)g ()~ [, ([N,

where m is the corresponding measure of g ( i.e. for any x€(a,b] ng(ax]=g(x+)—gla+) ).

Let « be a real number such that 0<e<cw. Let S} denote the class of positive Borel measurable
. 1 T

functions f on [0,%) such that sup— j") f(x)dx=1.
Lemma 3.2. For T,t>0 and f€Sg, then

J;;f(Tx)dxst“T“'l.

Proposition 3.3. Let a be a positive real number. Let k be a non-negative non-increasing function

on [0,0) such that J:x“‘lk(x)dx<°° and xk(x)-0 (x-).
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Then

@ ;l—T [ @k)drsaf s kx)ds  forall feSE, T=1
and

(i) h?;Fl_T J7fTk(x)dx=0  uniformly for all fes , T=1.

Proof. Since k is a non-increasing function, the corresponding measure 7, is negative. Hence, we

see, by Lemmas 3.1 and 3.2, that, for 0<u<v<w, f€S;,

e ATk
= o [ sk) = = [T,
R sr—alﬁfovf (Tx)dxk(v)~ T,l., [ r@diydn,
=vek(v)— j;vx“dn,,
| suk(u)+o [z k(x)dx. , @

Letting u~0+ and v-= in (1), we obtain (i), and letting u~o and v-» (u<v) in (1), we obtain (ii).

Lemma 3.4. Let a be a positive real number. Let h be a non-negative bounded measurable func-

tion on [0,%) such that x*~*h(x) €L1[0,®) and x*h(x)~0(x-») , where h(x)=ess.suph(s).
t=x

Let ay,by,a;,b5,...,a; and by be real numbers such that 0=<a; <b;<4,<...<a@;<b;<e, and

. 1 b,~8*
limsup————— h(t)dt=h(b;) for alli=1,2,...,k,
mawp =g, HOUSAE) o
8™-0+

_.and let
k b,
n= ,El(h ®)(bF~af)— aJ;‘ x>~ h(x)dx).
j=

Then,

;&%m;:_s:p;:j A “f(To)h(x)dxr=a fo‘xu—lh(x)dx+q.
Proof. It suffices to show that for any positive number e, there exists an f €5, + such that

]ix;:l.s;lpz_—l— [Pz fx h(x)dx+m—e. @

a=—1

When a,=0, if we can take a’,>0 such that

@y ir €
h(b,)(a’l)“<% and of **TMh()dr<g
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and if we can prove that there exists an f€S; such that

. 1 « « ,
hI;_:\‘s:lpT—a:l-J; f(Tx)h(x)deaJ; 2" p(x)dx+n'—e2

where
= () BE—a D)=y 5= hEIE)+ S (BB -aF)=a 5 h()).
Then, (1) easily follows. Hence, without loss of generality, we can assume that a,>0.
Let € be any positive number. We can take positive numbers 8; and 3} (i=1,2,...,k) such that

a,-<b,-— 8,'— <bi+8,+ <a,~+ 1<bi+1_ 5;‘. 1<bi+1 (i= 1,2,...,k‘_ 1)

and
8+
k (b+8;7)%—af b8} bty
S h(x)dx= 3 a o=1p(x)dx+n—€/3, 2
ATy fb,-s,- (=) 2 {x (x)dx+m @
since
(b+8;)*—af b+3] .
i ~ h(x)dx=(br~af)h(b; =1,2,...,k
e e S A= (BF-afh(b) )
80+
and
b+ 8} b
lim a [ x*"la(x)dr=afx*"th(x)dx (i=1,2,...,k).
8 =0+ o a

Since % satisfies the conditions of k in Proposition 3.3, we can take a large positive number C such

that
@ f:x“'lh(x)dx<% (3)

and
o TP TR s [T drs s O)

forallpesS), T>0.

Let T,>0 and let

ax®~1  0=x<CT,
fl(x)={ 0 CT=<x

Suppose we have chosen T, , fr-1-

Select T, such that

CT,

a=1

MC® n—1 7' _
CT,_1<a;T, , T—‘EITF<d6 and « j; 2~ 1p(x)dx<e/6 )
!

=
n



KSTS/RR-86/002
february 19, 1986

-7
where M =ess.suplh(?)] .
1=0
And define
0 0=x<CT,;
ax*! CT,_=<x<aT,
0 a,T,=<x<(by—87)T,
(b1+87)*~af -
Sa(x)= ~arier (b1—87)T,=x<(by+58{)T,
1 +87
axe~! (b1+8{)T,=x<a,T,
0 a,T,=x<(by—85 )T,
0 T, =x< (b~ 87T,
(b;+8;)*—af _
15—‘+5+ - (B~ 8; )T,,Sx<(b,-+8,-+)T,,
- i +8;
ax*~! (b;+8)T,=x<a;+ T,
0 a1 TpSx<bjy Ty
0 T g T,=x< (b= 50)T,
(bit+8i)*—ag _ '
—?:—— (bk—sk )Tnsx<(bkf8:)Tn
k +8k i i
ax*~1 (be+8; )T, =<x<CT,
0 CT,=x
\

Note that the functions {f,} have disjoint supports and supp [f,]C[CT,_,CT,]). Let f= Elf,,.
ne

It is easy to show that

T = kK
Tl—a.’; fx)dx=1 forT€(©®) - U U (@Tn(bi+8)T,)
and
L (Trydrs1 forTE U U (aTn(bi+87)T,)
Tu-’;)f(x) or ez o1 @il \D;T0; )L y).
Hence €Sy .

We see that, for n>1,

.f f(Tpx)h(x)dx— ——7 f FalT i3I (x)ex]

r“'
Ta_ A “F(T )b (x)dx— oo ,f “fo(T2)h(x)dx|+e/6  (by (4))
Sn_l To- l,f fiTpx)h(x)dx+, ): = l_f F(Tux)h(x)dx+e/6
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z T“ : f € (Tx)h (x)dx+e/6

=3 lT“ ,() f,(x)h(-—)dx+e/6

1 T=h j f,(x)dx+e/6

S-b—;i—.ElT,F+£/6 (by Lemma 3.2)
n =

=3 (by(5))-

And we see that, for n>1,

oy TR )

b+8; (by+8; )2 —af
1 o+87 (By+877) 1 T2-1h(2)d
1':—1 bi-87 3y +8f

b +5 (b2+8+)a a2
a=l T2~ 1 (x)dx
_‘;’ +Vot(T,,::) h(x)dx+ e !J;z - Yy (x)

1 ¢4 -
To-T fcr._ﬂ'a(T,,x)“ 1h(x)dx+
n

Tal

1 b7 (b8} =af

T2 h(x)dx
e I T A «

+ Ta- 1f ey a(T,x)*" h(x)dx+

1 b3 (bet8i)*—
To- 1908 B; +8;

1 a
+—“ +
Ta—l bg-y+ 85

a(T,,x)“ lp(x)dx+ T:-lh(x)dx

1

Fr=r 5+a(Tnx)““h(x)dx

a _
ZICT.-,/T,.ME 1h(x)dx

b+8;
e h@a+[Ze [ 2 hEdrn-e]
i=2%b-1+ 8,1y )
-1
4 o (e (by @)
chrn_ﬂ.ax“-lh(x)dx+11—d3

= [ ax*"th(zx)dx+n-2¢3  (by(3)and(5)).

(6)
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From this and (6), theorem follows.
Lemma 3.5. Let a be a positive real number. Let h be a non-negative bounded measurable func-
tion on [0,%) such that x*~ i (x) €L1[0,%) and x*k(x)~0(x~>), where h(x)=ess.suph(f).
t=x
Then

. 1
sup limsu;
fesr;1 TeaF a1

j: f(Tx)h(x)dx=a j‘; “x*=1(x)dx.

Proof. Since h satisfies the conditions of k in Proposition 3.3, we see that

. 1 = . 1 = - ® oo1r
ﬁ(u&hx%s;xp-jﬁ j") f(Tx)h(x)dx= ?&%hx}:.s;xp-;ﬁ j; f(Tx)h(x)dx=a j(') x> 1h(x)dx
We will prove the reverse inequality.

“etA=U{ I : Iis an open interval in R such that h(x) is constant in I}.

Since A is an open set in R, A is the union of a countable (or finite ) sequence of disjoint open inter-

vals {(a;,c;)}.

Since k is right continuous, we see that h(x)=h(x) a.c. in R-A and

a J; " 15(x)dx= _El);(c,-)(c,"—a,“).
j=
Then we see that
uj;) x“'lh(x)dx=u_&__A+aL
=a fl_Ax"_1h(x)dx+i§ll;(c,-)(c,"—a,~°‘)
< ® . LA
=aj; x21p(x)dx+ El(h(ci)(c,f"—af‘)—a_,; x*~1p(x)dx).
j= (
Let € be any positive number. Since there exist Lebegue points in R almost everywhere, we see that

1 x—-8+
1;131_%111) oY -’;—a' h(s)dt=h(x) for almost all x€(0,).
870+

Then, we can take a sequence {b;}{=; such that

. 1 b-8* L
a;<b;<c; and li’f’.%‘i”'FIFL;-s- h()ds=h(b;) foralli=1,2,...
870+

and

o _{:x"“lh(x)dx+ _gl(ﬁ(b,-)(bi“-—af‘)——a f:x“‘lh(x)dx)>a J e Yi(x)dx—es2.

From this, we can choose a positive integer k>0 such that
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af ’x“-lh(x)dx+'_le(;i(bi)(br—ar)—u L ':‘x“'lh(x)dx)>a J;’xu-lﬁdx—e

which implies, from Lemma 3.4, that

.fs E‘?}h?.? p'T_alﬂJ:‘f (Tx)h(x)dx=a j; “x*~ 1 (x)dx—e.

Since e is arbitrary positive real, this completes the proof.

Let h be a non-negative bounded measurable function on [0,). M}, denotes the set of locally

integrable functions f on [0,%) such that

ux;a_sfp;j—_l- [ TR dr<e.
R(x)=1 (x€[0,1)), 0 (x€[1,)), M}, is also written by MI.

Note that féM} if and only if

limsup—;T j;) Tf(x)dx<==.

T=x

Theorem 3.6. Let a be a positive real number. Let h be a non-negative bounded measurable func-

tion on [0,%) such that x>~ 1h(x)€L'{0,=) and x%h(x)-0(x~), where h(x)=ess.suph(1).
. t=x
Then
lix;x_sglp—:’%j:f(h)h(x)dxsclli?.sgp-;—u_[:f(x)dx forallfin M7 ,
where C 1=aj;:x""};(x)dx.
Moreover € is the best estimation of the inequality for the class of function f in M X

Proof. Let f be any function in M7 and let f, be defined as

f,(x)={,?,, Jexer

Then it is clear that

1
Ta.-l

. = . 1 «
limsup 5 f (Tx)h(x)dx=hr§x§;1pF:L, Ir(Tx)h(x)dx

and
(sup— [ Tf(x)dz)f, €52 .
T>r TO °0 refe

Applying Lemma 3.5 with (sup—L f Tf(x)dx)f,, we get
T>r T 0
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ﬁ!?fngTl—{J;‘fr(Tx)h (x)dx=C\(sup ;%J;Tf (x)dx)f,

which implies that
: 1 p= . 1 .7
limsup - f, F@Dh(x)dx=C limsup— = [ f(x)dx.
Also the last assertion is trivial by Lemma 3.5 and the fact that f€S, implies liJ:Tnsup;}: j; Tf(x)dx
=1.
This completes the proof.
Theorem 3.7. Let o be a positive real number. Let h be a non-negative bounded measurable func-
tion on [0,%). If 0<Cy=sup{g®b:h(x)=bx(p,q(x) a.e.}<w, then
. 1 .7 . 1 =
m;xfgp;- fo f(x)d:sllczhl;x_s:lpF j(') f(Tx)h(x)dx for all fEM}, .
Moreover, suppose x*~1h(x)€L[0,2) and x*h(x)~0(x~). If C;= Es[l(l)p ){x";(x)} =x§;(xo) for some
X , 06
%0€[0,%) , Ca is the best estimation of the inequality for the class of function f in My, , where
heY= i g p 1O
Proof. Let f be any function in M}, .

We see that, for any g,b>0 such that k(x)=bx(o,,(x)a-c. ,

@ s [T
= bl}‘" J;Ef (%I)bX[o.q](x)dx

1 a1 T
=5 (P T IR,

By taking limit supremun on both sides, we see that

. 1 7T 1 .. 1
limsup - [ f(x)dr= Ehx;l_ggp p—e

And, by taking supremun under the condition that A(x)=bxp 4(x) a.e. , the first part of theorem

f:f(tx)h(x)dx for all fEM;, .

follows.
Next we shall prove the second part. Let € be any positive real number. It suffices to construct a

non-negative function f such that

. 1 T _ . 1 =
hx;:f;lp—T:- J; f(x)dx=1 and hxjp_s;xp;—_—l jo F(Tx)h(x)dx=Cj+e.

By Proposition 3.3, we can choose C>x; such that
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—1_, L panh@dsses  (pesi, T>0). TN
Let ! be any positive number.
We shall show that there exists a small 8>0 such that

1 PBGx*E

28 JB(x0=2) h(x)d‘sﬂh(ﬂ"o)'*‘——— for all 0<p<I. @

l!lc"

For any x€[0,=), there exists a §,>0 such that

css suaph(t)sh(x)+ 4,« =

Since [0,x,!] is compact, there exist positive numbers x,,x,,...,%, such that

[0:20/1C U i —zil<8,). ®)

Vefine

1
8°=-2— Jn ‘n{sup{-n sx—n,x+n)C{y:ly—x;<8,} for some k}}.

From (3), it is clear that 5,>0.

8
Put 3= To . Hence, we see that, for any x€[0,xp/],

ess sugh (= h x)+

luﬂ

Then, from this, we see that

1 Blxp+®) ~ 2+ £,
28 oty HEIEE= f s, h(x)dx

) 1 2B

= —— . h
PTIN R e A

SB €s5.51 h(t) "
[Bxo—1l<d,

=Bh(Bxg)+ ;;%

=Bh(Bxo)+ T 41,,_1 P

Hence (2) holds. Putl= £ . We can, by (2), take 0<8<min{xp,C—xo} such that

B 1(xp+8)* Blx+B) N o € (xp+38)
25 Jaca MBS (ot B h(Bro) T
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<Bx§ h(Bxo)+B((xo+8)* —x§)h(Bxo)+

4C*1xg

sxoni(xo)+§ (0sB<C/xp)
since lim B*((xo+ 8)2—x§)h(Bx) =0 uniformly for all 0SB<C/x, -

Let T;>1, and select T,=T,_;, so that

1

n—1
T, /T, <x¢/C, E—[_EIT,-“<1/n

and

(xo+8)" Cu-lnil Clag+ BT xT,

€
28 gl itio {l(x)dx<4 .

et

(xo+8)°T,2"!
RS T o5 XlGo-HTa(x+ O -

Note that the function {f,} have disjoint supports. Let f= Elf,.
ne

We see, for any n,

1 (xg+ BT,

(xo+8)°TF ";’ fx)ax
0 n

1 r (x0+8)uTna_1

T Gots)eTE s 28 P T

n=1 (xp+8)°T2"!

Since -;—n'j(')rf(x)dx bas a local maximun at each (xo+8)7,, we see
sup——["f(x)dr=2 and limsup— ["f(x)dz=1.
r>g T® "0 Tax TO%0

Now, for any T>1, there exists an n such that xo7,=<CT<xpT,+1-

. T,
Since 0< T<C/xo , we see that

1
Ta-]

[Tk @)= }% [ rTon@)ax+es (by (1)

1 _C
=2 ek fTDh(x)dr+esd
Jf L OOt T,
i=1 T~ 1 Hzo=OT/T 25
_ (xo+8)T2"! (x°+a)r_n'h - ("0+5)°T5_1”'1I(Xo+5)7ﬂ
T 2sTel T @) 25Te~1 =1~ OT/T
(xp+8)® ca-1n21 ClxgtBT/xT,
28 xg1li=170

h(x)dx+e/4

=xgh(xo)+ h(x)dx+3e/4  (by(4)).

€ 1(xp+8)x§ !

r—1
28T, + % _"—""‘ZSTi]s“TL,..X,Ti“S“V" (by (5)).
n i=

h(x)dx+e/4

4)

®)

®
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=x8h(xg)+e=Cy+e  (by(6)).

This completes the proof .

Let i be a non-negative bounded measurable function on R . M{ ,(R) denotes the set of locally

p-integrable (1=p<w) functions f on R such that

1lg, =lipsupl = [ Wb h(e)ax) P <.

Corollary 3.8. Let a be a positive real number. Let h be a non-negative bounded measurable
function on R such that }x|*~h(x) ELY(R), | h(x)=0 ([x|~=) where ﬁ(x)=e|ss|>;s&1‘ph(t). And suppose
t
that there exist positive numbers b,q such that h(x)=by[- ¢ 4(x) a.e..

hen, M% . (R)=MZ(R) and there exist positive numbers Cy and C, (C=<C5) such that

Crllf il S1f1 g S Colif g, for all fEMZ(R)

that is, ME (R) and M%(R) are equivalent as the Banach space.

IV. Space VZ(R) and Hausdorff-Young’s inequality .

Definition 4.1. Let a be a non-negative real and let p be 1=p<w. A subspace V5(R) of a space

S' of tempered distributions is defined as the class of f€S' for which

@) W(.,h)*f is a measurable function, where W (t,h)= ——l—l;z—e"z/“',
. (4wh)
furthermore
R Ifilyy= Limsup hC=VP2[[7 [ (. h)efpax]s <.
It is clear that VZ(R) is a normed space with norm Ii.lly; under the identification that

lif—gliyy =0 implies f=g in VE(R) .
The Fourier transform é of a function ¢ in the space § of rapidly decreasing functions is defined by

$()=[" d(x)e~*dx
Since the mapping ¢-¢ of S onto § is linear continuous in the topology of S, the Fourier transform )

of a tempered distribution # defined through

<d,b>=<u,b> (d€S).
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Theorem 4.2. Let 1<p=2 and let q be the conjugate exponent, that is, %+%=1 . Then the

Fourier transform * is a bounded linear operator from M%(R) into V{(R) .
Proof. Let f be any function in M4 (R). Since e~P" satisfies the conditions of k in Corollary 3.8,

we see, by Hausdorff-Young’s inequality in L” (R) and Corollary 3.8, that

i f"v;= %Ep hu(l—Uq)/ZU_‘liw(_,h)*f'de]l/q
- “,.m_g},‘l’ hu(l—l/q)/Z[f::J{e —hr’f(t)}*lqull/q
=C limsup h*?? U e 7 lf(x)pas]
=C limsup [4(~D2 I e P lfnt )P dy] e
=<C'lifllyg.

This completes the proof.

Theorem 4.3. Let 1<p=2 and let q be the conjugate exponent, that is, %+%=1 . Then the

Fourier transform " is a bounded linear operator from V,(R) into M{(R) .
Proof. Let f be any function in MZ(R) .
We see, by Corollary 3.8 and Hausdorff-Young’s inequality in L?(R) , that that
A lys=<C “,f‘_‘gl“’ [h(“"lmfj‘e"D'z[f(y/hm)lqdy]”q

=C limsup h*24[[ ™M () Fdx]"e
=C limsup h*24[[”_W(..h)()f(x)lrax]"s
=C limsup h*4[[_{W(.h)*f} tids]"e
=C’ hﬂglxp h“(l’w’)nu_iIW(-’h)‘deI]UP
=C'lifl lyz-

This completes the proof.

Example

Let PP denote the space of complex sequences a={a,}5u—= such that llall, = [ la, 1P <eo

Correspond a € to the tempered distribution u, such that

u()= 3 ab(x—2mn).

ne—x

Since we can easily get that Iluallﬁ = llallp , then ¥ can be considered as the closed subspace of

VZ(R).
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Also, let L3, denote the space of 2w periodic p-ordered integrable functions f, that is,
Wil =[== 2" (x) P dx] P <oo
L log :
Since 1if1ig = 1Iflizy , L&, is & closed subspace of ME(R).
This example and Theorem 4.2 and 4.3 show the following Corollary which is known as the
Hausdorff-Young’s theorem in Fourier series.

Corollary 4.4. Let 1<p=2 and let q be the conjugate exponent. Then,

(i) IffeLZ, then i [f(n)le<w. More precisely [ i V(n)lq]l’qSCllfllbL ,

n=—t n=—
and

(ii) If {a,}5=—_x€IP then there exists a function f€L§, such that a,=f(n). Moreover

lfly =C[ i [f(n)P1?, where f(n) is an n-ordered Fourier coefficient of f.

n=—x
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