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ABSTRACT

A Hamiltonian H is called classical if it is of the form

" kinetic energy " + " potential " .

It is known that on every compact energy surface of classical Hamiltonian, there
is a periodic solution on it [Hay 3][G-Z].
In this note, we give a plausibility of the following Conjecture: If the energy

surface is homeomorphic to $*"~1, then there are n periodic solutions on it.

This is considered as a Hamiltonian version of the Seifert Conjecture: any flow

on S3 has a closed orbit.

We also present an open problem concerning a characterization of manifolds.
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§1 Introduction
In considering Hamiltonian systems, there are three levels of the formulation. Let n be the

degree of freedom.

The first is the usual one.

level 1 Hamiltonian H = H(g, p) is a C* function from R?" to R, and the equation is
(11) G=H,, p=-H .

R?" in level 1 is considered as the cotangent bundle T*R” . In general, let N be an n
-dimensional configuration manifold such as $2, describing a spherical pendulum, SO(3), a rigid

body with one point fixed , and so on. The case N = R” , describing particles in a free space, gives

level 1. Mathematically, N is an arbitrary C* manifold.

In order to give Lagrangian T — U , where T means kinematic energy and U is a potential, a

Riemannian metric and a real valued function on N is endowed.
Roughly speaking, " Classical mechanics " is " real valued function on Riemannian manifold " .

In this case, we have the symplectic 2-form
(1.2) Q=dp pdg
and the equation corresponding (1.1) is given by the vector field £ defined by
(13) dH=&510=0Q(ty, ).
This can be done because
(1.4) Q:non—degenerate, that is, U(E, ) =0 iff £=0.
And in this case dp p dg = d(pdq) , hence
(1.5) Q : closed form.

Definition 1 Let N be an n - dimensional configuration manifold and H = T*N —R..

H is called classical if H = H(z) is of the form
L)  HE = 12|12+ UG,

where | |is the norm on the cotangent bundle deduced from the Riemannian metricon N ,
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A7) w*:T*N—N
is the usual projection and
(1.8) U :N — R ; C” function.
level 2 A Hamiltonian H : T*N — R is classical and equation of motion is given by the

vector field £ on T*N defined by (1.3) .

The most general formulation for Hamiltonian systems is the following one.

level 3 Let P be a 2n-dimensional manifold with symplectic 2-form { , that is, closed
non-degenerated 2-form.

Hamiltonian H is a real valued function on P and the Hamiltonian vector field &4 on P is

defined by (1.3). We call this (P, Q) a symplectic manifold.

Let (P, ) be a symplectic manifold and e € R a regular value of a Hamiltonian H : P

-— R . Then
(1.9) 3= H 1(e)

is a hypersurface ( a submanifold of P of codimension 1), which is an invariant set of the flow gen-
erated by &y ( because £y-H = dH -ty = Q(Ey, Eg) =0) .
We remark that if = is also an energy surface of another Hamiltonian H , then the flow on =
_ obtained from H is equal to the one from H up to time change. In particular the number of
periodic orbits on X coinside. So we can define
Definition 2 Let S be a hypersurface of a symplectic manifold (P, ) . Then we define
n(Z) as the number of periodic orbits of the flow on 2 given by any Hamiltonian H : P — R

having = as a regular level surface, thatis, = = H~!(e) for aregular value e of H .

From now on, we assume that I is a compact hypersurface of P ( we take P = T*N in
level 2 and P = R?" inlevel 1 ). There is a non-compact = without periodic orbit. Consider, for

example, a particle in a free space without external force.

Our concern is to give an estimate to p( =) when we are given (P, 1) and 2 .
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In 1978, P. Rabiowitz [Rab] obtained the excellent

Theorem 1 ( level 1) w(Z)=1if T is star—shaped.

And we have [Hay 3][G-Z]

Theorem 2 ( level 2 ) p(Z)=1if I is compact.

A rough proof of Theorem 2 is found in [Hay 1].
Remark that , in level 2, e is a regular value of H iff e is a regular value of U . So

(110) We=a*(Z)={q€N;U@@se},
(111) W={q€N;U(g =¢},
(1.12) W={qg€N;Ulg)<el}.

H. Seifert [Sei 1] obtained this result for the case W = D" and stated, in the footnote, that

" one may obtain p( =) = n for such a case using the method of Lusternik-Schnirelmann.

Remark that W = D" implies T = §2"~1.

In this note, we pose

Conjecture : ( level 2 ) p(Z)zn if T=s§7L

For the Hamiltonian describing the harmonic oscillators with the angular frequencies wy, ..., @,
>0, p(EX)=n if @,..,w, are independent over Q and p(Z) = « otherwise ( that is,

when a resonance occures ), where = is any regular energy surface of the Hamiltonian.

For such a case, £ is an ellipsoid, hence T = §27—1  Therefore the estimate of the conjecture

cannot be improved.
In the following sections, we shall give a plausibility of this conjecture.

We also present an open problem :

determine manifolds obtained as a compact energy surface of a classical Hamiltonian.
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As for the level 3, A. Weinstein [Wei] defined the concept of contact type, which is invariant
under canonical transformations, and posed a conjecture:

Inlevel3, n(Z) =1 if T is of contact type and HY(Z;R) = 0

For more details, see [Wei].

Optimists may pose :

Inlevel 3, (2 )= n if £ is compact.

But there are no circumstancial evidences, so this is doubtful.
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§2 Seifert Conjecture

In 1950, H. Seifert [Sei 2] found a closed orbit of any flow on S "near" the special flow which
is obtained from the Hamiltonian system describing two harmonic oscillators with the same angular

frequency.
Since then the following has been called
Seifert Conjecture :  any flow on S3 has a closed orbit.
Recently, a C3~¢ counter example for this conjecture is found [Har].

Our interest is concentrated on odd dimensional spheres, because a tangent vector field of the
even dimensional sphere has always a singular point and a Hamiltonian energy surface is always odd

dimensional.

Although [Hay 4] gives a higher dimensional version of [Sei 2], it is known that there is a C*

flow without closed orbit on $2"~1, n =3 [Wil].

Considering this fact with Theorem 1, one may feel it is easier to find a periodic orbit on Hamil-

tonian energy surface than general flow on a manifold.

The reason of it may be the fact that Hamiltonian system is derived by the Principle of Least

Action :

2.1) 8 [ pdqg — Hdt = 0

or for the classical Hamiltonian H =T + U ,
(2.2) 8f(T-U)dt=0.

Recall that it is not so easy to find a singular point of a tangent vector field of a manifold, but

any function on a compact manifold always holds two critical points.

We already have Theorem 2, so our interest is the number of periodic solutions ( at least in

level2 )on =.
A plausibility of the Conjecture proposed in §1 consists of following facts.

Let N be an n - dimensional configuration manifold,
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H=T+U:T'"N—R
a classical Hamiltonian, and T=H Y )CT'N a regular energy surface. And put
W=g*(2)={q€N;U(g)se}
Fact 1 A periodic orbit on 3 is given by an orthogonal geodesic chord of W ( precisely

speaking, a manifold diffeomorphic to W ) w.r.t. the Jacobi metric.

Here an orthogonal geodesic chord of a Riemannian manifold with boundary is a geodesic con-

necting two points of the boundary orthogonally. We called
ds?=(e—-U)T

the Jacobi metric. This fact is proved as Gauss’ Theorem ( see for example [Sei 1] ).

Fact 2 3 = §2"~1 <« W : compact contractible .

Fact 3 Let W = W" be a Riemannian manifold with ( geodesically ) convex boundary. If W
is compact contractible, then there are at least n orthogonal geodesic chords.

A proof of Fact 2 is given in §3.

Fact 3 is the main result of [Hay 6].
There is a compact contractible Riemannian manifold without orthogonal geodesic chord. So the

assumption "convex boundary" is necessary.

In [Hay 4], there is given an example with »n periodic orbitson = = $27-1 | [Hay5] and resp.
[BLMR] give pw(Z) = n in level 1, where Z is convex or resp. star-shaped "near” an ellipsoid.

These are also considered as circumstantial evidences of the Conjecture.
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§3. Proof of Fact 2.

( =>) Let T = §2"~t
We regard N as the subset of T*N , considering it as the 0 section, in particular W C = .
The restriction 1w :Z\ oW — W of @*:T*N —N to I\ W gives a fibration
3.1) =1 L Zvaw — W
Since W is an n - manifold with boundary,
(3.2) wW)=0 for k=1,2,..,n-1
—. implies W is contractible by the Theorem of J.H.C. Whitchead and the Theorem of Hurewitz.
First we claim

(3.3) W is connected.

In fact, if not so, there is an arc o connecting different components of dW . Let B be one of
them. Then 7*~!(Im o ) intersects with B transversally. Considering the intersection form in

the (2n-1)-sphere, this can’t be possible, proving (3.3). O
Also we have
(34) W (S\aW)=0 for k=1,2,.,n-2.

To prove this, consider the codimension and use the general position lemma.

Furthermore we have

(3.5) mao(S\OW) S Z.

Infact, m,_;(Z\oW)

=EH, (Z\aW) ( by (3.4) and Hurewitz )
= g l(aw) ( Alexander duality )
= Ho( W) ( Poincaré duality )

n

L/ (by (3.3))
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Now we have

Lemma 3.1 iy imu (S 1) S, (Z\oW)

where i:5"" ! (as a fiber) C 2\ aW .

(proof) First we claim that
(3.6) there is a section s ‘W — Z\ W ,i.e., mos =iy .

In fact, considering a Morse function, there is a vector field with finitely many singular points in

W . Connecting these singular points with points of 3W by smooth curves and removing neighbor-

~ hoods of the curves, one has a vector field without singular points on a manifold diffeomorphic to
W . Pullback this vector field to the original W and consider the corresponding section of
cotangent bundle of W . By rescaling the section, we have the desired section s : W — Z\ W ,

giving (3.6).

Now we restrict the fibration =« :Z\ W — W to W\C , where C is a small open collar

of W in W . Thus we have the fibration

o’

s I\Q — W\C
where w' is the restriction and Q = w*~! (C) is an open subsetof = .
Since =\ Q is compact, we can consider the intersection form
o:H,_(S\Q)®H,(\0,3Q) — Z .

Let s’ :W\C — T\ Q be the section given by (3.6). Then the image Im s’ determines an
element o of H,(=\Q,3Q ). And the fibre S*~! is regarded as an element of H, (Z\Q),
write this [ §"71].

Since s’ is a section, we have

[§" 1o = =1,
in particular, [ $§”~1] is a generator of H,_1(Z\ Q) .
By (3.4) and Hurewitz, we can identify

1"'»—I(E\Q)=er—1(E\Q),
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giving the proof. DO
The homotopy exact sequence of the fibration (3.1), and (3.4), (3.5) and Lemma 3.1 gives (3.2),

proving ( => ). o

( <=) Let W = w*( 2 ) be compact contractible manifold. Then cotangent bundie T*W is
trivial, and
T=WXD')=aW XD UW X S* 1,
Weput X; =W X D", X, =W x §" ! and X=X, UX,.

Forthecase n = 1and 2 , we have W = D" ,hence = = §2*~1 |

We assume that n =2 3. Then dimZ =5 .
Hence by the resolution of the Poincaré Conjecture, the followings give I =~ §27~1
(3.7) X :simply connected,

(3.8) X : homology sphere.

To prove (3.7), use the Theorem by van Kampen.

Recalling that W is a homology sphere, Mayer-Vietoris exact sequence yields (3.8). o

I appreciate Dr. Sadayoshi Kojima for giving me some advises on proving Fact 2.
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