Research Report

KSTS/RR-85/019 18 Dec. 1985

Hamiltonian version of the Seifert Conjecture

by

Kiyoshi Hayashi

Kiyoshi Hayashi

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

Hamiltonian Version of the Seifert Conjecture

Kiyoshi HAYASHI

ABSTRACT

A Hamiltonian H is called *classical* if it is of the form

" kinetic energy " + " potential " .

It is known that on *every* compact energy surface of classical Hamiltonian, there is a periodic solution on it [Hay 3][G-Z].

In this note, we give a plausibility of the following Conjecture: If the energy surface is homeomorphic to S^{2n-1} , then there are n periodic solutions on it.

This is considered as a Hamiltonian version of the Seifert Conjecture: any flow on S^3 has a closed orbit.

We also present an open problem concerning a characterization of manifolds.

§1 Introduction

In considering Hamiltonian systems, there are three levels of the formulation. Let n be the degree of freedom.

The first is the usual one.

level 1 Hamiltonian H = H(q, p) is a C^{∞} function from \mathbb{R}^{2n} to \mathbb{R} , and the equation is

$$\dot{q} = H_p, \qquad \dot{p} = -H_q.$$

 \mathbb{R}^{2n} in level 1 is considered as the cotangent bundle $T^*\mathbb{R}^n$. In general, let N be an n-dimensional configuration manifold such as S^2 , describing a spherical pendulum, SO(3), a rigid body with one point fixed, and so on. The case $N = \mathbb{R}^n$, describing particles in a free space, gives level 1. Mathematically, N is an arbitrary C^{∞} manifold.

In order to give Lagrangian T - U, where T means kinematic energy and U is a potential, a Riemannian metric and a real valued function on N is endowed.

Roughly speaking, "Classical mechanics" is "real valued function on Riemannian manifold".

In this case, we have the symplectic 2-form

$$(1.2) \qquad \Omega = dp \wedge dq$$

and the equation corresponding (1.1) is given by the vector field ξ_H defined by

$$(1.3) dH = \xi_H \perp \Omega = \Omega(\xi_H, \cdot) .$$

This can be done because

(1.4) Ω : non-degenerate, that is, $\Omega(\xi, \cdot) = 0$ iff $\xi = 0$.

And in this case $dp \wedge dq = d(pdq)$, hence

(1.5) Ω : closed form.

Definition 1 Let N be an n - dimensional configuration manifold and $H = T^*N \longrightarrow \mathbb{R}$. H is called *classical* if H = H(z) is of the form

(1.6)
$$H(z) = \frac{1}{2} |z|^2 + U(\pi^*(z)),$$

where | | is the norm on the cotangent bundle deduced from the Riemannian metric on N ,

$$(1.7) \pi^*: T^*N \longrightarrow N$$

is the usual projection and

(1.8) $U: N \longrightarrow \mathbb{R} ; C^{\infty} \text{ function.}$

level 2 A Hamiltonian $H: T^*N \longrightarrow \mathbb{R}$ is classical and equation of motion is given by the vector field ξ_H on T^*N defined by (1.3).

The most general formulation for Hamiltonian systems is the following one.

level 3 Let P be a 2n-dimensional manifold with symplectic 2-form Ω , that is, closed non-degenerated 2-form.

Hamiltonian H is a real valued function on P and the Hamiltonian vector field ξ_H on P is defined by (1.3). We call this (P, Ω) a symplectic manifold.

Let (P, Ω) be a symplectic manifold and $e \in \mathbb{R}$ a regular value of a Hamiltonian $H: P \longrightarrow \mathbb{R}$. Then

$$(1.9) \Sigma = H^{-1}(e)$$

is a hypersurface (a submanifold of P of codimension 1), which is an invariant set of the flow generated by ξ_H (because $\xi_H \cdot H = dH \cdot \xi_H = \Omega(\xi_H, \xi_H) = 0$).

We remark that if Σ is also an energy surface of another Hamiltonian \vec{H} , then the flow on Σ obtained from \vec{H} is equal to the one from H up to time change. In particular the number of periodic orbits on Σ coinside. So we can define

Definition 2 Let Σ be a hypersurface of a symplectic manifold (P, Ω) . Then we define $\mu(\Sigma)$ as the number of periodic orbits of the flow on Σ given by any Hamiltonian $H: P \longrightarrow \mathbb{R}$ having Σ as a regular level surface, that is, $\Sigma = H^{-1}(e)$ for a regular value e of H.

From now on, we assume that Σ is a *compact* hypersurface of P (we take $P = T^*N$ in level 2 and $P = \mathbb{R}^{2n}$ in level 1). There is a non-compact Σ without periodic orbit. Consider, for example, a particle in a free space without external force.

Our concern is to give an estimate to $\mu(\Sigma)$ when we are given (P,Ω) and Σ .

In 1978, P. Rabiowitz [Rab] obtained the excellent

Theorem 1 (level 1) $\mu(\Sigma) \ge 1$ if Σ is star-shaped.

And we have [Hay 3][G-Z]

Theorem 2 (level 2) $\mu(\Sigma) \ge 1$ if Σ is compact.

A rough proof of Theorem 2 is found in [Hay 1].

Remark that, in level 2, e is a regular value of H iff e is a regular value of U. So

$$(1.10) W = \pi^*(\Sigma) = \{ q \in N ; U(q) \le e \},$$

- (1.11) $\partial W = \{ q \in N ; U(q) = e \},$
- (1.12) $\mathring{W} = \{ q \in N ; U(q) < e \}.$

H. Seifert [Sei 1] obtained this result for the case $W \approx D^n$ and stated, in the footnote, that " one may obtain $\mu(\Sigma) \geq n$ for such a case using the method of Lusternik-Schnirelmann. " Remark that $W \approx D^n$ implies $\Sigma \approx S^{2n-1}$.

In this note, we pose

Conjecture: (level 2)
$$\mu(\Sigma) \ge n$$
 if $\Sigma \approx S^{2n-1}$.

For the Hamiltonian describing the harmonic oscillators with the angular frequencies $\omega_1, ..., \omega_n > 0$, $\mu(\Sigma) = n$ if $\omega_1, ..., \omega_n$ are independent over Q and $\mu(\Sigma) = \infty$ otherwise (that is, when a resonance occurs), where Σ is any regular energy surface of the Hamiltonian.

For such a case, Σ is an ellipsoid, hence $\Sigma \approx S^{2n-1}$. Therefore the estimate of the conjecture cannot be improved.

In the following sections, we shall give a plausibility of this conjecture.

We also present an open problem:

determine manifolds obtained as a compact energy surface of a classical Hamiltonian.

As for the level 3, A. Weinstein [Wei] defined the concept of contact type, which is invariant under canonical transformations, and posed a conjecture:

In level 3, $\mu(\Sigma) \ge 1$ if Σ is of contact type and $H^1(\Sigma; \mathbf{R}) = 0$

For more details, see [Wei].

Optimists may pose:

In level 3, $\mu(\Sigma) \ge n$ if Σ is compact.

But there are no circumstancial evidences, so this is doubtful.

§ 2 Seifert Conjecture

In 1950, H. Seifert [Sei 2] found a closed orbit of any flow on S³ "near" the special flow which is obtained from the Hamiltonian system describing two harmonic oscillators with the same angular frequency.

Since then the following has been called

Seifert Conjecture: any flow on S^3 has a closed orbit.

Recently, a $C^{3-\epsilon}$ counter example for this conjecture is found [Har].

Our interest is concentrated on odd dimensional spheres, because a tangent vector field of the even dimensional sphere has always a singular point and a Hamiltonian energy surface is always odd dimensional.

Although [Hay 4] gives a higher dimensional version of [Sei 2], it is known that there is a C^{∞} flow without closed orbit on S^{2n-1} , $n \ge 3$ [Wil].

Considering this fact with Theorem 1, one may feel it is easier to find a periodic orbit on Hamiltonian energy surface than general flow on a manifold.

The reason of it may be the fact that Hamiltonian system is derived by the Principle of Least Action:

$$(2.1) \qquad \delta \int p \, dq \, - \, H dt \, = \, 0$$

or for the classical Hamiltonian H = T + U,

(2.2)
$$\delta \int (T - U) dt = 0$$
.

Recall that it is not so easy to find a singular point of a tangent vector field of a manifold, but any function on a compact manifold always holds two critical points.

We already have Theorem 2, so our interest is the number of periodic solutions (at least in level 2) on Σ .

A plausibility of the Conjecture proposed in \$1 consists of following facts.

Let N be an n - dimensional configuration manifold,

-7-

$$H = T + U : T^*N \longrightarrow \mathbb{R}$$

a classical Hamiltonian, and $\Sigma = H^{-1}(e) \subset T^*N$ a regular energy surface. And put $W = \pi^*(\Sigma) = \{ q \in N; U(q) \le e \}$.

Fact 1 A periodic orbit on Σ is given by an orthogonal geodesic chord of W (precisely speaking, a manifold diffeomorphic to W) w.r.t. the Jacobi metric.

Here an orthogonal geodesic chord of a Riemannian manifold with boundary is a geodesic connecting two points of the boundary orthogonally. We called

$$ds^2 = (e - U)T$$

the Jacobi metric. This fact is proved as Gauss' Theorem (see for example [Sei 1]).

Fact 2 $\Sigma \approx S^{2n-1} \iff W : compact contractible$.

Fact 3 Let $W = W^n$ be a Riemannian manifold with (geodesically) convex boundary. If W is compact contractible, then there are at least n orthogonal geodesic chords.

A proof of Fact 2 is given in §3.

Fact 3 is the main result of [Hay 6].

There is a compact contractible Riemannian manifold without orthogonal geodesic chord. So the assumption "convex boundary" is necessary.

In [Hay 4], there is given an example with n periodic orbits on $\Sigma \approx S^{2n-1}$. [Hay5] and resp. [BLMR] give $\mu(\Sigma) \geq n$ in level 1, where Σ is convex or resp. star-shaped "near" an ellipsoid. These are also considered as circumstantial evidences of the Conjecture.

§3. Proof of Fact 2.

(=>) Let
$$\Sigma \approx S^{2n-1}$$
.

We regard N as the subset of T^*N , considering it as the 0 section, in particular $\partial W \subset \Sigma$. The restriction $\pi: \Sigma \setminus \partial W \longrightarrow \mathring{W}$ of $\pi^*: T^*N \longrightarrow N$ to $\Sigma \setminus \partial W$ gives a fibration

$$(3.1) S^{n-1} \stackrel{i}{\longrightarrow} \Sigma \setminus \partial W \stackrel{\pi}{\longrightarrow} \mathring{W}.$$

Since W is an n - manifold with boundary,

(3.2)
$$\pi_k(W) = 0$$
 for $k = 1, 2, ..., n-1$

implies W is contractible by the Theorem of J.H.C. Whitehead and the Theorem of Hurewitz.

First we claim

(3.3) ∂W is connected.

In fact, if not so, there is an arc ω connecting different components of ∂W . Let B be one of them. Then π^{*-1} (Im ω) intersects with B transversally. Considering the intersection form in the (2n-1)-sphere, this can't be possible, proving (3.3).

Also we have

(3.4)
$$\pi_k (\Sigma \setminus \partial W) \cong 0$$
 for $k = 1, 2, ..., n-2$.

To prove this, consider the codimension and use the general position lemma.

Furthermore we have

$$(3.5) \pi_{n-1}(\Sigma \setminus \partial W) \cong \mathbf{Z}.$$

In fact,
$$\pi_{n-1}(\Sigma \setminus \partial W)$$

$$\cong H_{n-1}(\Sigma \setminus \partial W) \qquad (by (3.4) \text{ and } Hurewitz)$$

$$\cong \tilde{H}^{n-1}(\partial W) \qquad (Alexander duality)$$

$$\cong H_0(\partial W) \qquad (Poincaré duality)$$

$$\cong \mathbf{Z} \qquad (by (3.3))$$

Now we have

Lemma 3.1 $i_*: \pi_{n-1}(S^{n-1}) \cong \pi_{n-1}(\Sigma \setminus \partial W)$

where $i: S^{n-1}$ (as a fiber) $\subset \Sigma \setminus \partial W$.

(proof) First we claim that

(3.6) there is a section $s: \mathring{W} \longrightarrow \Sigma \setminus \partial W$, i.e., $\pi \circ s = i_d$.

In fact, considering a Morse function, there is a vector field with finitely many singular points in \mathring{W} . Connecting these singular points with points of ∂W by smooth curves and removing neighborhoods of the curves, one has a vector field without singular points on a manifold diffeomorphic to W. Pullback this vector field to the original W and consider the corresponding section of cotangent bundle of W. By rescaling the section, we have the desired section $s: \mathring{W} \longrightarrow \Sigma \setminus \partial W$, giving (3.6).

Now we restrict the fibration $\pi: \Sigma \setminus \partial W \longrightarrow \mathring{W}$ to $W \setminus C$, where C is a small open collar of ∂W in W. Thus we have the fibration

$$S^{n-1} \stackrel{i}{\longrightarrow} \Sigma \setminus Q \stackrel{\pi'}{\longrightarrow} W \setminus C$$

where π' is the restriction and $Q = \pi^{*-1}(C)$ is an open subset of Σ .

Since $\Sigma \setminus Q$ is compact, we can consider the intersection form

$$\circ: H_{n-1}(\Sigma \setminus Q) \otimes H_n(\Sigma \setminus Q, \partial Q) \longrightarrow \mathbb{Z} .$$

Let $s': W \setminus C \longrightarrow \Sigma \setminus Q$ be the section given by (3.6). Then the image Im s' determines an element σ of $H_n(\Sigma \setminus Q, \partial Q)$. And the fibre S^{n-1} is regarded as an element of $H_{n-1}(\Sigma \setminus Q)$, write this $[S^{n-1}]$.

Since s' is a section, we have

$$[S^{n-1}] \circ \sigma = \pm 1,$$

in particular, $[S^{n-1}]$ is a generator of $H_{n-1}(\Sigma \setminus Q)$.

By (3.4) and Hurewitz, we can identify

$$\pi_{n-1}(\Sigma \setminus Q) = H_{n-1}(\Sigma \setminus Q),$$

giving the proof.

The homotopy exact sequence of the fibration (3.1), and (3.4), (3.5) and Lemma 3.1 gives (3.2), proving (=>). \Box

(<=) Let $W = \pi^*(\Sigma)$ be compact contractible manifold. Then cotangent bundle T^*W is trivial, and

$$\Sigma \approx \partial(W \times D^n) = \partial W \times D^n \cup W \times S^{n-1}$$
.

We put $X_1 = \partial W \times D^n$, $X_2 = W \times S^{n-1}$ and $X = X_1 \cup X_2$.

For the case n = 1 and 2, we have $W \approx D^n$, hence $\Sigma \approx S^{2n-1}$.

We assume that $n \ge 3$. Then $\dim \Sigma \ge 5$.

Hence by the resolution of the Poincaré Conjecture, the followings give $\Sigma \approx S^{2n-1}$,

- (3.7) X: simply connected,
- (3.8) X: homology sphere.

To prove (3.7), use the Theorem by van Kampen.

Recalling that ∂W is a homology sphere, Mayer-Vietoris exact sequence yields (3.8).

I appreciate Dr. Sadayoshi Kojima for giving me some advises on proving Fact 2.

References

- [BLMR] H. Berestycki, J. Lasry, G. Mancini and B. Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38(1985), 253-289.
- [F-L] A.Fet and L. Lusternik, Variational problems on closed manifold, Dokl. Akad. Nauk. SSSR, 81(1951), 17-18
- [G-Z] H. Gluck and W. Ziller, Existence of periodic motion of conservative systems, Seminar on Minimal Submanifolds, Princeton University Press(1983), 65-98.
- [Har] J. Harrison, Continued fractals and the Seifert Conjecture, Bulletin AMS 13(1985), 147-153
- [Hay1] K. Hayashi, Compact energy surface of a Hamiltonian system, Proc. Symp., Kyoto 1981, RIMS Kokyuroku 432 (1981), 25-34.
- [Hay2] K. Hayashi, Double normals of a compact submanifold, Tokyo J. Math., 5(1982), 419-
- [Hay3] K. Hayashi, Periodic solution of classical Hamiltonian systems, Tokyo J. Math., 6(1983), 473-486.
- [Hay4] K. Hayashi, The existence of periodic orbits on the sphere, Tokyo J. Math., 7(1984), 359-369.
- [Hay5] K. Hayashi, A quantitative estimate for Theorem by Weinstein concerning normal modes, (preprint)
- [Hay6] K. Hayashi, Z₂ equivariant cohomology and its application to orthogonal geodesic chords, Research Report, KSTS/RR-85/015, Keio Univ.(1985).
- [Rab] P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31(1978), 157-184.
- [Sei1] H. Seifert, Periodische Bewegungen mechanischer System, Math. Z., 51(1948), 197-216.
- [Sei2] H. Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer. Math. Soc., 1(1950), 287-302.
- [Wei] A. Weinstein, On the Hypotheses of Rabinowitz' Periodic Orbit Theorem, J. Diff. Eq.

33(1979), 353-358.

[Wil] F. Wilson, On the minimal sets of non-singular vector fields, Ann. Math., 84(1966), 529-536.

Present Address

Department of Mathematics

Keio University

Hiyoshi Kohoku-ku

Yokohama 223, Japan