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Introduction.

Motivated by the works [7], [8], and [9] on a statistical
problem of segregation, we introduce the following model : Consider
m+n coloured particles diffusing on the line. The blue ones,

which are denoted by X --,Xm , are distributed to the left of

1°°
‘the red ones, denoted by Y

e Y When the rightmost particle

1!
among the Xi and the leftmost one among the Yj collide, they

n

can not pass one another, but are reflected. However, particles
with the same colour can pass one another when they meet. Therefore,
the system which we are considering consists of two segregated

groups of blue and red particles.

Interactions between particles in the system are prescribed in
terms of drift coefficients: A blue particle Xi is a Brownian

motion B; with a drift given by

o 1
Y b, (X.,X ) + =
k=1 11771°7k n

N~

b12(xi’Yk) ?

i

k=1

as long as it stays away from red particles, and a red particle Y

J
is a‘Brownian motion B; with a drift
1y (r.x) + 1 T bo(v.,v)
mo, 217§k n o 22 73*°k" ?
as long as it stays away from blue particles. Here we assume
(B, ET : i=1,¢++,m, j=1,-++,n} is a family of mutually independent

i’
Brownian motions on the same line. Since the Xi and Yj collide

and are reflected, they satisfy a system of stochastic differential
equations (SDE) with moving reflecting boundary conditions (see (142)).
One can show the existence and uniqueness of solutions for the SDE ,
applying a result on reflecting processes on a convex domain in R

given in Tanaka [15], or in the way which will be explained in §1.
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We are interested in what happens when the number of particles

m (resp. n) tends to infinity under the constraint m/(m+n) - 8 ,
where 0 < 68 < 1 is the fixed proportion of blue particles in the
system, that is, the propagation of chaos of two segregated groups
of interacting particles (see McKean [51,[6] for propagation of
chaos). Since segregation occurs through collisions between blues
and reds, there is no fixed segregating front between the two groups
-(whereas the segregating front is assumed to be fixed in Nagasawa-

_ Tanaka [111). As will be seen, the front y(m’n)(t) = max X, (t)

1gigm

of blue particles converges to a non-random segregating front y(t)
which is determined by the 1limit distribution of the sequence of
empirical distributions U(m’n)(t) of all particles in the observed
system, when the number of particles in the system tends to infinity
under the prescribed constraint. The system (Xl(t),---,Xm(t) s
Yi(t),---,Yn(t)) itself converges in law to an infinite number of
independent copies of a non-linear diffusion process (X(t),Y(t))
(see SDE (55)), each component of which is reflected at the

segregating front. y(t) (Theorem 3 and Theorem 3').

We first discuss, in §1, a way of constructing reflected paths
segregated into two groups, following the idea of Harris [2]. In §2
we analyse a relation between a chaotic family and a chaotic family
of two groups (of probability distributions on Rl). The results in
§2 will be applied in §3 to show a propagation of chaos result for

non-interacting diffusion processes of two groups, constructed as

in §1. A system of interacting particles of two groups with a moving
reflecting boundary is constructed in §5 (Theorem 1) under a

Lipschitz condition on the interactions bij(x,y) . §4 is a short
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preparation for §5, the material in which is taken from [15].

We explain the propagation of chaos for the system of interact-

ing coloured particles in §6. As we shall see there, solutions of

SDE (55) cannot be uniquely specified without knowing the segregat-
ing front y(t) defined by wu(t,(-,y(t)]) =6 in advance, and hence
we have to obtain beforehand the limit distribution wu(t) of fhe
empirical distributioﬁ U(m,n)(t) of the system (see Remark in §6).
For this purpose we will solve an associated non-linear SDE on the
iine (without reflection) using the Maruyama formula [4] for drift
transformations in §7 (Theorem 2). Finally, the propagation of chaos
for interacting diffusion processes of two types will be proved in
§8, where boundedness of the interactions bij(x,y) is assumed.

This boundedness assumption is too restrictive to cover some appli=-

cations to the statistical model treated in [71, [81, [9] and [10].
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1. Reflected paths segregated into two groups

*
Let {wi,wz,---,wm+n} c W :CGR+gR1) be( ) a family of paths

satisfying the following two conditions:

(1) max w,(0) £ min w__.(0)
1sis<m 1sjsn ™ |
(2) any three of wi(t) , 1s$i<m+n , do not meet

at the same time.

We will define a family {Wi:i =1,2,-++,m+n} of reflected paths
segregated into two groups. This will be one of the main tools

in this paper to handle the propagation of chaos.

First of all we rearrange wl(t),---,wm+n(t) in order from

least to greatest and denote the ordered ones by

(3) W, () s Wwo(t) € -+ s ﬁm+n<t) .

Then, in terms of the ordered paths, the front of the left

m-particles (resp. of the right n-particles) can be defined by

(4) v (t) =W (8)
(5) Yr<t) = wm+1(t) .
We then construct reflected paths ﬁl"'.’ﬁm+n segregated

into two groups. Roughly speaking, we paint wl(O),---,wm(O) with
blue and wm+1(o),---,wm+n(0) with red. If the rightmost particle
among the blues and the leftmost particle among the reds meet and

exchange their positions, they must exchange their colours. We inter-

prete this exchange of colours as if the two particles are reflected.

(*) CCR+;R1) denotes the space of continuous paths w:iR+={0,w)-£R1.
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The paths so interpreted are the reflected paths segregated into
two groups. A precise definition of trajectories of blue (resp.
red) particles is given as follows.

1°) For each i, 1<ism (fixed henceforth) set sy = 0,

ty = inf {t 2 0: wi(t) =Yr(t)} ,

and define

(6.a) wi(t) =wi(t) R for 0stst, .
2°) Reading the suffix jo different from i such that

(such a suffix being unique by the assumption (2)), we set

Jo
= i > < = =
s; inf{t 2t,: wi(t)ijO(t) wm_l(t) or wi(t)ijo(t) wm+2(t)}

and define

(6.b) Wi(t) = wi(t)ijo(t) » for tg Stss, .
Thus by (6.a) and (6.b)
(6.c) ﬁi(t) R ‘for 0st $sy

~is well-defined.
3°9) Assume that Wi(t) is defined up to 0st=ss, , (k21).
In order to extend the defining set of Wi we take a sufficiently

small €>0 and find a suffix ik such that

wi(t) =wik(t) , for ¢ E(sk-s,sk] .

Defining ¢t by

k

t, =inf{t 2 s

K K :wik(t) =y, ()},
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we read the suffix

jk different from ik such that

ECRIE RN

and define Skl by

= inf{t 2 P W, . =W =W
Sp4q = 1R { >Sk wlk(t)Aka(t) W (t) or wik(t)ijk(t) wm+2(t)}.

We now put

A
ct
-

(6.4) w; (%) wik(t) » for s, st Kk

A
t
1A
w0
.

Wi (t)ij (¢) , for tk S S) .1

k k
Thus we have constructed

wi(t) for 0 st s Sp41 2

for arbitrary k. Since the property (2) implies

lim s, = « ,
Koo k

the reflected path Wi(t) (staying on the-left hand side) is

well-defined for V&€ r* and 1£1ism .

4°) For m+l € J s min we define the reflected paths W, (%)

(staying on the right hand side) in the same way with necessary
alteration (Yr’*Yl , wiij<>wiij , etc.). The reflected paths
ﬁj(t), m+1 £ j Ssm+n, are defined so that

yi(t) s ﬁj(t) ,

whereas

. (t) s vy (t) , for'1gigm.
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Thus the family {wi:1§i§m+n} is segregated into two groups so that

max w.(t) = vy (t) £ vy _(t) = min @& __.(t) .
1gism * Sk r 18jsn m+J

If m=n=1, ?hen Wl(t) = wl(t)sz(t) and ﬁz(t) = wl(t)vwz(t) .

Definition 1. The paths {Wl,---,w } const-

m>"m+1° "’ sYmin

ructed above from a given family {wi,---,wm+n} satisfying the

conditions (1) and (2) will be called reflected paths (processes)

of two segregated groups (for short, reflected processes).

Let us deduce stochastic differential equations (SDE) which
are satisfied by the reflected processes of two segregated groups,

when the given paths (processes) satisfy the following SDE
t

(7 x(t) = x(0) + B(t) + {)b(s,x(s))ds ,

where B(t) is a 1-dimensional Brownian motion starting at 0
which is independent of the initial value x(0) and b(s,x) is
a locally bounded measurable function defined on :mfx:ml.

When we speak of a family {xl(t),~--,xn(t)} of copies of
(solutions) of the SDE (7), we always assume that they are those of
(7) with. independent {Bi(t),‘°',Bn(t)} which are independent of
the initial values (xl(O),---,xn(O)). However,v(xl(t),'--,xn(t))
are not necessarily independent of each other. We assume in the

(*)

foliowing that the SDE has a unique solution in the law sense.

Let us consider a system of SDE's with moving reflecting

boundary condition

(*) For a special SDE such as (7) the uniqueness in the law sense

and the pathwise uniqueness are equivalent.
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t
l’ X(t) = X(0) + B™(t) + [ b(s,X(s))ds - @(t) ,
0

(8) "
[ Y(t) = Y(0) + B'(t) + [ b(s,¥(s))ds + o(t) ,
0

where X(0) $Y(0), {B—(t),B+(t)} are independent 1-dimensional

Brownian motions starting from O which are independent of {x(0),

Y(0)} ,° X(t) £ Y(t) for all t 2 0 , and

(9) ®(t) is continuous, non-decreasing, 9(0) =0 , and

supp(d®) € {t 20: X(t)=Y(t)} .

Lemma 1. Let Xl(t) (resp. x2(t)) be the solution of the SDE
(7) with Bl(t) (resp. B2(t)), where Bl(t) and B2(t) are inde-
pendent Brownian motions. Let il(t) =x1(t)Ax2(t) and i2(t)=
xl(t)vx2(t). Then the process '(ii(t),i2(t)) satisfies the system
of SDE's (8) with the initial value (%, (0),%,(0)), where B (t) ,

B+(t) and ¢(t) are explicitely given by

t t
(10.2) B (0) =] 1z (o)mx, (01810 * L Lz (o) ox, (5))8B2 (%)
t t
+ -—
(10.2) B (t) -£)1{22(s):x1(s)}d31(s)4-% 1{22(S)=X2(S)}d32(s) s
t t

- 1 =1
(10-3) (D(t) - 2[0 6{X1(S):x2(s)}ds - ZIO 6{i1(s)=i2(s)}ds ’

the meaning of which will be clarified in the proof.

Proof. Choose a nonnegative continuous even function g on

1 .
R with a compact support such that f 1g(x)dx = 1 , and put
) R

gN(x) = Ng(Nx) ,

X y
fy(x) = [ dy | gy(zl)dz , x €R
0 0
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1 .
Then, it is clear that fNEZCgﬂRl) and fN(x) - EIXJ uniformly

as N » «, and hence

f£.(x

1
N(Xg%p) +5(x ¥x,) > X v,

An application of Itd's formula yields

£y ()=, () + (o (6) 43, (8)) = £, (5, (0)=x,(0)) = 5(x, (0)+x,(0))
t
! (G5 (x, (8)-x,()) HaB, (5) + b(s,x, (s))ds)
t
+jo -1}, (x, (8)-x,(8)) }dB, (s) +b(s,x,(s))ds)
1 £
+§IOgN(x1(s)—x2(S))ds ,
from which we obtain, taking the limit N » = ,
. £
%,(t) -%,(0) =B (%) + p(s,%,(s))ds +o(t) ,
0
where

t

1
, 20 = 5] 8y (e)mxy ()19

t
o1
= ﬁif.}? fo gy(x, (s)-x,(s))ds

t
1 ~ ~
= 1lim5 [ g (%, (s)-%, (s))ds .
RN 2

The formula for il(t) can be obtained similarly.

Lemma 1 can be extended to a system of m+n particles. Let
{xl(t),---,xm+n(t)} be a family of copies of solutions of the SDE

(7). We assume that max x.(0) £ min Xm+'(0) and that any three
1<ism 15jsn ™M
of xi(o) , 1 £ i< mtn , do not coincide. Since the paths xl('),

-‘-,xm+n(~) satisfy the condition (2) with probability 1, we
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-10-

can define the reflected processes il(t),"-,im(t),im+1(t),'°',

Roen(e)  OFf two segregated groups from Xl(t),ff',xm+n(t) . Ve

will show that the reflected processes satisfy the following system

~of SDE's
_ t n
(Xi(t) :Xi(t) +Bi(t) + job(s,xi(t))ds _kz1¢ik(t)’ 1sism,
an) : .
_ + . .
LYJ.(t) -YJ.(t) +Bj(t) +fob(s,YJ.(s))ds_+kzlékj(t), 1sj<n ,

where Xi(O) s Yj(O) s 1<ism, 1sjsn, satisfy the condition (1)

i.e.
max Xi(O) < min Y, (0)
1<igm 1£jsn
and
_ m+n t
(12.1) B, (%) :kzl fol{ii(s)=xk(s)}d3k(s) , 1sgism,
(12.2) B (%) min ft (s)
12.2 B.(t) = 1,. _ dB (s) , 1<£j<n,
J ko1 0 ey (8)=x (803 7k
t
-1
(12.3) 05500 =3 f Lz (a)=y, (), 5,5 (9) =1, ()1 20k (8) =Ry, 5 (£))9° 2

Notice that B () , B;(t) ,1sism, 15jsn, are i1-dimensional
Brownian motions starting from 0, which are independent of each
other and of {Xi(o)’Yj(O)} , ®ij(t) satisfies the condition (9)
for Xi(t) and Yj(t), and
max X.{(t) € min Y.(t) , for v tz20 .
1<ism 1<jsn
Lemma .2. Let {xl(t),---,xm+n(t)} be a family of m+n copies

of the solution of the SDE (7) satisfying the condition (1) and (2).
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Then the reflected process of two segregated groups (il(t),---,
im(t),§m+1(t),---,im+n(t)) constructed from the given family sati-
sfies the system of SDE's (11), where Xi(t) =ii(t) , for 1sism ,

and Yj(t) =im+j(t) , for 1< <n

Proof. Let F be the smallest o-field with respect to which

t

xi(s) , 0SV¥sst , 1$ism+n , are measurable. Fixing 1<ism,

let us observe xi(t). The sequence of times Sy and tk ,k=1,2,

..., appearing in the definition of the reflected paths ii(t) are

*
F-stopping times( ) and denoted by corresponding capital letters

Sk and Tk , k=1,2,+++. The suffixes ik and jk appearing in the

definition of ii(t) are random variables measurable with respect

* %k ’
to ES and ET respectively.( ) We will denote them by capital
“*k Tk
letters Ik and Jk , respectively.

Let us denote for k=1,2,++-,m+n ,

%k(t) = xk(To+t)

Bk(t) = Bk(T0+t)-Bk(TO) , £t20 .
Then, Bi(t) and BJO(t) are independent and Et(= £T0+t)—adapted
Brownian motions which are also independent of §i(0) and iJ (0)
0
Therefore by Lemma 1 we have
t ~
(13) xi(t)/\xJ (t) =xi(TO) + 12, (s)<} (s)}dBi(s)
0 0 i J0
t ft
+f 1,4 A aB. (s) + [ b(T +s,X.(s)ax_ (s))ds
0 {xi(s)>xJO(s)} I o 0 i Io
. 1 ~ ~
-1limzf g, (%, (s)-%_ (s))ds
N+w2 0 N "1 JO

(*) T is anF-stopping time {Tst} S for Vvt 20.
(**) A€E, < An{Tst} €F  , for vtzo0.
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-1%-

t
(14.2) g oy (D - Io1{To<s}1{xi(s)>xk(s)}dBk(s) ;
(14.3) {T <t}A (F) = &) i, <s}P(s,x;(s)ax, (s))ds
N a -1
(14.4) 1{T0<t} (T Ef T <S}gN<Xi(S)_Xk(S))dS .

Therefore we have, combining (14) with (13) in which t 1is replaced

by T,
(15) x; (£) = {M_, X5 (6) 1{T ey % (Daxy (1)
I
= {t<T P (6) + 1{T <t 1% (Tg)
m+n t
f s U e ey o, ()4, ()14 (s)
k#l t
Hy Lirgestix (5)>x, ()1 9Bk (®)
t
+£)1{T0<s}b(s’xi(S)Axk(S))ds
. 1,8
'I}Iiﬁifoi{Toq}gN(xi(s)‘Xk(s))ds}
Since
{'c<T p¥i(8) + 1{T0<t}xi(TO)
= xi(o) + fol{ngo}dBi(s) +f01{s_<__T0}b(s,xi(s))ds s

the right hand side of (15) is equal to

t n
x;(0) +B,(t) + )'Ob(s,xi(s))ds —kz1®ik(t) R 0Ostss, ,
where
_ t m+n t
Bi(8) = f tear 398330+ b 1y U Ter <sdtix, (s)<x (511981 (S)

k#i t
+£)1{T <s}? {x (s)>x (s)’dB (s)}

the right hand side of (12.1), for O0<¢t §81 R
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-14-

and

1 m{n

o, (£) ==1lim 1

1 1K 2Nrw k=1

k#i

1m+n n t
limf § Y 1,. _ . f 1 1.~ -

Now 2kz1 j=1 {Jy=k}y "{Ty<s} {xm+j(s)—xi(s)vxk(s)

k#i

RS t

‘2'2 1imj' 1

j:lN-)-mO

t
{J0=k}£)1{T0<s}gN(xi(S)'Xk(S))ds

He~s

k

"

}gN(ii(s)—im_‘_j(s))dS

(R ()77 (8), Ty, 5 () =y, (801N (99 7y 5 (20008

the sum of the right hand side of (12.3), for 0%t éSi .

Therefore
_ t n
xi(t) =xi(0)-+Bi(t) + &)b(s,xi(s))ds-kzl¢ik(t) , for 0stsS, .

In a similar way we can show that the above formula holds for

S, ,¥kz21, This completes the proof of Lemma 2.

<
0st K

In
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_15_

2. Chaotic families of two groups of probability distributions

on iRl : Order statistics

m+n

We consider a subset Tnp of R defined by
’
= { e cee €]Rm+n; ‘ X. g i .
any three of its coordinates do not coincidel} .
P denotes the family of all probability measures u on Fm n
- 3

F]
-~ which have the following permutation invariance of the left m-—

coordinates (xl,---,xm) and the right n-coordinates (yi""’yn):

< > = <u,f>
He Ty o u,

for all bounded Borel functions f on Fm n and all permutations
3
o and 1 of (1,---,m) and (1,°'°,n) respectively, where

fc,T(Xl’ “"Xm’yl_"”’yn) = f(xo(l)"”’Xc(m)’yT(l)’. ":Y.[(n)) 3

<u,_f_‘> = J f(xl’.-.’xm’ y_l,---,yn)u(dxl,...’dxm, dyl’...’dyn) .

En,n

An example of w € B . which will be given below will
3

appear in the following sections. Let v be a symmetric proba=

. N +
bility distribution on R" " and (Xyse+>X,n) be an K™ —va-

lued random variable whose distribution is v. Let (il,---,im+n)

be the order statistics of (Xl,--- X ), i.e. X1 §X2 <

N
. ee2X .
>"m+n m

+n

Let V be the distribution of the ordered random variable
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-16-

X ) . Let us assume furthermore that v satisfies

(Xl"." m+n

cae € . - -
(16) v[{(xl, ’Xm+n) €R PoXy E Xy x, for some
11i<j<ks m+n}} =0 .
Then the distribution V¥ of the ordered random variable is clearly

a probability distribution on Fm n " Finally we define mEwo v by
3

e e

>n m.n. o, o,T ,
where Y is defined by
o,T
Vo2 T > 7 vt g,v °
for all bounded Borel functions f on T and ) denotes

m,n
0,T

the sum over all permutations ¢ and = of (1,2,---,m) and

(1,2,---,n),respectively. It is clear that u € P n v Let s
- 3

and T be independent random variables taking values in permuta-
tions {0} and {1} , respectively, which are uniformly distri-
buted with

1
m

1
n

1"

P[S o] =

.-
v-

, P[T = 1] =

and independent of {Xl,"',Xm+n} . Then the measure u € P

defined by (17) is the probability distribution of

m,n

(18) Rs(1y> o Xsmye Yrays o Ipeny)
where §j = §m+j > 1 £ 3j<n.

Definition 2. A family {vo} of probability distributions

on T’ s b =1,2,-++, 1is called a (symmetric) u-chaotic family ir
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(19.a) vp is a symmetric probability distribution on RP N
19.b v P P .y = x. =
(19.b) p[{(xl’ ,xp) € R Xg xJ X, for some

1§i_<,j<k§p}}=0,

(19.¢) {vp} is u-chaotic for a probability distribution wu

on IRl , 1.e. for any k 2 1 and bounded continuous

functions fl,---,fk 5

N k
lim <v_, £ ® «.. ®f ®1 ®:-® 1> = MI.<u, £ > .
po P01 Kok i=p K

Given a symmetric u-chaotic family {vp, p=1,2,+++} we de-

fine a family {um 0 € E-m LM 1= 1,2,+++} by (17). In the fol-
3 — £

lowing we investigate an asymptotic behaviour of the family

{u, ,} as m, n>= under the constraint
>

. m
lim min 6, 0<8 <1
m, N>

, (8 fixed).
We will abbriviate this 1imit as m,n + «(8) .
We say that a probability distribution u on Iﬂl satisfies

the positivity condition for a given 6 , if there exists a constant

*)

Y = v, such that
(20)  u((-w,y-€)) <ul(-=,y)) =0 =u((-=,y]) <u((-=,y+e)), forve>0,
in particular, wu({y}) = 0.

Lemma 3. Let {vp:p=1,2,-°-} be a symmetric u-chaotic family,

where u satisfies (20) for a given 6 . Let (Xl,--~,X ) Dbe

m+n
a random variable distributed by v ., =~ and (X sk =
(21,---,§m,?1,—--,?n) be its order statistics. Then for V¥V €>0

*) y is the 6-quantile of the probability distribution u.
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(21) Ply-e<X s¥ <y+el » 1,

1

as m,n > « under the constraint m/(m+n) -+ 6 .

Proof. The assertion of the lemma is an implication of

A ~ *
the law of large numbers for the order statistics (Xl,---,Xm+n). )

Let us denote é = <u,g> for a bounded continuous function g .

Since {vp} is a symmetric u-chaotic family
m+n

1 =2
El s i§1g(xi) -gl°]
= Lop|g(x)-g|%) + B prip(x ) - ) ((X,) - B)]

(m+n)

-0, as m,n > « ,

Therefore, by Chebyschev inequality

m+n

(22) =y izi g(X;) ~ g , in probability.

If we take g € CGRl) such that g =1 on (-»o,y-eg), 0sgs1 ,

and supp(g) < (-=,y) , then
(23) T = <u,g> < 0 ,

by the positivity condition (20).

Therefore,
e < -
P[X 2 vy-¢]

= P[#{Xi:Xi € (-o,y-e], 1<i<sm+n} 2 m]

*) See e.g.Wilks [18] for the order statistics of i.i.d. random

variables
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4 min Cm
= Plgm Z 1('°°,Y‘€](Xi) Z m+n]
i=1
1 men m
< P[_l’-n—‘PTI 121 g(Xi) 2 m] + 0, as m,n > x

because of (22) and (23) combined with the fact that ﬁgﬁ +8(>8).
In the same way we can show that P[§12y+e] + 0. This completes

the proof of Lemma 3.

Definition 3. Let u, and u, be probability distributions on
- Iﬁ' satisfying that supp(uz) c (-»,vy}] and supp(ur) < [y,) .

A family {”m,n € £=m,n :m,n=1,2,°*+} 1is called (uz,ur)—chaotic

family of two groups for a given 0<8<1, if it satisfies for

1, (%)
any Mz21, N21 and fi,---,fM,gl,---,gNECb(]R ),

s Ll
(24) MUy, ps £180-Ofy 8187 018 g,®" ' '®g @18 - 81>
M N
+121 <uz’fi> j21<ur,§j> s

as m,n - «» under the constraint m/(m+n) -~ 0 .

Lemma 4. Let {vp} be a symmetric u-chaotic family, where
u satisfies the positivity condition (20) for a given 6 . Then
the family {um,niig _— tm,n=1,2,-++} defined from A{vp} by

(17) is a (uz,ur)—chaotio family of two groups, where Uy and

u, are defined by

- 1
<ug,f> = [f(x) e1(_0‘,’}(](X)u(dx) >
(25) 1 1
<u,f> -‘ff(x)i—_—el(Y’w)(x)u(dx) , for vfecC (R")
Proof. In terms of random variables (XS(l)""’XS(m)’YT(i)’

""?T(n)) given in (18) the left hand side of (24), denoted

(*) Cbﬂﬂl) is the space of bounded continuous functions on :ml.
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by (L), is
_ M ﬁ N -~
(L) = E[igl fi( S(i)) j:lgj(IT(j))]
- ZE[I\I/I[ f.(f(.)lr\llg.(ﬁ?.)]
min! oot joq o(1) j=1 9 Wiy "’

where we assume that supp(fi) c (-»,y), 12isM and supp(gj)

c (y,»), 15jsN. ‘We apply a formula on summation:

:*. . "—1 '
Fag voop * I = 2wt L 2%y oan®

where 2* denotes the sum over all (il,---,iM) , each element of
which is different from others, and the number of terms in the

. M
summation Z' is m. - m(m-1) +-+ (m-M+1), and O .runs over

all permutations of (1,2,---,m) in the summation } . Then

o
we have
4 m m m M N ~
= m-M)! { R £ (X. .
- (L) = =i g ( iZ=1 iz=1 izil BL I o (%5 )jgng(YT(J))]
1 2 M p= pJ=
1
-3y .
Because

. const. I (med)! " - m(m-1) -+ (m-M+1)}
T

mM—m(m—l)---(m—M+1)
m(m-1) .- (m-M+1)

= const.

as m,n *» , we can write (L) as follows:
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(m—M)! m m m M ~ N A
(L) - — e E[ I f (X. ) I -(Y . )] + 0(1)
e E iz=1 iZ=1 p=1 P oy geatd (D)
1 M
-My 1 Ny | m n n
- (mm:) (nn!) .Z_--',Z_ _;_....z
i=1 =1 d s gyt
M n g ~
El n £ (X. ) g (Y. )] + o(1)
p=1 P tp g=1 % Jq
(m=M)! (n-N)! Moo o ven %
_ = e A0 R[ I yOf (X)) )i Y g (Y.)] +0(1)-.
. m: n: p=1 i=1 P 1 g=1 j:j_ J-

This can be written with the help of Lemma 3 ,

m=-M)! (n-N)! Mo Ey N g 5
=4 m’) ( n') E[ T § £,(X;) 1 1 gq (¥
: : p=1 i=1 g=1J=1 J

1{Y—€<§(m§ §1<Y+g}] + 0(1) .

We choose € > 0 such that

- supp(f;) < (-=,y-e) , 1 £ 1 €M, and

supp(gj) < (y+e,») , 1 £j £N .,

Then, on the set {y ~ € < im < ?1 < y + g}, we can write
m R m+n
I or (X)) = 1 or (X))
i=q¢ P 7 iz p 177
n R m+n
I g (Y.) = I g (X:),
j=1 qJ j=1 qa J ’
where (Xl,'--,Xm+n) is distributed by vm+n . Therefore
m-M)! (n-N)! Momn N min
(L) = (—mT')'"‘(ﬂ'rT)_ E[ I )£ (Xi) I Y s (X,)
- : p=1 i=1 q=1 j=1 4 ¢
1 2.0 1+ 0(1)
[Y—E<Xm§Y1<Y+ }
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applying Lemma 3 again, we can take away 1, ___ 3% (&
{y E<Xm=Y1<Y+€}

from the expectation above, and hence
M N M m+n

- m n 1 )
m(m-1)--.(m=-M+1) n(n-1)-«--(n-N+1) p=1 mosdy

£ (%;)

m+n M <u, £ > N <u, g >
1 g (X1 +o(1) ~ B = -
1 §=1 4 ¢ =

1" ==
Sl

as m,n>® with the constraint m/(m+n)>6 , because Voen! 18

a symmetric u-chaotic family. On the other hand it is clear that

<u,f >

<u,gq>
6

R R O B = S A
This completes the proof under the restriction that squ(fi) c (-»,Yv)

and supp(g.) < (y,®). Removing this restriction is easy.
J

Lemma Y characterizes an asymptotic behaviour of a family

{u € P } which is defined from a given symmetric u-chaotic
m,n° = m,n :
family {vp} by (17). In the following we will prove a converse

of Lemma 4.

For a given u € P we define a symmetric distribution v

on Iﬁ”n by

(26) VoE Gyt L Mg o

where J§  is the sum over all permutations o of (1, ,m+n)
o
and uy is defined by

+
<ug,f> = <p,f >, for vEeECm™ ™)
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with fo(xi,---,xm+n) =f(x0(1),---,xo(m+n)) . Then it is clear
that
27) nm,nv = u .
Let {um’n€i£ m,n tmy,n=1,2,+++} be a (ul,ur)-chaotlc

family of two groups for a given 0 < 6 < 1 . A converse of

Lemma 4 can be formulated as follows.

Lemma 5. Let {u €EP

m,n €&m,n tm,n=1,2,-++} be a (ul,ur)—

chaotic family of two groups for a given 0 < 8§ < 1 and define

symmetric distribution vm,n by (26) from um,n . Then {vm’n:

m,n=1,2,+-+} is a symmetric u-chaotic family, where u is

defined by u=6u, +(1-0)u_, i.e. v converges weakly to u®u®--:-
L r m,n

as m,n > o under the constraint m/(m+n) -+ 6 .

~

Proof. Let (X -,X ) be a wo n—distributed random

1°°" m+n
variable and S be a random variable which is independent of

(il’."’im+n) and taking values in all permutations of (1,2,

«..,m+n) with

P[{S =0] =_(I—HT%1‘)T'

Then by the definition of v

m,n
(28) Vnne f1 ®--.® £ ®1®\.‘:;®1® g, ®-" .®gN_®1§i. .,,'®1>
m-M n-N
M N

=Bl 0 £(X )T gi(Xy o, iy)]
R A TE L R D
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1 .
for fl,---,fM, B15°° 758y € CbGR ) Define u; by
0’ for 1<igsm,

u,, for m+1<ig<min .

Because of (24), the right hand side of (28) can be written as
M N
(29) E[ T <u f.>

i=g SG)* 7 g7l v o)

<u  y,
j=1 S(m+j.)

where o0(1) converges to zero when m,n>~ under the constraint

m/(m+n)+6 . Let us denote

Q
!

{1 £8(1) sm}

D. = {n+1 £S(m+j) s m+n}

where S depends on (M,N) and hence so do Ci,and Dj’ but it

is not indicated for simplicity. Then, it is clear that
the family of events {Ci,Dj:1§igM, 1sjsN} is asymptotically

independent as m,n+» under thé constraint m/(m+n) -6 , and
PIC;] > 6, PID;]>1-9

for each fixed 1 and j , respectively. Therefore (29) converges

to M N
.¥ <eu2+(1—9)ur,fi> .¥ <eu2+(1—e)ur,gj>
i=1 j=1
M " N
= II <u,f.> II U,g.> ,
i=1 =1 J

as m,n-~+« under the constraint m/(m+n) -6 . This completes

the proof of Lemma 5.
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3. Propagation of chaos; the case of no interaction

Given a probability distribution u on iBi satisfying the
positivity condition (20) we define the left 6-part u, and the
right (1-6)-part u, of the distribution u, respectively, by

-1
(30.a) <up,f> = <u,8 1(-“,Y]f> s

-1
(30.b) <up,f> o= <u,(1-0) M1 oy E>

for Vf € CbCﬂl), where Yy 1s the 0-quantile of u ; thus we have

u = eul + (1—e)ur .

When we represent u decomposed as above, we always understand

that u and u, are given by (30).

2
Suppose that we are given a (u,,u )-chaotic family {u €

22 r m,n

E:m,n tm,n=1,2,+--} of two groups and define vm,n ,mm=1,2,¢¢-,

by (26). Then vm,n has the property (16) and nm,nvm,n =um,n

by (27). Moreover, {vm R =1,2,--+} 1is a symmetric u-chaotic

3
family by Lemma 5. Consider a system of SDE's
- t
(31) y.(t) =y.(0) +B.(t) +] b(s,y.(s))ds , 1£ismin ,
i i i 0 i

with a bounded drift coefficient ©b(s,x) , where {Bi(t)} is a
family of independent 1-dimensional Brownian motions starting at 0.

For each pair (m,n) let (t) = (m,n)(t) =(y1(t),"',ym+n(t))

neg

be the solution of (31) with a Vo n—distributed initial value which
3

is independent of the Brownian motions. Let v n(t) be
3
the probability distribution of X(m,n)(t)

. Then it is easy to

see that for each t 20
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(32) {vm,n(t) :m,n=1,2,--+} is a symmetric u(t)-chaotic family,

where u(t) is the probability distribution, at time t, of the
solution of the SDE (7) with a u-distributed initial value. We now

introduce x(t) =(X1(t),"' (t)) as follows: First we find

’Xm+n
a random variable S which takes values in the permutations of
{1,2,---,m+n} and is independent of the Brownian motion B(t) =

(B, (£),--+,B (t)) such that (ys(i)(o),e‘- (0)) is

m+n Y3 (m+n)

distributed according to Mon e We then set
k]

xi(t) :yS(i)(t) and Bi(t) =BS(i)(t) .

It is clear that x(%t) =(x1(t),---,xm+n(t)) satisfies the condi-
tions (1) and (2) with probability one and is a solution of the
SDE (31) with the initial distribution Yoon and with Bi(t)

2

in place of Bi(t) . By Lemma 2 the reflected process of two

segregated groups

(33) x(t) = (il(t),---,im(t),im+1(t),-~-,im+n(t))
- constructed from the x(t) satisfies the system (11) of SDE's,

=X <1i g =X <j <
where Xi(t) xi(t) , 1£ism and Yj(t) xm+j(t) , 1$j%n

Lemma 6. Let +y(t) be the segregating front (6-quantile) of
the probability distribution wu(t) , and yim’n)(t) =1Tgf % (),
Yﬁm’n)(t) = m%n §m+j(f) . Then for €>0 S

1<jsn
Ply(t) - e < Y,(Lm’n)(t) s Yz(,m’n)(t) <y(t) +e] » 1,

as m,n-~+e under the constraint m/(m+n) - 6.
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Proof. It is clear that

Y8 =5 (0) =3, (6) and y (6) =, (6) =5 (o) .

Since the family {vm n(t)} of the distribution of y(t) 1is u(t)-
s L

chaotic, we have by Lemma 3
Ply(t) - e < Yz(t) < Yr(t) <y(t) +e] » 1

as m,n » o under the constraint m/(msn) + 8. We note furthermore
~ that (Yém’n)(t),Yim’n)(t)) is identical in law to (Yz(t)’Yr(t))'

This completes the proof of Lemma 6.

Lemma 7. Let ﬁm n(t) be the probability distribution of %(t)
—_——— F) =
in (33). Then ({ii (t) :m,n=1,2,.-.} is a (u(t),,u(t)_ )-chaotic
m,n ) L r
family of two groups, where U(t)=6u(t)2+(1-3)u(t)r . That is, the
propagation of chaos holds for the diffusion process described by

(11) with the initial distribution um,n :ﬂm,nvm,n defined by (17).

Proof. The distribution ﬁm n(t) coincides with the one
- 3

um’n(t) €p m,n which is defined by (17) from vm,n(t)’ because
the probability distribution of (il(t),~--,im(t)) (resp. (im+1(t),
---,im+n(t))) is symmetric. Therefore we can apply Lemma 4 to
the family {ﬁm n(t)}. This completes the proof of Lemma 7.

2

The propagation of chaos for diffusion processes with inter-

raction will be discussed in § 6 and §8.
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4. A system of Skorokhod equations with moving reflecting

boundary conditions

Given {wl,---,wm R zl,---,zn}cag = comf;ml) satisfying the
initial condition
(34) max w.(0) € min z,(0) ,
15ism 15j<n

we consider a system of Skorokhod equations

A
=
A
El

0 (8) 5 1

Wi(t) - 1

H

ne—s

g5 (%) .
(35)

m

L

AN
[ )
A
o]
.

n(6) =z (6) 4 ] @), 1

k=1

©,.) of (35)

The problem is to find out a solution (gi, Nys €55

with the following properties:

(36.a) Eso M5 € W and max Ei(t) < min nj(t) R
J = 15i<m 1gjsn
for YV t2 0,
- (36.b) wij(t) (1g¢ism, 1<jsn) is continuous, monotone non-

decreasing in t 2 0 , wij(o) =0 , and
supp(d®;;) = {t 2 0 : E5(8) = ny(t)} .

The Skorokhod problem (35) of a system of equations can be

. . . . . m+11
viewed as a Skorokhod equation in a convex domain 1n R as

follows: Let us denote

(37) D ={(x1,---,xm,y1,---,yn)€ R . max x, < min y.} .
15ism 1<jsn
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The domain D can be represented as

D = n D..
1gism Y
1£jsn
= e e m+n | :
where Dij {(Xl’ sX s Vqo ,yn) € R txy < yj} . Since

the set ﬁDij is clearly a convex domain in :Rm+n’ so is the

domain D .

In a convex domain D one can consider a Shorokod problem

(Tanaka [15]): Given V:IEC(IR+, IRm+n) with w(0) €D , solve
t
(38) E(t) = w(t) + [ n(s)de ,
= 0

where & and ¢ should satisfy the conditions;

(39.2) ge c®, D),
(39.b) ¢ is continuous, nondecreasing, ®(0)= 0 , and
supp(d¥) < {t 2 0 : E(t) € 3D} ,
— (39.¢) ‘n(s) € N (s) * if E(s) €3D ,

([ X2l

. where N, X € 3D , denotes the totality of inward normal unit

vectors of D at X .

Remark. An inward normal unit vector is a unit vector which
is perpendicular to a supporting hyperplane and pointing inward .

For the convex domain D given in (37), Nx can be expressed as
*)

N ={p= c,. .. :c..20, lo]l=1},
3 (i,j)ELX 1J "1 1]

where for (i,j) € Lx = {(i,j): Xy =Yj}

*) This is proved by Saisho. See also [12] for a similar problem.
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-1 1
gij = (O"":7?:0"":0575303"'30) .

If we view the Skorokhod equation (38) componentwise, it is nothing

but the system (35) of Skorokhod equations. Therefore we have
Lemma 8. (i) For given wl,---,wm,zl,-~-,zr1€li satisfying

the condition (34) the equation (35) has a unique solution.

(ii) Let (Ei,nj,wij) satisfy the Skorokhod equation

t n
£5(t) = wi(t) + {) a,;(s)ds - kleik(t) , 1sism,
- (40) t m
= < j g
nj(t) zj(t) + Io bj(S)ds + kziwkj(t) s 1£jsn,

where (34) is assumed, and let'(gi,ﬁﬁ,ﬁij) satisfy the Eq. (40) with

w.,E.,a. and b. in place of w,,z,,a, and b . Moreover assume that
i J 1°.] 1 j

- =W -w - -z -z >0.

wi(t) wi(O) wi(t) wi(O) and Zj(t) zj(O) zj(t) zj(O), forvt _Q

Then for t € [0,T]

m _ 2 n - 2
(41) iZ1lEi(t) - B (6) ] J_Zilnj(t) - (6]
T, T - 2 o - 2
Se {izllwim) W (0)]° jzllzj(m -2;5(0)]

t m - 2 n _ o
+fo (izllai(é)—ai(s)l +_§ ij(S)-bj(S)l Jast .

j=1

*
Proof. For (i) see Tanaka [15].( ) To prove (ii) denote the
left hand side of (41) by f(t) and the right hand side by eTg(t).

‘Then the first inequality in Remark 2.2 of [15] implies
t
£(t) s [ £(s)ds + glt) ,
0

from which follows (41) by Gronwall's lemma.

(*) When LA and zj are Brownian motions with drifts, one can

get Ei and nj as the reflected processes of two groups const-

ructed from LA and Zj in §1 (see Lemma 2).
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5. A system of interacting particles with moving reflecting

boundary conditions

We consider a system of stochastic differential equations

Cmot .
- - 1
Xi(t)—Xi(0)+Bi(t)-+ﬁ Y] b, (X, (8),X, (s))ds +
- k=10
N 7
+ = J b (X (s),Y, (s))ds - Y &, (t) , 1sism
(42) Sonply Ty 127 k=1 ik ? ?
gy 1B
Y.(E)=Y.(0)+B.(t) += .
J( ) J( ) J( ) mk£1 é b21(YJ(s),Xk(s))ds +
ﬁ + 1 g ftb (Y.(s),Y (s))ds + ? o .(t) , 1sjsn , )
= . (s s))ds . $js
Myzg o 227377k KEg KT IR
where the initial values satisfy the conditions
(43,a) max Xi(O) < min Y.(0) ,
1<ism 1gj<n
(43.p) any three of {Xi(O),Yj(O) :12ism, 1£jsn} do not meet,

and {B;(t),B;(t) :12i<m, 15jsn} are independent one dimensional
Brownian motions staring at 0 which are independent of the ini-

tial values {Xl(O),Yj(O) : 15ism, 1<jsn},

Solutions of the SDE (42) should satisfy

min Y.(t) , for V t 20 ,

(4h,.a) max Xi(t) j

1gigm 1gjsn

[72Y

(44.p) @ij(t) is continuous, monotone nondecreasing, ¢ij(0):0 and

supp (d@ij) c{tz20 : Xi(t) = Yj(t)} .

When we emphasize the dependence of a solution on (m,n) , we write

n

m
(*) We denote Qi(t)ici 05 (t) and ¥;(t)= k§1 o5 (6) .
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it as (xi(m’n)(t), Yj(m’n)(t), oij(m’n)(t)).

Theorem 1. If the interactions bij(x,y) satisfy a
Lipschitz condition
2 2 > )
(45) oL I Gy) -y (xty
i=1j=1 J 1J .

2
< c{lx-x'l2 +ly-y' 7Y,

then there exists a (pathwise) unique solution of SDE's (42).

Proof. Let us consider a deterministic Skorokhod problem :
For given w,, 2 € W satisfying the condition (34), solve

4 m t v 4 B t
{ Ei(t)=wi(t)+al§1 fo bll(gi(s)’gﬁ(s))d“HlZl I0b12(gi(s)’”2(s))ds
n
(46 ) —2=£pil(t), 1‘5

—
IA

m ,

m

!

e

t n ¢t
ng(e)za, (6) +o [ by (ny(),8g(s1)as+ 1 L [ byp(n(2n, (0))ds

=1 2=1

IA

m
+ Jg,.(8), 15 n ,
g=1 %

under the conditions (36.a) and (36.b) .

Let (Ei(o), nj(O), wij(o)) be a solution of
(0) 3 T (o)
£, (6) = wi(t) - 2 0, ()
2=1
(0),y . T o ()
gt () = ey (e 4 151%3 (t),
and for k 2 1 (Ei(k), nj(k), migk)) be a solution of
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(k) 1 Bt (k-1) (k-1)
( g5 (8)=wy (¥) +az£1'%bi1(gi ()58, (s))ds
R k-1 k-1) 3 (k)
1 Elﬂ)b12(5§ Vs, (s)as - Leig ),

(BT7)

m t ‘
D fb21(nj(k"l)cs),az(k'l)(s))ds

(k)
D (E)=z.(E) +
" . 170

d EIH

n
#1780V (s))as + z G
2=10

The existence and uniqueness of (gi(k), ”j(kl wi.(kb , k2
are guaranteed by Lemma 8, (i) of § 4. Furthermore Lemma 8, (ii)

implies that for 0 £ £t € T < =

m n 2
DO I I D s (P I O3 Y

j=1
m m t
* T{iZ1 % 221 é lb11(£i(k)(s)’ Eﬁ(k)(s))
(k-1) (k-1) 2
- by, (&g (8),8, (s))| ds
m n t
- £33 20 [ b (£, % sy, n () (5))
j21 B og=g 0 127 2
- - 2
- b12(5i(k 1)(5),n2(k 1)(s))| ds
n m t
ﬂ&%zaél%ﬁ%mhﬂ,%m%w)
J: =
< b, (0K (00,8, TV (e)) P
nog Bt (k) ()
j=1 M ge=1 0
= byt T (o) 40, T (s0) 1208,

then, because of the Lipschitz condition (45),
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t m n
. - 2 - 2
<hee’[ (7§ |g§k)(s)—5§k Dis)P+ 7 1ns)-n 1 (s)|" 1as
0 i=1 j=1 ¢ J
and hence, for 0 £ t < T
m 2 n 2 T, k.k
el 0)-ef )% ] In{F D ()-n ()7 B2 LT,
i=1 j=1 dJ d .
where

m n
ko= max () 16l (6)-6{0(6)%4 ] {8 (6)-n (5) 1%y .
i=1 - j:l J J

Therefore £§k)(t) and nék)(t) converge uniformly in t¢ [0,T]

as k » o . Put

- 14 (k) R (k)
Ei(t) = lim g (t) , nj(t) = 1im n; (t).

k> k>

Taking the 1limit k -~ « in (47), we have

m ot :
(e (B) = wi(6) + 2§ [ o (5 (s), £ (s))as
2=1 0
— RS -t :
o 2 J’ b12(€i(5)7n1(s))ds - tpi(t) s
(48) Mez10 »
1 &b
nj(t) = zj(t) + 121 ) b21(nj(s),£1(s))ds
1 n t
+;{Ezl{)bzz(nj(s),ng(s))ds + s (e)
where
n m
s (k) . () (¢
e3(8) = lim 121 @30° (£ HOE Lin zziw“j ) .

It is clear that {Ei,nj} satisfy the condition

A

t

A

max £.(t) € min n.(t) , for O T,

15ism 1<j<n
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{5gk)

\ satisfy the above inequality. If
i

k
because n§ )}

£;(8) # ny(t) for 05 J <n, then iik)(t) L ey sor

0

I

n

J £ n in a neighbourhood v of t. Then § wi&F%t) is

_ 4 %=1

constant in v and hence wi(t) is constant in v . This means
that SuPP(dwi) < {tzo0 :Ei(t) = nj(t) for some 15jsn} .

The same property holds for 43 . It is clear that wi s #3 -are

continuous and monotone nondecreasing. Therefore (Ei, Ny @, 43)

. J
is a solution of (48) (i.e.(46) with 055 defined by

= R . T i .
dwij dwl 1{t:£.(t)=n.(t)}) he uniqueness follows from Lemma 8
1 J

Po indicate the dependence of the solution on {wi, Zj} s

let us write

"

Ei(t) Ei(t’ Wla"',wma

"t

nj(t) nj(t, Wyt 2,

If we define Xi(t) and Yj(t) by

s 2

X, (t) B (b, Wyt Wy

1° n

nj(t’ Wl’...’wm’ zl,-..’z )

Yj(t) n

evaluated at

A
=)

3

=
n

- < =
Xi(o) + Bi s 11
+ .

A
I

, 153

I
]
—~
(=)
~
+

(s}

VA 5

J J J
.. ives a unique solution
then (X1(t),---,Xm(t), Yl(t), ,Yn(t)) giv

of (42) .
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6. A system of nonlinear diffusion processes which is expected

to be the limit as m,n~« under the constraint m/(m+n)-=6 .

For u E:gﬂﬁl) = {all probability distributions on rY we
define the segregating front y(u) (6-quantile) of the probability

distribution u by

(49) y(u) = y(u,8) = min{x : u((-»,x)) €9 su((-=,x1)} ,

1

1
and b,,[x,u,] and by,lx,u l, (x,u) € R xPR") , by

1
bll[x’uﬂ,] = fbll(x’y)51(-w,y(u)](y)u(dy) }
(50)

1
bolu d = [, 06) 725 1y (y) ) (VIU0AY)

i in the same way.
b21[x,u2] and b22[x,ur] are defined in e vy

1A
=
1A

Let {X;(t), Yj(t) : 1 <1 , 1 j € n} be the solution

of the system of SDE's (42) and U(t) be the empirical distri-

bution of the solution, 1i.e

_ 1
(51) U(t) = o {igisxi(t) + jZ16Yj(t)} .

j-[').]

m/(m+n) and of U(t), as follows

Then the equations (42) can be written in terms of bi

defined by (50) with 8

_ t t :
gXi(t)=Xi(0)+Bi(t)+£b11[Xi(s)’U(S)llgs+f0 by, [X;(s),U(s) 1ds
-Jo. (t) , 1=ism,
(52) . k=11K
+ .
YJ.(t):YJ.(0)+Bj(t)+fob21[Yj(s),U(s)glds+[0 b22[YJ.(s),U(S)r]ds

m
+ Jo .(8) , 153 sn.
k=14
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In fact, for example,
g m » 1 m
(53) ﬁikzlbii(x,x (t)) =Efb11(x,y)1(_w’Y.(t)](y)kzléxk(t)(dy)

where Yy (t) = y(m’n)(t) denotes the front of X-particles:

(54) Yy (t) = max X.(t) .
1sism *
* ) . n
Because of U4.a). 'we can add ] $ (dy) formally, and hence
k=1 TE(t) -

the right hand side of (53) can be written as

m+n

= bll[x5U(t)2] , almost everywhere in ¢t ,

since Y°(t) in (54) coincides with the one defined by (49) for
u = U(t) almost everywhere in ¢t.

Assuming that the empirical distribution  U(t) = U(m’n)(t)

defined by (51) converges to a probability distribution u(t) ,
as m,n>» under the constraint m/(m+n)+@ , we take the 1limit
formally in (52) (namely for i=1, j=1) . Then we obtain a system

of stochastic differential equations

t t .
X(t)=X(0)+B (t)+f b, [X(s),u(s),lds + [ b, [X(s),u(s) Jds-o(t),
o 11 % ﬂ) 12 r

(55
) ¢

t
lY(t)=Y(0)+B+(t)+&)b21[Y(S),u(s)1]ds + {)b22[Y(s),u(s)P]ds+W(t),

where it should be remarked that u(t) is a fixed probability

gistribution w(t) = 1im UMM gy |
m,n+<(6)

*) Xm(t)=Y1(t) may happen at some tz0, but the set of such t has the
Lebesgue measure zero.
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In (55) the influence of the cloud u(t) of particles onto
X(t) (resp. Y(t)) is divided into two parts according to the de-
composition u(t) = © u(t)l + (1—8)u(t)r , where u(t)z(resp.u(t)r)
is a probability distribution on (-=,y(t)] (resp. on (y(t),*)) .
To get (55) we are also assuming that the segregating front y(t)
- y(u(t)) of the u(t) defined by (49) is the limit of the

front y'(t) = Y(m,n)(t) of X-particles defined by (54).

The 1limit wu(t) of the empirical distribution U(m’n)(t)
will be characterized in §7 as the probability distribution of a so-
lution of a nonlinear SDE on.Bi. Since we ignore the difference of
Xi(t) and Yj(t) when we observe them throughthe empirical distri-
bution U(m’n)(t) , the reflecting boundary condition does not
appear explicitly in the equation which characterizes the limit

distribution u(t) .

The propagation of chaos of the solution of (52) is a limit
theorem stronger than the convergence U(m’n)(t) + u(t) , and it

can be formulated as follows :

(Propagation of chaos) Let um;n(t) be the probability
distribution of ‘the solution (Xi(t),-j-,Xm(t),Yi(t),--~,Yn(t))
of (52) with an initial distribution which is (uz,ur)—chaotic.
Then {um,n(t)‘:m,n =1,2,-++} is a (u(t)l,u(t)r)—chaotic family of
two groups; i.e. for VMsm, N&n and Vfl,---,fm,gl,---gNE COGR1)

N M
o gj(Yj(t))] > I <u(’0)2,fi>j 1<U(t)r,8j> s

=1

M
(56) E[.¥ fi(Xi(t))

i=1 j=1 i=1

as m,m~ with the constraint m/(m+n)> o .



KSTS/RR-85/018
November 30, 1985

_39_

The propagation of chaos as stated above will be shown in

§8 with the help of Lemma 7 in §3.

Remark. Consider SDE's (55) under the conditions (i) u(s)l
(resp. u(s)r) is the probability distribution of X(s) (resp.
Y(s)), (ii) X(t) s y(t) s Y(t) , for VvV t 2 0 , (iii) supp(de)

c {t20: X(t) =y(t)} and supp(d¥) = {t20: Y(t) =vy(t)}. These condi-
tions are not enough to specify a unique solution of (55). To do so
we must prescribe y(t) in advance. In our case vy(t) is speci-
fied by “(iv) u(t,(w,y(t)]) = 6 din terms of the limit distribu-
tion u(t) of the empirical distribution U(m’n)(t). This

means that we must know the limit distribution u(t) (or at least a
candidate for it) beforehand, not by solving the SDE's (55) but

by some other means. This will be done in the next section. If

this is done, we can paraphrase the propagation of chaos in terms

of the solution of (55) as follows.

(Propagation of chaos) The (M,N) components (Xl(t),---,
XM(t),Y (t),"',YN(t)) of the solution of (52) with 'an initial
distribution which is (uz,ur)-chaotic converge;in law to (M,N)-
independent copies (X(l)(t),---,X(M)(t),Y(l)(t),---,Y(N)(t)) of
the solution (X(%),Y(t)) of (55) with the conditions (ii),
(iii) and (iv) in the above remark, as m,n » « under the const-

*)

raint m/(m+n) - 6 .

*) It will be shown in Lemma 17 of §8 that (X(t),Y(t)) is
u(t)ﬁ&u(t)r—distributed.
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7. An associated nonlinear stochastic differential equation

Let {bij(x,y) :i,j = 1,2} be bounded measurable functions
on ZR2 with the bound

(57) B = max || b,.
i,j=1,2 %

-]
e <=

L. gCRl) as follows:

from which we define b[x,u] , (x,u) €R
Let y(u) , u € gORi) , be the segregating front of u defined
by (49) for a given 0<8<1 (fixed throughout the discussion)

and define

(58) blx,ul = [ b(x,y,uwuldy) ,

IR1

where
) 1 1
bli(x,y)'é'l(_m’Y(u)](y) + blz(x,y)i—_g 1(Y(u),°°)(y) >
(59) b(x,y,u)= ) x s y(u),
+1 1
bzl(xyy)‘é' 1(_?0,Y(u)](y) +b22(X,Y)ﬁ‘1(Y(u)’w)(y) >
x > y(u) .

It is clear that
(60) |b[x,ul] €28 .

We consider a nonlinear SDE onIR1 with the drift coefficient

b[x,u] defined by (58) :
t
(61) X(t) = X(0) + B(t) + J bl[X(s),u(s)lds ,
0
where u(s) denotes the probability distribution of X(s) and

B(t) is the 1-dimensional Brownian motion which is independent

of the initial value X(0) distributed according to u(0) :uOGECRi).
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The goal of this section is the following theorem.

Theorem 2. There exists a unique (pathwise) solution of the
nonlinear SDE (61).

A proof of Theorem 2 will be giveﬁ in a series of Lemmas.

Let P denote the Wiener measure on W = CGR+;R1) with
P[w(0) € dx] =uo(dx) and - B(W) be the usual coordinate o-field
in W . In terms of (Cameron-Martin) Maruyama formula [4], one can
rephrase the problem of solving the SDE (61) in the following equi-

valent form: Find a probability measure Q on W satisfying
(62) aQ

with the Maruyama density

T M 1 T M 2
(63) M = exp{[ blw(t),u (t)]dw(t)—Ef Ib[w(t),uw (£)]] at} ,
.0 0

where

uM(t) = the probability distribution of w(t) with

respect to the probability measure @Q =MP.

. M .

That is, <u (£),f> =) £(w(t))Q(dw) = [ f(w(t))M(w)P(dw). The exis-
W ) W :

tence of such a probability measure Q will be shown by virture

° *
of the fixed point theorem of Schauder-Tychonoff in the following.

In L2(P) = Lz(w,P) we define a subset K by

(64) K= (e (D) [[M ] 25y s ey (31) <My2> 205y =1,

and (iii) [ MdP-2 %C—z {P(A)}Z, for v A€B(W)}
A

(*) The idea of applying a fixed point theorm was suggested by
Th. Brox. H.Fd8llmer has given a proof in L1(P) defining a

convex set in terms of entropy.
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where ¢ 1is a constant defined by

(65) c = e .

It is clear that the set KX defined above is a convex and weakly

compact subset of L2(P).

On the set K we define a mapping

(66) F: M »M
where
N T M 1T M 2
(67) M = expl{f b[w(t),u‘(t)]dm'(t)—éf [blw(t),u (£)1] at} ,
0 0

M . R . . . .
and U (t) 1is the probability distribution of w(t) with respect
to the probability measure MdP on W . A fixed point M € K
of the mapping F solves our problem of finding out a solution

of (62).

Lemma 9. The mapping F defined by (66) maps K dinto

itself.

Proof. For M the first condition (i) of (64) is satisfied,

because
L2 T M T 'M 2
Il (25 =/ @b expl 2] blw(t),u(e)]aw(t) ~[ [plw(E),u (e)]] dtd
W 0 0
2
< eus T = c2 .

The second condition (ii) <M,1>L2<P) = 1 is obvious. For the
third condition (iii) we have

T T 2
[ Lap = [ap expl-[ bluw(t),u"(e)Jaw(t) +3 [ [olw(t),u" (£)1] dt)
W M i 0 o

eHB T 2

In
"
Q

and hence
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Pl i >als 02/a R
M
that is,
~ 1 02
(68) P[M 2 E] 2 1-;1' .
Therefore, with C = {w: M(w) 2 1/a}

[ Fap 2 [ Zap = 2pranciz L(pra) + PrCY - 1}
A Anc @ a a

1 c
E{P[A] - :;}

w

where made is use of the estimate (68). If we choose the constant
a to be 202/P[A], then we have

[ Fap 2 25
A be

Thus we have M € K , completing the proof.

{ P[A]}° .

Lemma 10. (i) If u, converges weakly to u which satisfies
the positivity condition (20), then the segregating front Y(un)
of u ~ converges to the segregating front y(u) of u ..

(ii) Let M € K converge weakly to M € K as n - =, and un(t)
(resp. u(t)) be the probability distribution of w(t) with res-
pect to MndP (resp. MdP). Then un(t) converges weakly to u(t)
which satisfies the positivity condition (20), and hence Y(un(t))

converges to y(u(t)) for each t .

Proof. (1) Writing vy =7vy(u), we have for each € >0
(69)  u((-=,y=-g)) <u((-=,v)) = 8 =u({-»,y]) <ul(-=,y+c)) ,
because u satisfies the positivity condition (20). Assume that

'un converges weakly to u. Then lim un((-W,y-s]) gu((-=,y-€]) and

-
lim u ((-=,y+e)) 2 u((-=,y+e)) . Hence (69) implies that
-0
(70) u ((-=,y-€]) <6 and 6 <u ((-=,y+e))

for sufficiently large n. However, this means, in view of (49)
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defining Y(un), that

(71) y-¢€ §y(un) < y+e .

Therefore Y(un) converges to y(u) as n - «

(ii) If Mn converges to M weakly, then for Vv f¢€ COGR1)
<f,un(t)~u(t)> = <Mn—M,f(W(t))>L2(P) -0

Thus un(t) converges to u(t) weakly as n - = . Because of

(iii) in (64),

1
2

u(t,(y-c,vy]) = [ MdP 2 (P[A])2 >0 ,

A c
where A = {w:vy(t)-e < w(t) s y(t)}, i.e., wu(t) satisfies the
positivity condition (20). Therefore Y(un(t)) converges to

y(u(t)) by (i), which completes the proof of the assertion (i1).

Lemma 11. Under the same notation as in (ii) of Lemma 10,
(72) lim b[x,un(t)] =b[x,u(t)], forvx#y(t) =y(u(t)) and ¥t >0.
n-r-o
Proof. Let us assume that x <y(t) (the same argument applies
for x>vy(t)). We may, then, also assume X <Yn(t) =Y(un) by
Lemma 10. Therefore, by the definition of b(x,u] given in

(58), we have
b[x,un(t)] =f bll(X’W(t))1{w(t)§vn(t)}(w) Mn(w)dP
+f b12(X’W(t))1{W(t)>Yn(t)}(w) Mn(w)dP s

which converges to

i bll(x,w(t))l )§Y(t)}(W) M(w)dP

{w(t

] b oW ED Ty oy (W) MOWAR
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= blx,u(t)] ,

. . 2
as n»e , by Lemma 10 and the assumption that M -NM weakly in LT(P).

Lemma 12. The mapping F from K into K defined by (66)

is weakly continuous.

Proof. Let us write Mn = F(Mn) and M = F(M) and assume

that Mn-+M weakly. Using the same notation as in Lemma 10, we have

M T>12py
T

T
= Jape(wexp{ [ blw(t),u_(£)1dw(t) -5 [ [blw(t),u_(£)7]%as} ,
0 0 n

which converges to

T

T
JaPf(w)exp{ [ blw(t),u(t)law(t) -2 [ |blw(t),ult)]|%at}
0 0

|

= <M,f>L2(P) R for VfELz(P)

>

because
T 2
lim [ aP [ atfplw(t),u (t)]=blw(t),u(t)1| = 0
n+e W 0

by Lemma 11. This completes the proof of Lemma 12.

Therefore, applying the fixed point theorem of Schauder-
Tychonoff (cf.e.g. [1]) to the mapping F on K, we obtain
M € K such that dQ = MdP solves the problem (62), in other

words, there exists a solution of SDE (61).

Lemma 13. The probability distribution wu(t) of a solution
X(t) of the SDE (61) is uniquely determined by the initial dis-

tribution ug € PCEi).
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Proof. Under the assumption that U satisfies the positi-

vity condition (20), one can get this uniqueness result indirectly

through the proof of the propagation of chaos. Taking a solution
X(t) from those of the SDE (61), we will prove in the next section

(m,n)(t) of the solutions of

that the empirical distribution U
(42) (or (52)) converges weakly to the probability distribution

u(t) of X(t). Therefore u(t) 1is uniquely determined.

An analytic proof for Lemma 13 due to H.Amann, without assum-

ing (20) for Ug s will be given in Appendix.

Let us denote b(t,x) = b[x,u(t)] and consider an SDE on r!

t
X(t) = X(0) + B(t) + [ b(s,X(s))ds .
0

Since b(t,x) 1is bounded and measurable in (t,x), we can
conclude by Zvonkin's theorem [19] (c¢f. also Veretennikov [171])
that X(t) 1is actually the strong solution and the pathwise

unigueness holds. This completes the proof of Theorem 2.

In the next section we need the following facts.

Lemma 14. Let u{t) be the probability distribution of a
solution of the SDE (61) and y(t) = y(u(t)) . Then y(t) is
continuous in (0,x) . If u(0) satisfies the positivity condi-

tion (20), then +vy(t) is continuous on [0,=)
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8. Propagation of chaos for interacting diffusion processes

of two types

Given a probability distribution u on ZRl satisfying the

positivity condition (20), we define wu, and wu, by (30). Given
a (ul,ur)-chaotic family {um,nfzg tm,n=1,2,++1 of two

groups, we consider the solution

(713 X (6) = ()00, X (8),7,(8) 0¥ ()
of the SDE (42) with the initial distribution Mo o where the
3
drift coefficients bij(x,y), i,j = 1,2, are assumed to be bounded

and with the Lipshitz condition (45).

Theorem 3. (Propagation of chaos) Let My n(t) be the
3

(m,n) ()

probability distribution of X given in (73). Let u(t)2

and u(t)r be defined through the decomposition u(t) = eu(t)l+
(1-6)u(t)r , where u(t) is the probability distribution, at time
t 2 0, of a unique solution of the SDE (61) with the initial dis-
tribution u . Then {um,n(t) tm,n=1,2,--+} 1is a (u(t)l,u(t)r)—

chaotic family of two groups, i.e., for arbitrary but fixed

1
M28qs° 28y € Cy(RT) and t20,

Msm, NSn, VI, ,f

M N

. <u(t)l,fi>'ﬂ <U(t)r’gj> >

M N
(74) E[ T fi(Xi(t).H gj(Yj(t))] - I §i1

i=1 Jj=1
as m,n + » with the constraint m/(m+n) - 6 . Moreover, the
empirical distribution U(m’n)(t) of the g(m,n)(t) converges

to u(t) in the sense that for any f € co(mi)

(75) <U(m’n)(t),f> + <u(t),f> (in probability)
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as m,n > « (0), and consequently Y(m,n)(t) = max X.(t)
) 1<ism
converges in probability to the segregating front y(t) of u(t) .

Proof. Pick up an arbitrary solution of the SDE (61) with
the initial distribution u and denote the probability distribu-
tion of the solution at time t20 by u(t) . We will prove
that (7U4) and (75) hold for this u(t) without knowing that u(t)
is uniquely determined from the initial value u . The unique-

ness of u(t) will then follow from (75).

(t))

Let b%(t,x) = blx,u(t)] and y(t) = (v, (6), -,y 0

be the solution of (31) with b(t,x) = bu(t,x) having the initial

distribution v — u .
m,n m,n m,n

be the reflected process (33) of two segregated groups constructed

Let  %(t) = (X (t),---,% , (t))

in §3. Its initial distribution is Moo We write
3
ii(t) = %, (8) for 1 sis<m,
(76) - . .
Yj(t) = Xm+j(t) , for 12 j sn,

and X(t) = (f(l(t),---,im(t)jl(t),.--,?n(t)). Lemma 2 claims that

t n
- - - u, o~ .
X; (8) =X, (0) +B; () +[ b (s,Xi(s))ds - z 0, (t) , 1sism ,
0 k=1
(717 t n
Y.(t) =7.(0) +BY(t) + [ b%(s,¥.(s))ds + | @ _.(t) , 18jsn ,
j j J 0 J k=1 KJ
hold. If necessary we denote »g(m,n)(t) for g(t) to indicate

the dependence on (m,n).

Let ﬁ(m’n)(t) be the empirical distribution of Z(m’n)(t).

Then it is clear by the definition of i(m’n)(t) that

(78) glmsn) g

t
S’
s
o]

—~
o~
(=]
tall
~
ot
~
+

T 6o 1)
i1 X4 g1 458
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What is important here is that the two processes g(t) and g(t)
do not show up any difference if we observe them through their

empirical distributions. Therefore, by (32) the empirical dist-
ribution 6(m’n)(t) converges weakly to u(t). Moreover, Lemma 7
claims that the family of distributions ﬁm,n(t) of g(m’“)<t),

m,n=1,2,-++, forms a(u(t)z,u(t)r)—chaotic family of two groups.

s
We state these facts as a lemma for later reference.

Lemma 15. (i) The empirical distribution 6(m’n)(t) of tﬁe
reflected process g(m,n)(t) of two segregated.groups converges
weakly to the probability distribution “u(t) ..

(ii) The family of probability distributions of g(m’“)<t) s
m,n = 1,2,---, is a (u(t)l,u(t)r)—chaotic family of two groups,
i.e., for arbitrary but fixed M<m , Nsn and- Vf&,---,fM,
815 a8y € COGR1)

M . N

”(m’n) ~(m:n)
E[izlfi(xi (t)) J_r:lg;j(YJ. (t))]

=
=

> mo<u(t), ,f.> T <u(t) ,g.> ,
i=1 S P! rd

as m,n » « under the constraint m/(m+n) > 6 .

Next we note that the system (52) which is the same as (42)

can be written as

X; (4) =X, (0) + B(6) + | “p(m, ™ x, (s),0'™m ") (s)as - | o (6)

Ly
(79£ 15i
{
{

A

m 3
t
Y (t) =Y.(0) +BY(t) + b(m’n)[Y.(s),U(m’n)(s)]ds % o, s
J J 0 * k=1

1< n ,
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where U(m’n)(t) denotes the empirical distribution of (Xi(t),
cee X (6),Y,(8), 0, Y (8))  and p(Ms™) (¥ u] is defined by
(m.n) bll[x’ul] +b12[x,ur] , for x> y(u) ,
b [x,u] =
bzl[x,ul]-+b22[x,ur] , for x 5 y(u) ,
with 8 = m/(m+n) in (58) and (59). Since we are interested
only in the probability law of the solution g(m,n)(t) of (79),

we may assume that

(80) }z((m,n)(o) - g(m,n)(o)
We will show in the following that the difference g‘m’n)(t)
- g(m,n)(t) " converges to zero in 12 " as m,n + «» under the

constraint m/(m+n) -+ 6 , and hence g(m,n)(t) is (u(t)l,u(t)r)-

chaotic, because so is g(m,n)(t) by Lemma 15.

Lemma 16. Under the assumption (80)

lim E[|X§Lm’n)(t)—}~(§m’n)(t)|2 o (M) gy g mm) gy 12y 20 .
m,n>=(6) J J

Proof. Applying (ii) of Lemma 8 to the SDE's (77) and (79,

we have

T . 2 B ~ 2
(81) J IX(6) - X (8)] +._21|Yj(t)—Yj(t)|

i=1 J

o, B (mn) - 2
e { § [ as|b (X, (s),U(s)] - bIX,(s),uls)]]
i=10
n ¢t (m,n) - 5
+ 3 [ as|p ™My, (s),U(s)] -b[Y,(s),u(s)]1|“} ,

j=10 J J

for te€[0,T] , where U(t) stands for U(m’n)(t) . Each term

of the right hand side of (81) can be estimated as follows: Writing
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I, = |b(‘“’“)[xi(s),u(s)]—b(m’“)[fci(s),ﬁ(s)]l

1, = |b(m,n)[)~(i(s)’ﬁ(s)]-b[ii(s),u(s)]I s

where U(t) stands for ﬁ(m’n)(t), we have

|b(m’n)[xi(s),u(s)]-b[ii(s),u<s)]lzsz(xf + 1) .

To estimate I1 we notice that b(m’n)[-,-] in 11 is

defined in terms of bli[-,'] and b12[°,'] and hence

2,1 b 2,1 e T
;s ;n-kzl 11(x X, ) ~b, (x X )| k§1|b12(Xi’Yk)'b12(Xi’Yk)|
m n
2,1 1 5 12
§2C{2IXi—Xi| +rH__Z_ | X, ~ [ +szllyk-yk;

where the Lipschitz condition (45) is employed. One can assume

that (m+n)/m , (m+n)/n < const., because m/(m+n) > 6 , 0<06<1.

Hence

2 5 12
(82) |I]° geconst.{[X -X,] m+n( Z ]Xk—Xkl + X |Yk—Yk] )}.

To estimate I, we notice that the front Y(m o) o Y(ﬁ(m’n)(t))

converges to y=vy(u(t)) by Lemma 10,(1), because ﬁ(m?n)(t)
converges weakly to u(t) by Lemma 15 and u(t) satisfies the
positivity condition (20). Therefore, for x <y (hence we may

o (m, n))

assume Xx<¥Y

b(m’n)(x,ﬁ(m:n)] =Ib11(x’y)%ﬂ 1 ’:‘Y'(m’n)](y)i‘],(m,n)<dy)

(—eo

#by, 00 B2 myn) ()T (ay)

converges to

blx,ul = [b,, (x,y) %1(_m’ﬂ(y)u(dy)+)’b12(X,y) ﬁlw’m)(y)u(dy) s
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as m,n-+« under the constraint m/(m+n) + € , and hence

T 2
(83) E[ﬂJ]Izl ds] » 0

Combining (81) with (82) and (83), we have

m - 2 n
(84) T E[X (£)-X;(6)[" +
i=1 =

o 2
J EIYj(t)—YJ(t)I

1
m

const.}
i=

A

t . > 1., v . 2
ﬂ)ds{E|Xi(s)—Xi(s)|  +ﬁTﬁ(kZ1Ele(S)_Xk(s)l

1

+
k

N3

lE|Yk(s)-§k(s)|2>}

1
m+n

+

n ¢t N 5
const.) [ ds{E|Yj(s)—Yj(s)| +

(T Elx(8)-%, () ]2
E(X, (s8)-X (s
j=10 k=1 ¥ k

T E|Y, (s)-F,(s)|2))
+ ElY, (s)~Y, (s

k=1 K k

m

+ 1

n
o(1) + ¥ o(1)
i .

1 Jj=1
Since expectations E|Xi(t)~-)~(i(t)|2 (resp. E[Yj(t)—§J(t)|2) do

not depend on i (resp. on J), it follows from (84) that

(85) TRB|X, (6)-%;(6)]% + gigm|vy(6)-7

2
m+ m+n (t)l

J
t m > 2 n S 2
< const.{)ds{B:;EIXi(s)-Xi(s)| + EIHEIYJ(S)—YJ(S)l } + o(1) ,

independently of (i,j). Since b(m’n)[-,-] and b[-.-,-] are
bounded, the integral of the right hand side of (85) is finite

by (81). Therefore, by Gronwall's lemma, it holds that the left
hand side of (85) is bounded by o(l), that is, it converges to
zero as m,n > with the constraint m/(m+n) > 6, independently of

(1,3). This completes the proof of Lemma 16.
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Now we can complete the proof of the theorem as follows.
Combining Lemma 15 with Lemma 16, we get (74). Since {um’n(t)} is
a (u(t)ﬁ,u(t)r)-chaotic family of two groups, the family {vm,n(t)}
defined by (26) from {um’n(t)} is a u(t)-chaotic family by
‘Lemma 5. Therefore, the empirical distribution U(m’n)(t) con-
verges to u(t), because\ U(m’n)(t) does not depend on permuta-
M) 6y to y(t)

tions of coordinates. The convergence of Yy

follows from Lemma 10. This completes the proof of the theorem.

In order to charac¢terize the probability distributions
u(t), and u(t)r , we consider the system of SDE's (55)  under

the conditions

f’ ult, (~=,y(£)1) = 8 )

(86) 3 X(t) ¢ y(t) s ¥(t) , for V t 2 0,

( supp(de) < {t20: X(t)

y(t)}

y(t)} .

11

supp(d¥) < {t20: Y(t)

Then (55) is equivalent to the following system of Skorokhod

equations on (-«<,0] and [0,»)

X(t)

t
X(0) + B (t) - v(t) + [ b[X(s)+y(s),u(s)]lds - e(t)
(87) °

t
T(t) = v(0) + BY(t) - v(t) + [ b[¥(s)+y(s),u(s)lds + ¥(t)
. 0

where X(t) < 0 g ¥(0) , supp(de) « {t20: X(t) = 0} and
supp(d¥) < {t20: Y(t) = 0}. We assume that (x(0),Y(0)) 1is

distributed according to u(O)ﬂ@u(O)r . The unique solution

for (87) exists clearly and satisfies

(*) It should be noticed that wu(t) here and in (87) is the fixed
one,i.e., the probability distribution, at time t, of the
unique solution of the SDE (61).
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X(t) = X(t) + y(t)
Y(t) = Y(t) + vy(t) .

Lemma 17. The solution (X(t),Y(t)) of the system of SDE's
(55) under the conditions (86) is u(t)ﬂ&u(t)r-distributed.

Proof. Let X(t) = (Xl(t),---,Xm(t),Yl(t),"',Yn(t)) be
the reflected process of two segregated groups, which satisfies

the system of SDE's (77). One can transform it into a system of

Skorokhod equations on (-«,0] and [0,») :

~ ~ - t . n
Xy (B)-v, () =Xi(0)+Bi(t)—Y2(t)+J‘ob[Xi(S),u(s)]ds— 1o, (6),

(88) k=1
. . + t . m
Yj(t)—Yr(t) =Yj(O)+Bj(t)—Yr(t)+{)b[Yj(s),u(s)]ds+kzl¢kj(t) s
where
8 (t) = max X, (t) , (¢) = min ¥Y,(t
(89) Yy <ifm 1 Yy 12§2n j( )

The probability distribution of (ii(t),?j(t)) , for fixed (1,J),
converges to u(t),®u(t), by Lemma 15. Therefore the fronts
'Yg(t) and Yr(t) converge to y(t) 'by Lemma 10. Therefore
(ii(t),§j(t)) converges in law to (X(t),¥Y(t)) as m,n » = with
the constraint m/(m+n) - 6.(*)This means that (X(t),Y(t)) 1is

distributed by u(t)2®tdt)r , completing the proof.

(*) To be precise, we proceed through the Skorokhod's realization

of almost sure convergence.
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Therefore, the SDE (55) is actually a system of nonlinear
stochastic differential equations under the conditions (86),
since u(t)2 (resp. u(t)r) is the probability distribution of
X(t) (resp. Y(t)). Accordingly, we can state the propagation
of chaos (Theorem 3) in terms of the solution of the SDE's (55)

as follows:

Theorem 3'. (Propagation of chaos) Under the same assump-
tions as in Theorem 3, the (M,N)-components (Xl(t),---,XM(t),
Yl(t),'--,Y (t)) of the solution of (42) converge in law to the
independent (M,N)-copies (X(l)(t) ot ',X(M)(t),Y(l)(t), R ,Y(N)(t))
of the solution (X(t),Y(t)) of the nonlinear SDE's (55) with
the conditions (86) as m,n -+ « , where (X(t),Y(t)) is
u(t)¢®u(t)r—distributed and u(t) =eu(t)2~+(1—e)p(t)r is the
probability distribution of the unique solution of the nonlinear

SDE (61).
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Appendix

Thanks to H.Amann we can avoid the long detour through the
proof of the propagation of chaos to show the uniqueness of solu-
tions of the nonlinear SDE (61). Here is presented his proof.

First we consider an integral equation on CS = the dual

- 1. (*)
Banach space of C0 = COGR ):

(90) u(t) = quo + fOtP:-_SG(u(s))ds > u(0) ='uy € CS s
where Pé is the dual of the Brownian semigroup Py (on CO) and
G is a Lipsehitz continuous function on CS taking values in
(Cé)* = the dual Banach space of CéGRl), i.e. it satisfies

(91) Il g(w) 'G(V)||(C1 * §const.|[u-—v||cg , for Vu,V'ECS

* %
Lemma A—1.( ) The uniqueness holds for solutions of the

equation (90) under the assumption (91) for G .

Proof. Wé notice first that Pt € L(CO,Cé) and the operator

norm || P IE 1, is bounded by const.1//T for t >0, because
t (CO,CO)

1512

d x| 1 7 2t
Ila;Ptfll s || £l = f = T e dx , for VfE€C, .

Therefore P: € L((Cé)*,CS) and

« 1
(92) Il Pt“L((Cé)*,CS) g const./? , for t>0.
Let wu(t) and v(t) be solutions of (90). By (91) and (92),
t
| ult) - v(e) || ct §const.f0 % I uls) -~ v(s) |l 4 ds

from which follows wu(t) = v(t) , completing the proof.

(*) C GR ) denotes the space of contlnuous functlons on]R1 vanishing
at infinity. C ®* ) ={rec, ®') : (l)ec ®Y) forvi <k}

(**) The lemma holds for higher dimensional Brownlan semigroups.
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Let X(t) be a solution of the SDE (61) and u(t) be the

probability distribution of X(t) . Then, by It6's formula

T 2
(93) 0 = <u,,g(0)> + [ dt<u(t), g , 13¢g + b[-,u(t)]§5>
0 0 at 2 2 X
( 9xX
for any g(t,x) which is C1 in t with g(t,x) =0 for v t2T and
2 . . . .
CO as a function of x . We insert into (93) special g of the form

T. . .
1
g(t,x) = [ P__ Dh(s,x)ds , h=af ,a¢€ C7([0,T]) , £ € Cy,
i ,

It is clear that g satisfies the condition stated above and

Fo-zE-n.emy 0.
Therefore we have
T T
(9W) 0 = <ug, é P_h(s)ds> + é dt<u(t),—h(s)+b[-,u(t)]%§> .

Let us define G(u) by

(95) <G(u),f> = <u,b[-,u]%£> for Vv f € Cé .

Then the third term of (9l) can be written, by Fubini, as

T

é dt<u(t), b[-,u(t)]%%(t)>

T T T

[ at<G(u(t)),g(t)> = [ dt<a(u(t)),f P _ h(s)ds> ,
0 t

s T s *
at <a(u(t)),P_ ,h(s)>=f ds [ dt<P__, G(u(t)),n(s)>,.
s~t 0 s-t

0 0 0

(1]
—
[o1)
(6]
—

T, s,
+[ dt PS_tG(u(t))-u(S),h(S)>
0

* S *
ds a(s) <P_u, +£ dt Ps_tG(u(t))-U(S),f> .

Since this holds for V a €_C1([O,T]) , we have for V t € [0,T]
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t

* *
<u(t)—PtuO—é ds P, _

sG(u(s)),f> =0, for VfE€C,,
i.e. u(t) satisfies the equation (90). As for the continuity

(91) of the function G(u) defined by (95) it holds that

1
Ifllcé||u—v||cs , for v fecy .

|<G(u)-G(v),f>| s const.

This can be verified, deviding the left hand side into three parts

<u-v,b[u]f'>-r<v,f'fb(4,y,u)(u-v)(dy)>—+<V,f'f{b(4,y,u)—b(-,y,v)}v(dy)> .

In fact, it is enough to estimate the third term, and especially

the ones which contain bll(x,y), because the same argument can

be applied to other terms containing bij . Assuming vy(u) £vy(v),

111 = v(dx)f'(x)J bll(x,y)v(dy) —J v(dx)f'(x)J bll(x,y)v(dy)
(=, y(u)] (=»,v(u)] (=o,y(v)] (=,y(v)]

=—J v(dx)f'(x)J bll(x,y)v(dy) —J v(dx)f'<X)J bli(X,y)V(dy),
(=,v(u)] (y(u),y(v)] (Y(w),v(v)] (==,y(v)]

and then applying the equality

v(dy) = [ (u-v)(dy) ,
(y(u),v(v)] (-=,v(u)]

we get |I11| < const. ||fl|1 fu=-vil , - Therefore, by Lemma A-1,
c C .
. 0 0
we can complete the proof of the uniqueness, i.e.,

Lemma A-2. The probability distribution u(t) of a solution

of the nonlinear SDE (61)

t
(61) X(t) = X(0) + B(t) + [ b[X(s),u(s)]lds
0

is uniquely determined by the initial distribution ug of X(0) .
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