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§1. Introduction and results

Let (2,5 ,P) be a probability space and B := {B(t), t z 0}
:= {(B1(t),B2(t),~--,Br(t)), t z 0} an r-dimensional standard
Brownian motion on it (r z 1). We consider a stochastic
differential equation (abbreviated: SDE) for a d-dimensional

continuous process X := {X(t), 0st=1} (d = 1):
(1.1) dX(t) = o(t,X(t))dB(t) + b(t,X(t))dt,

with X(0) = X,, where o(t,x) := {ci(t,x), 1sisr, 1534} is

a Borel measurable function (t,x) € [O,1]><Rd > RdQ§Rr and

b(t,x) := {bj(t,x), 15£jsd} is a Borel measurable function
(t,x) € [0,1]><Rd - Rd. Suppose that o(-+,+) and b(+,+) satisfy
the following Lipschitz condition: For any x,y € R and t,s € [0,1]

there exists a positive constant L1 independent of x,y,t and s

such that
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2
2 2
(1.2) Bo(t,x) - o(s,y)]° + |b(t,x) - b(s,y)]|
s L12(|X -yl? s e - slh),
where
2 o4 402 dg .
lal“:= £ I |aj|®, for a€R QR
i=1 j=1
and |+| denotes the Euclidian norm. Then there exists a unique
solution of (1.1) (see for example Ikeda and Watanabe [4]). It is

well known that the solution can be approximated by Maruyama's
method (see Maruyama [5]). There are some results as to

the rate of convergence in such approximation theorems. (See for
example Gihman-Skorokhod [2], Platen [6]1,{7] and Shimizu [10].)
However, approximate solutions, which are treated in these
papers, are constructed from normally distributed random
variables. In this paper we shall define an approximate

solution of (1.1) from i.i.d. random variables with

a general distribution and investigate the rate of convefgence
using the following two metrics zp(-,-) and w(e+,°).

Let Wd = C([0,1] » Rd) be the space of continuous
functions with the uniform norm |[|¢||, &3(Wd) the topological
o-field of Wd and Zo(wd) the space of probability measures on
(Wd,AS(Wd)). Define a metric Kp(-,') on QO(wd) by for some

0<p<=and P,0 € P,

/P

' 1
2,(P,Q) := [ inf a lv - WlPu(dvdw)]

v e FPQ dexw

175
inf Ellly - 2|P1 /s

Z(Y)=P, ZL(2)=0Q
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where
d d d
Fg := € Putxu;waxud) = p(ay,
medx A) = Q(A) for all A & %S(Wd)},

Y and Z are Wd—valued random variables, dj(-) denotes the law of -
and P := max (1,p). From Theorem 1 in Rachev [8], for Pn’P [

EO(Wd) such that

J [ w|P P (dw) < = and J lw|lP P(dw) < o,
Wd Wc1
the convergence lp(Pn,P) + 0 as n + » is equivalent to the

following relations: As n » ®,
P, > P and J ”w”p(Pn - P)(dw) + 0,
d
W
where "=> " means the weak convergence in (Wd,zgﬂf%). Another

metric on 3D(Wd) is the Leévy-Prokhorov metric 7(+,+) defined by
. d
m(P,Q) := inf {e > 0; P(A) s € + Q(G_(A)) for all A€ B(W)},

where G_(a) := {w € Wd;|[v - w|| < e, v &€ A}. There is a relation

between 29(‘,') and w(-,°):
, d
Rachev's result ([8]). For any Q,R & ZD(W ),

(1.3) m(Q,R) = (zp(Q,R))P/“*P’.
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We next define an approximate solution
of the SDE (1.1). Let (g, k = 1} = ((5),€2,+++,&5), k z 1}
be i.i.d. r-dimensional random variables with zero mean and
finite 2+6-th absolute moment for some § > 0. Without loss of

generality we suppose that the covariance matrix is the identity.

A

Define random variables §O,§1,---,Yn by
~ k i-1 A % k -1 A
Yk := X0 + 'Z O(lﬁ—,Yj_1)£j/n + 'Z b(lﬁ~,Yj_1)/n,
j=1 j=1
and §0 i= X5. Let Y := {Yn(t); 0sts1} be a continuous polygonal

line defined by
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for k/nst s (k+1)/n, k = 0,1,¢++,n-1. In 1955 Maruyama (Theorem 2

in [5])) showed an invariance principle: As n > «

(1.4) p % = p¥,

Y
where P n,PXE§20(Wd) are the probability measures of Yn and X,
respectively. (1.4) includes classical Donsker's invariance
principle as a trivial case where o(+,+) is the identical matrix
and b(e+,*) the zero vector. In the special case where 61 has
the standard normal distribution, we have the following result

on the rate of convergence (1.4) (see Gihman-skorokhod [2]):

Let {Ek, k 2 1} be i.i.d. r-dimensional random
variables with the standard normal distribution. Assume that
o(+,+) and b(+,+) satisfy the Lipschitz condition (1.2) and they
are bounded, namely, there exists a positive constant L2 uniformly

in 0sts1 and x € Rd such that

1A
=

[N N
o

(1.5) Bo(t, )% + |b(s,x)|?

Under these assumptions we have as n + «,
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We shall extend the above result to the case where £1
has a general distribution with the 2+§-th absolute moment for

some § > 0.

Theorem 1. Let {ik, k 2 1} be i.i.d. r-dimensional random
variables with zero mean, regular covariance matrix and

|2+6] < ®» for some 0<&§ 1. Assume that o(+,*) and b(*,*)

Ellg,
satisfy conditions (1.2) and (1.5). Under these assumptions
we have for any 2 =sp s 2+§,

(i) if d=r=1, then as n + «
(1.6) L_(P

(ii) if r > 1 and £1 has a bounded or square integrable

density, then as n + «

8

¥ < 2(2+8)

(1.7) e (» *,2%) = o(n

1
2
P (log n)?).

From Theorems 1 and (1.3) we have
Theorem 2. We suppose all assumptions of Theorem T.
Then we have

(i) if d=r=1, then as n + «

(1.8) m(P
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(ii) if r > 1 and 81 has a bounded or square integrable

density, then as n > ®

8 2+6

Y - ——— P LA
(1.9) (e B,p%) = o(n 203+8) (10g n)203%9),

Remark. If o(°,*) = 1 and b(+,+) = 0, then Theorem 2
yields the results of Borovkov [1] and Gorodetskii [3]. Even
in this special case it is known that (1.8) is the best possible
result (see Sahanenko {9]). Thus (1.6), from which (1.8) was

derived immediately, may also be regarded as best possible.
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§2. Preliminaries

Define new random variables C1, Cz,"',CM which are sums

of blocks of Ek's as follows:

1.2 r kqA n 1
T, = (8, ,C ,°°**,C ) == z g£./n?, 12k =M,
k k'7k k . i
i=(k-1)g+1
2 §

where g = [n2+6], M:=[n/q] + 1 v n2+6, [a] being the integral

part of a, and a A b means min(a,b). Let {tk, k = 0,1,°°°,M}

be a partition of the interval [0,1] which is defined by

-8/(2+6)

t, = k&, for 0=k £M-1 and tM = 1, where A :=q/n v n

k
Moreover define increments of the Brownian motion by Ny 3=

1 .2 i
(ﬂk,ﬂk,"‘,ni) t= B(tk) - B(t 15k M. We approximate X

k-1
and Y by the following processes in and Yn: Let {¥X,, k = 0,1,

«++,M and {?k, k = 0,1,***,M} be random variables defined by

k k
%, 1= Xy + ji1c(tj_1,xj_1)nj TRl R ey -y )
k k
Yk o= XO + j£10(tj_1 ’Yj—1)cj + J£1b(t]_1 ’YJ-1)(tJ - tj-1)'
for each 1 £k sM and 20 = ¥, := X;. Denote X := {Xn(t), 0sts1}
and Y := {?n(t), 0sts1} D([O,1] » Rd)-valued processes defined
by X (t) := %, and Y (t) := ¥, for t, ,st<t,, 1sksM,
and fn(1) t= ~M and ?n(1) 1= ?M for t = 1, respectively.

One of the main techniques of the proof of Theorem 2
is the following reconstruction of all random variables on a

common probability space.
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Lemma 1. Without changing distributions of {€k, 1sk=n}
and {ck, 1s£ksM}, we can redefine them on a richer probability
space with a Brownian motion {B(t), t z 0} and its increments
{n,, 1sk=M such that the following properties holds.

(i) If d=r =1, then for any 0<p< 2+§ and for each

1

A

ksM, as n > «»

(2.1) E[!;k - nk]P] - O(A‘P‘5)/2n-W2).

(ii) If r > 1 and 51 has a bounded or square integrable

density, then for any 0<p<2+§ and each 1sks<M, as n > =

(p—d)/zn—& )p/z).

(2.2) Ellg, - n |P1 = o(a 2(1log n

(iii) For each 1 sk s M-1,

(2.3) {n1,n2,---,nk} is independent Ofv{ck+1’€k+2"'.'CM}'

(2.4) ~°-,nM} is independent of {§1,§2,---,;k}.

UNINSY

(according to Gorodetskii [3]
For the proof of this lemma we give several notations ].
Let x := (x1,x2,---,xr) € RF.Foreach 1sks<Mand 1sisr, let
i, S -3 1
uk( ) be the probability measure of ((tk - tk—1) Cpr

x1,---,xk—1) the

(t, - t )_%Cz eee,(t, -t )_%Ci) and Fi('
k k-1 k' "'k k-1 k k
right continuous conditional distribution function defined by

for any bounded Borel function V,



KSTS/RR-85/017
November 28, 1985

10

+ ¥ i i1 i1, i-1, .1 i -1
J ---J ¥ (x ,"',xl)Fi(dxllx Joc e, x )u;' (dx' ,***,dx*™")
o] 00

o ii, 1 i
= J ---J YP(x ,°**,x )uk(dx o0, dx7).

X1,"‘,Xl—1) by

Define the inverse function of F;(°

(F;)_1(u|x1,---,xl'1) := sup v.
Fi(V|X1,"',Xl_1) s u

Let ®(*) be the one dimensional standard normal distribution

function. Furthermore define transformations h]t,hk H Rr - R1 by

h;(X) .= (X1l"'lxl-1'(Fi)—1(¢(Xl)|X1r"'rxl—1)1xl+1l"'rxr)l

o hy ' © eseo0 h1

k.Then we have

-3 -1
(2.5) Lthy(£72n ), hy((t, = ) 720,00 = by ((ty - £y )72y}

1

1
= oz - Tz cee -
= LlegPog,(ty - £ )P0, ey -ty )

i
N

Now, applying (2.5), we redefine processes {Ek}, {;k}
and {B(°*)} such that (2.1)-(2.4) are satisfied as follows:
Suppose that there is a Brownian motion B* := {B*(t), t 2 0}

on another probability space (Q*,F *,P*). Define
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1 -+ _1
(2.6) log,og,moe ot o= (EFh (£72(e7%nT)), €y

-1 -1 1
((:2 - £ TTh, ((ky - £ TINE) e ey -y )Ry (e - By

where n¥,-- nk are increments of B* and Ji{ni, 1sksM =
ozf’,{nk, 1sksM . Then, from (2.5), L{cf, 1sksm = Llg,, Tsksm.
We next reconstruct {Ek} by the following method. Define
probability measures U and V by for any A, &€ R @ rR™),

A, € RE" ®RY) and a; € Bh),

U(A.‘ X AZ) 1= P{ (E1r'°'r€n) & A—ll (C-II...ICM) (= AZ}
and
V(A, x Aj) := P*{ (g¥,--,t}) € A,, B* € A3}.
Put
UA1(A2) := U(A1 X A2), VA3(A2) = V(A2 x A3)
and
.o r M _ r
H(A,) := U(R Q@R x A2) = V(A, X W ).
Since U, (*) is absolute continuous with respect to H(-+), there

A
1
exists a XS(RI'QD RM)—measurable function Pa (+) such that
1

9} (A)=J p, (y)H(dy).
A2 A, A

Furthermore there also exists a Zgﬂf:@)RM)—measurable function

qA3(-) such that

V. (a.) =f q, (y)H(dy).
A2 A, A;
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Define a probability measure Q on (RF ® R™) x (RF @ rM x W' by

(2.7) Qa; x B, x A3) i= [ b, (v)a, (vIE(@Y).

A 1 3

3

Finally define new probability space (',.%',P') by Q' :=
(R" ® R™) x (Rr'C)RM) x Wr, «F' being the completion of the
topological o-field f3(Q') by Q and P' := Q. Then without
changing distributions of {Ek}, {;k} and {B(+)} and keeping
the relation (2.6), we can redefine them on the common probability

space (Q',#',P') by putting for each w := (wy,0,,03) € Q'

(51,€2,"',€n)(w) =W (c1.c2,"',CM)(w) 1= w, and B(+,w) := W3-

Now, from (2.6), the relations (2.3) and (2.4) in
Lemma 1 can be easily shown. Moreover (2.1) and (2.2) are proved
by Borovkov (Lemma 1 in [1]) and Gorodetskii (Lemma 2 in [3]),
respectively. Thus we can conclude the procof of Lemma 1.

In what follows, as an absolute positive constant, we use

a K which may be different in the different equations.
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§3. Proof of Theorem 2

Since

d(X,Yn)

<

=

13

d(x,in) + d(in,Yn) + d(?n,yn),

we shall give the following three lemmas. The first lemma is due

to Shimizu[10].

Lemma 2. As n » «,

for any 2 s p s 246,

E[d(X,X_)P] = o(aP/2y

Proof. For tk

o(tk_1,xk_1) and bn(t)

(3.1)  X(£) - X (¢)

st<t

.= b(t

0

k+17

k-1

3

k

t

0

= 0,1,°°*,M-1, let on(t):=

Xk_1). Obviously

t
J (o(s,X(s)) - On(s))dB(s)

(b(s,X(s)) - bn(s))ds

(o(s,X(s)) - o(s,in(s))dB(s)

]

t

0

(0(s,Xn(s)) - On(s))dB(s)

t
+ J (b(s,X(s)) - b(s,in(s))ds
0

|

t
0

(b(s,in(s)) - b (s))ds.

From a moment inequality for martingales (see for example Theorem

3.1 in Chapter III of Ikeda-Watanabe [4]), Jensen's inequality

and condition (1.2),
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S _
(3.2) E[ max |J (o(u,X(u)) - O(u,Xn(u))dB(u)lp]
0ssst”“0
t = 2 p/2
s KE[|J Fo(u,X(u) - o(u,X_(wl %au)
0
t _
< KJ Effo(u,X(w)) - o(u,X_(u)]Pldu
0
p [t =
< KL1J E[|X(u) - X_(u)|P14u
0 n
p(t 3
s KL1J E[ max [X{(u) - Xn(u)lp]ds.

0 0Osuss

For tk§ t < tk+1 we have from the conditions (1.2) and

Ello(t,X (t)) - o (0P1 s LiEL(It - £ [P+ %,

A

kaP + kaP/2

A

Hence, from Theorem 3.1 in [4] and (1.2),

]
(3.3) E[ max J (o(u,X_(u)) - o (u))dB(u)|P)
0ss=st -0
t _
< ;KE[IJO(o(u,Xn(u)) - On(u))dB(u)|p]

t e /2
< KI Ello(u,X (v)) - o (w)fPldu s kAP/ <,
0

Furthermore it follows from Jensen's inequality that

14

(1.5),

P
- %, 1Py

p X P 3
KA® + KE[lo(t,_1,X,_(In |71 + KE[b(t, | ,X ) (t - t, )

P
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s _
(3.4) Bl max |[ (o(w,x@) - b(u,X (w)))aulP)
0ssst’0
t _
< KJ E[ max |X(u) - X_(uw)|Pids,
0 Osuss n
and
s —
(3.5) E[ max IJ (b(u,X_(u)) - bn(u))dulp]
0ssst ‘0
< KJ E[|b(u,X_(u)) - b_(u)|P1du s raP/“.
0 n n
Combining (3.1) - (3.5) we conclude the proof of the lemma from
0.E.D.

Gronwall's inequality.
Lemma 3. As n > =, for any 2 sp £ 2+§,
/2y,

= P, _
E[d(Yn,Yn) 1 = 0(4

Proof. For tk st< tk+1 B

max |Y (s) - Y _(s)| = max v, - %, |
t,ssst ° n kg<is[nt] * K
ka 5.1: ;. kK -
s | T ootamyy eg/n® - 5oty 1. ¥ gl
j=1 2=1
i P .
+ max | = o(1==,¥. _)g./n3|
kq<ic[nt] j=kqg+l J J
kg S1 A k -
+ |z b(]—n Yy q)/m - 2 bty _1,Y, ;)a/n]
]:1 R,:‘I
i 1
+ max | £ b(lg—,Y._1)/n .
kg<is [nt] j=kg+1 J
k lq s_1 A - %
s |z z (o(I5 ¥y 4) - ol 4, ¥, 1))Ey/n7]

2=1 j=(L-1)g+1
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i i-1 A 1
+ max | £ 0(lH_rY'_1)€'/n2I
kg <is[nt] j=kg+l J J
|§ £ (b(=1,%, ) - oo ¥, ))/n]
+ z Y. - b(t Y n
o1 3=(81)qs n "T-1 =172 -1
[nt] . n
N e e IV
j=kg+1 J
Thus, by Doob's inequality,
(3.6) E[ max |Y (s) - ¥_(s)|P
; stl n NENES
k 29 . 1
-1 & _ ~ 5 P
s KE[| £ z (o(lﬁ—,yj_1) 0(t2_1,Y2_1»5j/n2| 1

2=1 3=(2-1)g+1

[nt] s 1 A 1
+ KE[ z 0(15—,Y._1)£./n2|p]
j=kg+1 J J
k Lq ] i1 - - | P
+ KE[( £ g b(:==,¥, .) - b(t, .,Y, .)|/m)P]
221 j=(g-1)ge1 B 37 2-17781
[nt] . .
+ KE[( & |b(1§l,Y._1)|/n)p1
j=kg+1 J

=: H, + H, + H, + H

1 2 3 4’

say. Since {(o(iﬁl,Q. ) - o(tl_1,Yl_1))£j% and {o(iil,ﬁ. )gjg are

-1 j-1
martingale difference sequences, we have froml(1.2) and (1.5) that
Theorem 3.1 in [4]1,)
1 k g .
-1 . -1 A ~ 2 p/2
(3.7)H éanpEd z z E(Ho(l—— Y. .) - o(t Y )E.]]?._ ﬁ ]
1 =1 §=(2-1)g+1 n '"j-1 L-1772-1"5 3-1
k ILq 1
2 > 2 2 p/2
gKE% z z (|%_1—YL4|+A Hq ]

2=1 j=(2-1)q+1

t
< K f E[ max |Y_ (u) - Y_(u)|Plds + KaP,
0 0uss ©° n

where ng is the o-field generated by &1,--',£j for each j, and
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[nt]
(3.8) Hy s K| 2 LfE[lg.lz]/n P/2 o gpP/2,
3=kq+1 J

Furthermore, from Jensen's inequality, we have

k 2q R -
(3.9) Hy S KE[[ z b A A 8)/nl®
%=1 §=(&-1)g+1 J )
k g R -
£ K 2 z Bll¥, , - Y, ,1%1/n
2=1 §=(2-1)g+1 J
k 2q
+ K z AP/n
2=1 j=(2-1)g+1
t —_—
< KJ E[ max |Yn(u) - Yn(u)|p]ds + KAP,
0 Osuss
and
(3.10) H, s K(qu/n)p < KaP.

Combining (3.6) - (3.10) and Gronwall's inequality the proof of

this lemma is finished. Q.E.D.

Lemma 4. We can redefine the processes in and Yn on a

richer probability space such that the following relation holds:

(i) If d =r = 1, then as n +» », for any 2sps 2+§,
E[a(X_,¥)P] = 0(aP/?)
n’"n - '

(ii) if r > 1 and 51 has a bounded or square integrable

density, then as n + «, for any 2 sp s 246,

IR, T )P = 0(aP/2(10g n)P/?).
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Proof. For t, st <t 4,

(3.11) E{ max [X (s) - Y (s)|P] = El max |X, - ¥ [P
0ossst O n 1sisk 3 ]
i i -
s KE[1:??2 klji1c(tj_1,ij_1)nj ji1o(tj‘1'yj“)cj|]
i N i - o
+ KE[1 gm?2k|j§1b(tj-1’xj-1”tj -ty ) —7j£1b(tj_1,Yj_1)(tj -ty )T
L 3 3 P
: s KEL gm?§k|ji1(0(tj_1,xj_1) - ol 35 gl
i
+ KE[ max | I o(ty_4,¥5 )0y - gj)lp]

1sisk j=1

1
+ KE[ max % (b(t. .,% ) - blt. .,%. )t - t. P
1 §i§k|j:1 I-173AT 3j-1"73-1 ] 3—1I

[}
.
H
+
=

say. We first deal with I,. Let oy (s) :=0(ty_;,%5 1) - olty ;. ¥y ;)

for tjé s<t j = 0,1,**+,M-1. Since {oA(s), s < tk} is

j+1!
independent of {nk, nk+1,--°,nM} by the relation (2.4) of

Lemma 1, I1 is represented by

t,
I, = KE[ max IJ 1 6'(s)aB(s)|P1.
1sisk’0 T

Thus from Theorem 3.1 in [4] and the condition (1.2),

tk tk
(3.12) I, s KE[I[ oﬁ(s)dB(s)lp] s KJ E[Ioé(s)'p]ds
0 0

(t — —
< K| E[ max |X_(u) - ¥ _(u) [Pias.
n n
0 Osuss
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We next estimate 12. By the relation (2.4),

Elo(t; _4.¥5_1)(ny - cj>|3@j_11 =0 a.s.,

for each j, where }ej is the o-field generated by n1,---,nj,c1,-",
Cj for each 1 £j M. Thus, from Theorem 3.1 in [4] and (1.5),

(2.1), (2.2) and (2.3), we have

k

_ 2 p/2
(3.13) I, s KE[ji1E(|o(tj_1,Yj_1)(nj g 17184 40
s KE[ § ot 3. OI%ElIn. - ¢ |2]]p/2
= 521 j-1""3-1 j j
K
< KLg( Z Elln, - 2. ]121)P/2
3=1 J J
k(ka(2-8)/2,-8/2)p/2 ifd=r=1,
=
k(ka(2-80/2,-8/2, 0 p/2 ifro> 1,
(ke (a~8/24-8/2)p/2 ifd=r=1,
s <
\Ft(A_a/zn-é/zlog n)P/2 ifro> 1,
(keaP/2 ifd=r=1,
< <
kFtAp/z(log n)P/2 if r > 1.
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. 1 _ > _ B
As for I3, letting bn(s) = b(tj-1’xj-1) b(tj_1,Yj_1)
for tj§ s < tj+1’ j = 0,1,*++,M-1, we have from (2.1} that
t. t

(3.14) I, = KE[ max |J J bé(s)ds|p] < KJ K Blp!(s)]P1ds

1sisk ‘0 0 o

t — —

< KJ E[ max |X_(u) - ¥ _(u)|Pids.

0 Osuss ©° n

Combining (3.11)-(3.14) we have
El max |% (s) - ¥ (s)|®?1
0sss tl n a(e)l
t — —
< KJ E[ max |X (u) - ¥_(u)|Plds
0 Osuss ©° n
keaP/2 ifd=r=1,
+
ktaP’ 2 (1og n)P/2 if r> 1,

for any 0 st s 1. Consequently the lemma is proved by Gronwall's
inequality. Q.E.D.

Without changing distributions we can reconstruct
Wd-valued processes X and Yn on the common probability space
(0; %',P) by Lemmas 1-4 such that the conclusion of Theorem 1
holds:

1
Y KAZ ifd=r
1
my < E[d(x,Yn)p]/pé

A

X
R,p(P P N ,
KAZ(log n)2 if r > 1.

Therefore we finish the proof of Theorem 1.

1,
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