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ABSTRACT

In this paper the existence of the global solution of the outer pressure problem
of the one-dimensional polytropic ideal gas is proved (Theorem 1). We shall also
show that under some suitable assumptions the solution converges to a stationary

state (Theorem 2).

1. Introduction.

We consider the one-dimensional motion of the polytropic ideal gas with inward pressed and adi-

abatic ends. Assuming that the reference configuration is the unit interval [0,1], the motion is

described by the following three equations in the Lagrangian coordinate corresponding to the law of

mass, momentum and energy:
Uy = Vx»
v,
v, + R[i] = ,,,[._‘E.] s
u), u),

v, v2 0,
(.‘vet—-Ru +pu + k " ,’

for (x,r) € [0,1] X R, with the initial condition:

(u,v,e)(x,O) = ("o:Vo,eo)(x):
and the boundary conditions:

0

[- R 4 p.-‘;i](o,z) = [— R+ u—‘:‘—](l,t) = -P(H <0,

(L1)

(1.2)

(1.3)

(1.4)

(L5)
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0,(0,1) = 0,(1,¢)) = 0, (1.6)
where the unknown functions (u,v,8) are the specific volume, the velocity and the absolute tempera-
ture respectively, the given function P(¢) is the outer pressure, and the positive constants R, p, ¢y
and k are the gas constant, the coefficient of viscosity, the heat capacity at constant volume and the
coefficient of heat conduction respectively. The suffix ¢ or x denotes the partial differentiation with
respect to the variable ¢ or x.

For physical reasons, we assume

ug > 0, 6> 0. an
Assume v is the velocity of the smooth solution. Integrating (1.2) over [0,1] X [0,7] by use of
(1.5), we have
j; ! vdr = _j; ! vodx.
Since (1.1) - (1.3) are invariant with respect to adding any constant to v, without loss of generality,
we may assume
L‘ vodx = 0. (1.8)
Hence we have
j;‘ vdr=0. (1.9)

The local existence and the uniqueness of the solution of the outer pressure problem is esta-
blished by Tani [9], [10] and Secchi-Vailli [8] in the three-dimensional case. And in the one-
dimensional case results on temporally global existence problem for the polytropic ideal gas with

~ other boundary conditions are obtained by Kazhikhov [2], [3], Kazhikhov-Shelukhin [4] and
Nagasawa [6] etc..

In this paper the global existence of solution for the problem (1.1) - (1.6) is established
(Theorem 1), and the asymptotic behavior is studied under some suitable assumptions (Theorem 2).
Roughly speaking, if P(¢) has a positive limit P>0 as t-+o, then the solution (u,v 4) con-
verges to a stationary state (%,0,8) in W12(0,1) as ¢ ~ +, and the inner pressure R% and the outer
pressure P balance each other, i.e.,

RL = imrE = lim P() = 7. (1.10)
tetx

u tetx U

The convergence of the non-stationary sclution to a stationary state was established in {3] in the
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case that the boundary condition (1.5) is replaced by
v(0,0) = v(1,1) = 0.
In this case, constants i, @ are determined by the initial value and the parameters of equations and
(i,0,6) is a stationary solution of the problem. In our case, however except the case of P'(r) = 0, i,
9 is not determined by them (see (2.3) and (2.4)) and (. ,0,8) is not a stationary solution.
Unfortunately for technical reasons, we must assume that P(z) is positive-valued and P > 0.
From the physical point of view, P(¢) is a non-negative-valued function. The author showed in [6]
that in the case of P(t) = 0, the specific volume u is satisfied
u(x,f) = C(log(1 + )
‘or some constants C > 0, k = 1 which are determined by the initial value and the parameters of
equations. Therefore in this case any global solution (u,v,8) does not converge to a stationary state

as t - +o. (The global existence in this case was proved in [2] and [4].)

2. Main results.

For function spaces H"*%, H}*® and B3*® we should refer to [6, Eq. (2.2) - (2.6)]. And other
spaces W!-2(0,1) etc. are commonly used ones.

Throughout this paper we assume that the compatibility conditions are valid if they are not writ-
ten down explicitly.

- We will established the following theorems:

Theorem 1. If the initial and boundary data satisfying (1.7) and (1.8) belong to ug € H'*®,
vo € H2*® 9y € H2*® for some o € (0,1), and P(f) € C', then there exists a temporally global and
unique solution for the problem (1.1) - (1.6) such that this solution (u,v,8) belongs to

B} *® x HE*® X H}** and has generalized derivatives uy, vy, 0y € L2((0,1) % (0,T)) for any

T € (0,+®). Moreover u>0 and 0> 0.

Theorem 2. Assume that the hypotheses of Theorem 1 hold, and that P(t) satisfies

inf P(t)>0, 2.1
mp = inf P() @1

TV(P) = [P @t < +e. 22)
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Then the limits

= lim P() (> 0) and lim ['P'(r) f; w@mydxar
ttx fot
exist, and the solution (u,v,0) converges to a stationary state (@,0,8) in W12(0,1) N cl0,1] as

t - +o, where u, 8 are positive constants given by

- R 1|1 +e
0= m{]; [—z-vg + cyfp + P(O)uo]dx + J; P (-r)J(')l u(x,'r)dxd-r}, (2.3)
8= - i = {j;' [%W% + cyBp + P(O)up|dx + j;*“ P'(v) fo‘ u(x,'r)dxd'r}. (2.4)

Thus & and ® satisfy (1.10).

~ Remark. The constant state (i7,0,8) is a stationary solution of (1.1) - (1.6) with P(f) = P.

3. Global existence (a priori estimates).

The proof of Theorem 1 is based on the local existence theorem and on the a priori estimates.
However the problem is the one-dimensional case of [9], so the local existence theorem can be esta-

blished in the similar method. For details, we should refer to [9].

Therefore we investigate the a priori estimates of the solution (u,v,8) such as

Ha(-,)UAFD 4+ {1y, )UR® + 18-, )II2*D =< C(r), 3.1
. . . _1
mm{xle%?u u(x,1), xxe%’.:ln e(x,t)} =Cc~l(n. (3.2)

- From now on, C, C(-), C(*,") etc. denote positive constants depending on (their argument(s)
and) possibly the initial value and parameters of equations. For convenience we sometimes denote
different constants by the same symbol C even in the same sentence. When different constants

should be distinguished, we use the numbered symbol C;.

Here we introduce the useful abbreviations as follows:

= i st)s 1) = %)
m,(1) = min u(xy), My(f) = max u(x,?)

= mi W), Mo(2) = 0(x,?).
my(1) /i, 8(x,7), Mo(?) Jnax (x,2)

In proving (3.1) and (3.2), we need several lemmas concerning the estimates of the solution and

its derivatives.
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In order to get the estimate (3.2), we proceed the argument under the assumption that

u>0,06>0.

Remark. 8 > 0 is a consequence of u > 0. Indeed we apply the maximum principle [7] to

(1.3). In consequence of (1.7), we conclude that

8(x,t) = 0 on [0,1] x [0,+=),
6(x,t) >0 on (0,1) X [0,+=).

If 0(0,) =0 for some ¢¢€[0,+x), from the above inequalities and (1.6), 6,(0,r) =0,

0,(0,/) =0 and 6,(0,f) = 0 hold. Therefore from (1.3),

2
. i | 0= -
[p.u + k " ](0,)—0.
Hence it must be that

v,(0,¢) = 6,(0,¢) = 0.
But it is impossible because of (1.5). In the similar way, we get 6(1,f) > 0.

Lemma 3.1. We have
J;’(ﬁ + 0 + u)dx = C(). (3.3)

Proof. Integrating (1.1) over [0,1], we obtain

1
[}; " dx]' = v(1,¢) = v(0,7).
Multiplying both sides of (1.2) by v, adding them to (1.3), and integrating, we have

- x=1
{_‘:[%vz + cve]dx} = [— R%l + p.ril + gi—‘] »

- P()(v(1,1) — v(0,1))

- P() [fo‘ * dx)t.

Therefore we have

s [—;-ﬁ + oy + P(x)u]dx
=f [-;-vg + ey8 + PQuo|ds + [P'(x) [ u(xm)dzds G4

=C+ j;; |(log P('r))'|-P(-r)_|;1‘u(x,-r)dxd1'.

Now we apply Gronwall’s lemma, and then we get
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j;‘ [%v2 + ¢y + P(t)u]dx = C(®).

Since P(t) > 0, we have
_()‘ ude=C@EP(r) = C(). O

Lemma 3.2. We have

UQ) + jo‘ V(r)dr = C(9), (3.5
where
U@ = J;l{%vz + R(u—logu—1) + cy(d ~ log @ — 1)}4:, (3.6)
- 1 v} 03
V() = j; { s k=3 ]dx. 3.7

Proof. From (1.1) - (1.3), (1.5) and (1.6), it is easy to show the following identity:

v+ ve) = ® - PO)([ war),.

Therefore, by Lemma 3.1, we have

UG + [ V(x)ds = U(O) + Rf (s — uo)dx
- P(r) J;‘ u dx + P(0) _()‘ uodx + [/ P'(r) j;‘ u(x,r)drdr = C(f). O

Lemma 3.3. We have

u(x,t) = —B;G;T(—J[uo(x) + j: %B(x,T)B(x,-r)Y(-r)d'r] (3.8)

where
B(x) = exp{—}fo‘(vo(e) - v(e.:))d&}, (3.9)
Y(@) = exp{% j;‘ P(‘r)d’r}. (3.10)

Proof. Integrating (1.2) over [0,x] X [0,7], and taking exponent, we get

L _exp [%f ﬂ’ﬂldT] = SBEAY.

u(x,t) 0 u(x,T) ug(x)

To calculate the exponent part of the left-hand side, we multiply by %6, and integrate in z. Thus,

we have

R ot 8 1 R
_ —_ = — = 06-B- . o
cxp[ 'o " d'r] 1+ o ’o 0-B-Y dr



KSTS/RR-85/016
October 28, 1985

.7
Lemma 3.4. We have
My(r) = C(5)(1 + Mu(‘)V(‘)); G-11)
mo(t) = C"[l + j;‘m:’a) ]_ . (.12)

Proof. For any t = 0, there exists y(¢) € [0,1] such that
00(1),) = [ 6 dx.
Therefore we have

1 1
02 (x,t) = 02 (y(1),1) + f,f,)el(i

202 (£,1)

d§

1 1
1 2 1 1 62 2
= [J; 0dr) )1+ 7 | jdx]

Using Lemma 3.1, we obtain (3.11).

Setting 0~! = w, we rewrite (1.3) as follows:
cooof®) helurs 2f,, - )Y, &
v u ), ¥ u * 2p 4pu

2
SK[-“,—X] + R .
u ), 4dpu

We multiply both sides by 2re®~!(r> —21-), and integrate over [0,1]. Since w,=0 at

x =0 and 1, we get the following estimate through the integration by parts and Hblder’s inequal-

ity,

2eyr(f! «»”dx)l-i'l_{ (5 avaz) %}: )

1
2 1-2=  p2 r \ar
el oy 2r—2 9% 1o r _R” Je1|l 2'
=< x_j; 2r(2r - Do —utb:+2cvr(j; m'd:) Zncy J; 2 = -

Majorizing the first term of the right-hand side by zero, dividing both sides by 2yr(f’ w¥ix) ¥,

and integrating over {0,t], we have

1
[j;‘ o) = c[1 + j;‘;—‘:("—f)- )

Putting r - ®, we get (3.12). O



KSTS/RR-85/016
October 28, 1985

-8-

Lemma 3.5. We have
M,() + [ My(r)dr = C(), (3.13)
m,(£), mg(t) = CT1(r). (3.14)

Proof. From the assumption on P(r), and Lemma 3.1, we have
0 < C~Y(t) = B(x,1), Y(£) = C(r).
Therefore, using (3.8), (3.11) and (3.12), we have (3.14) and the estimate
M) = C(®) [1 + j;‘ M,‘(T)V(T)d'r].
Taking into account of (3.5), we get

M, () = C(r)
" by Gronwall’s lemma. Using (3.11) and (3.5), we have

j;; My(v)dr < C(r). O
Lemma 3.6. We have
j;l(v“ + 0%)dx + L‘j;‘(o,% + vAv2)dxdr = C(1). (3.15)

Proof. Sctting w = —;-vz + cy8, we rewrite (1.2) and (1.3) in the following form:

X 9!
= |- R~ Ws =1 .
w, [ Ru+p.u+xu]x

Multiplying both sides by w, and integrating over [0,1], we have
11, 1 8%
[j; 2wdx]f+xcvj; udx

1 1) v 9,wv,
= j(" {[RTV - ux](w, + cy8y) — x xu x}tix

- P(t){v(l,t) [%#(1,:) + cVO(l,t)] - (0,0 [-;-#(o,z) + cve(O,t)]}

kcy 102 1| en2 | Vi
L T g

=
+ CPEOALA] + PO + b)) + (0.0)0(0D.
Taking into account of (1.9), v3| can be majorized as follows:
M= 3.‘;1 v ldx = (e _’; ! vividx + C (E)J;l vzdx] (3.16)

for any € > 0. From (3.13), (3.3) and (3.7), we have
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1 1 1
W= f'bvelde = [J;‘%a]’ [j;‘ ,L%ax]’ = C(OV2(s), (3.17)

L
0= J;‘ 0 dx + j;‘[e,ldx =c@) + [j(‘)‘ ezdx]’.

Therefore we have

1
Vol = COVE() + ¢ j;‘ 02dx + C(e,)V(r)
for any € > 0. Taking e sufficiently small, we have

1 1 1|22 | v
(£ waaz), + f' 02ar = C(t){l + Ve + [ [T + 22 | (3.18)
Here we use (3.13). Multiplying (1.2) by v3, and integrating over [0,1], we have
11 4, - _ 3 — 3 Ha0 _ ¥zl
[J; rad dx]‘ PO{V3(1,0) — v¥(0,0)} + 3_’; R = |V v, dx
16%2 1vd?
= C() [V(:) + j; -—u—dx] -2 j; —‘u-—dx. (3.19)
Here we use (3.16) with e sufficiently small and (3.17). From this estimate (3.18) and (3.17), we get
14 o g2 telea2 o 2 ' 1 g2
L vt + 0%dx + j")j; (02 + v2¥)dxdr = C(£)|1 + L max vz(x,'r)j; (} dx]
¢ 1,,
scoi+ fvafe dxdr).
Applying Gronwall’s lemma, we get (3.15). O
Lemma 3.7. We have
1
j; uldx < C(t). (3.20)
Proof. Differentiating (3.8) with respect to x, we get an expression of u,. From it, we have

J;‘ uldx < C(f) [J;‘ Vidx + 1+ fo‘{j;‘ 02dx + Mej;‘ 81 + vz)dx}d-r] =c@. o

Lemma 3.8. We have

1
L‘ [ vidxdr = CQ). (3.21)
Proof. Multiplying (1.2) by v, and integrating over [0,1], we have

2
[j;‘ %v’dx]' + P(f) (j;‘ uds), + wf l:ﬁ-dx

LR 182
-R_j;-u—-dxs 2_[; udx+C_|; udx.
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Therefore, we have
11, 1 Bt 1£
_‘; 2vdx+P(t)j; udx + 2_‘;}; udx
= [' Lozar + PO [ uodr + [P @[ u dudr + Cf'[ L
o 20 o 0 o o odo “u °T

= C(),
from (3.3) and (3.13) - (3.15). O

Lemma 3.9. We have

1 1

2

1 tol 2
f vids + [I videde s C@)|1 + {j;‘ v,"(O,‘r)d‘r} + {fo‘ v,2(1,1)47} . (3.22)
Proof. Multiplying (1.2) by v, and integrating over [0,1], we have

11, 1 Y
[J; 2vxdx]‘+‘]; " udx

0, Vex u, 0V, VellyVor

= J;‘[R " -R = + 2z ]dx + v, (1,0)v,(1,8) — v(0,5)v,(0,0)

2
1 V& 1 1
= [ [fo okds + (3() + max 2] u,zdx]
+ vx(l,t)v,(l,t) = Vx(oyt)vr(o,‘)- (3.23)
From (3.15), we have

[ Mi(ryar = J(')‘[j;‘ 0ds + f! 20(0,dz)dr = Cf'['(9% + 02)dxdr = C(s). (3.24)
— Integrating (3.23) over [0,t], we get

1 tel ¢
J; vidx + j; _,; vide < C(t) [1 + J; ax v2(x,7)d7

1

2

2

+ {j;; v,z(l,'r)d-r};‘ v}(l,'r)d'r} + {j;‘ v,z(O,'r)d'rJ;' v%(O,-r)d‘r} , (3.25)

from (3.20) and (3.24). We must evaluate the right-hand side of (3.25). From (3.21), we have

¢ t) 1 1
_‘; pax vi(x,r)dr = J;[J; vidx + _’; 2|v,vn|dz}d-r

Se J; y J; ! vidxdr + C(E)J;'J;l v2dxdz

=< ej;'J;l vZdxdt + C(e,f). (3.26)
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From (1.5), we have
[ vimdesc j;‘(pZ(-r)Ms(f) + M3(7))dr = C(s). (3.27)
In the same way, we have
£ v30.0dr = c@). (3.28)

From (3.25), (3.26) with sufficiently small €, and (3.27) - (3.28), we get the assertion. O

Lemma 3.10. For any € > 0, we have

f o2ax + [ j;‘ 0%.drds = €[ (3(L7) + v}(0,))dr + Cle). (3:29)
Proof. Multiplying (1.3) by 6,,, and integrating over [0,1], we have

. 02
{j;‘ %"-egdx} + fea

- evx w0 w00a ]
J;) u uz

02

= j; - -—dx + C(t){max v3(x, :)J; (0% + v)dx + max e{f }

Therefore, we have
1 tel
j; 02 + j; j; 02 dxdt
' 2 12 2

=C(@) [1 +J; {xléx[g‘xn vi(x,7) (1 + j; v,dx) + xxagﬁ] ex(x,-r)}d-r]. (3-30)

Here we use (3.15) and (3.20). From (3.22) and (3.26), we have

f‘ max vide s «f) ‘v3(1,7) + v¥(0,7))dt + Cley,0), (3.31)

and

¢ 2 .2
j; max v3(x,7) j; v2(x,7)dxdr
t 1
=< [’ max v2(x,r)dr max [ v3(x,7)dx
”; 2€[0,1] %(557) Te(o.n"; %(%:7)

= {ez J; ! j; ! vidxdr + C(ez,t)}
1

x c(|1 + {j;' v,=(1,f)d1}5 + {j;‘ v,2(0,'r)d‘r}

1 1]?
= eCc(|1 + {J;' v,2(1,-r)d-r}2 + {j;' v,2(0,'r)d'r}2

1 1

+ Cleg,)|1 + {j;‘ v,z(l,‘r)d'r}z + {j;‘ v,z((),-r)d-r}z

L
2
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S & [ (3(1,7) + vH(0,m))dr + Clea.), (3.32)
where

€3 = €,C(t) + any positive number.

In the same way, from (1.6) and (3.15), we have

¢ 2 tel
j; max 02(x,7)dT = j;j; 2[00 |dxdT

= ef j;‘ 0%dxdr + Cleg) [ jo' 02dxdt
= ef L‘ 02,dxdt + C(esst). (3.33)

Setting ¢;’s sufficiently small, we get (3.29) from (3.30) - (3.33). O

Lemma 3.11. For any € > 0, we have

LJ) 62axdr < e[/(3(1,7) + v3(0,7))d + Cle,). (3.34)
Proof. From (1.3) and (3.14), we have

tel o t 2 2 1 5
j;_]; 07dxdr = C(1) | {[Me(t) + max vx(x,'r)]'l; v2dx
2 12 142
+ ax Ox(x,'r)_]; uldx + _]; endx|d-r.

It yields (3.34) by use of (3.24), (3.32), (3.20), (3.33) and (3.29). ©

Lemma 3.12. The function v(x,f) possesses a generalized derivative v, € L*((0,1) x (0,1)),

and we have

S vide + [ vidxdr + [I0310) + v(0,m)dT S CO) (3.35)

Proof. For a positive number At and a function f(x,?),

AF S fx e Af) = S0
From (1.2), we get

] a- 22+ u2) |

At At x
Multiplying both sides by AA_‘tL’ and integrating them over [0,1], we get by the integration by parts

with the boundary condition (1.5),
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Lpfar),) _[- ap av )
27 | At . At At} _,
o Al
Ae Vy Ve
+f u(x, t+At) At At + ROG,7) At

B

Av,
u(x,t+At)[ ] TRTAr v At d.

We evaluate the first term of the right-hand side as follows:

AP 2
+
At ‘r€[r 1+At]lp (T)I[ At] 1]’
2 2
Av 1) [ Av Av, Ay
At] =] _AT]+2At At

e,

2
[ "] dx.
At
Therefore, we have
IA"zdx + ,Av,’dx+ szl + sz0
hlar) &t b= ar) B+ (5] @9

] :
=C@) 1+f [ 0% +v3) + %] dx|.

~ Integrating over [0,t], we get

(e el {0 (o)

fA 2
sC(t)[j;l A—:]dx +1

—

sl (av) |2
Ao Av B ] a2 4 u2
{At] + [At] + AT (0% + v{) |dxdr].

+ 5k

{

By the application of Gronwall’s lemma, we have

J;‘{[%]z(l,‘r) + —] o, )}d-r +f [A"] ax+ '] [ At] dxdr
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()

av) a0)?
= C(z)[fo’[-z%] dxl Jr1t j;'j;‘ [A—‘:] + || @ +Dasar]. (3.36)

The right-hand side is bounded when Az - 0:

ﬂ(thc right—hand side)
1f {8}, ', tfrlg2 22 4 2
= C() _g{ R[uo] + p.[uo] }dx+ 1+ j;{j; e,dx+x?[g§]v,,j;(e + vddxldr
= C(e,t) + € j(') ‘v3(0,7) + v¥(1,1))d,

" for any € > 0. Therefore the left-hand side of (3.36) is also meaningful when At -0, and we

obtain the assertion ([5, Chap.II, Lemma 4.11]). O

From the previous lemma and (1.1), we recognize that a generalized derivative u, exists in

L2((0,1) x (0,1)) forany > 0.

Lemma 3.13. We have

[lo2+ oax + [[[ (v + 62 + 0})dxdr = C(1). (3.37)

Proof. The assertion follows from Lemmas 3.9 -3.12. 0

Hblder estimate (3.1) can be obtained from these lemmas with Sobolev’s imbedding theorem,
— Nirenberg’s interpolation theorem and Schauder estimates of the parabolic equations (see [1]).
The existence of a generalized derivative 0., € L2((0,1) X (0,£)) can be obtained in the similar

manner to Lemma 3.12 by use of (1.3).

4. Asymptotic behavior.
In this section, we shall investigate the asymptotic behavior of the solution under the additional
assumptions (2.1) and (2.2). It is easy from these to see that there exist positive numbers P and Mp

such that

lim P(f) = P, 4.1

=t

(5o PO M “r
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Under these assumptions, looking back the proofs of Lemmas 3.1 - 3.4, we obtain’

Lemma 4.1. We have

£ 02+ 0+ uwds + UG + [ V()ar = C, (4.3)
Cl=sBGixspsC, 4.4
My(t) = C(1 + M, ()V(2)). (4.5)

The constant C does not depend on t.

In consequence of this and next lemmas, constants C(¢) in (3.17) and (3.19) do not depend on 7.
Therefore when we quote these in this and next sections, we should interpret them with the replace-

ment of C(¢f) with C. We can get some more estimates not depending on ¢ with some revision of the

proofs.

Lemma 4.2. We have

M@ sC, (4.6)
m,(1) = k. “4.7)

Here k is a positive constant not depending on t (see Remark after this lemma).
Proof. From (3.8) and (4.5), we have

Y(OM, () = c[1 + _’;‘ Y(v)dr + j;’ Mu(‘r)V(‘r)Y(‘r)dT).
Applying Gronwall’s lemma, we get
M) = cri@) 1+ I Y(r)ar)exp (C [ V(r)ar) = c¥=1() (1+ L Y()dt).  (4.8)
~ Here we use (4.3). From the definition (3.10) of Y(¢) and the assumption (2.1) on P(),
lim Y~!(s) = 0, 4.9)

1tz

and

- 1
j;' Y)Y (r)dr = J;' exp{— - j; ‘P(.r)ds}d-r
texpl— 2P (s — B
= j; cxp{ m (¢ -r)}d'r = — (4.10)
From (4.8) - (4.10), we get (4.6).
To get (4.7), dividing both sides of (1.3) by 8 and integrating over [0,1] X [0,7],

j("l(cvlog 0 + Rlog ug)dx < j;l(cylog 0 + Rlog u)dx

= cvlog{j;l 0 dx} + Rlog{_’")l u dx}.
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Here we use Jensen’s inequality. Thus,

2=

000 = [fear=c(fuar) “=c>0.

Here y(¢) is the same as in Lemma 3.4. Therefore, we have

x 0:(§,0) d
¥ L
202 (¢,0)

1 1
02(x,0) = 02(y(0),0) + 3

= {j;‘ 0 dx}%

1
-~ =C - Cvi(),

1
1 167 |2
1- ?[M,‘(t) L oz

ie.,

8e=C( - V().

From (3.8), we have

m, (1) = CY~I(p) [1 + j;‘ ¥(r)dr - [ ‘ Y(T)V(‘r)d‘r).

Since V(t) (= 0) € L1(0,+), for any € > O there exists T; = T (e) such that

+x
j;.l V(r)dr < e.
When ¢t =T,

Y"l(t)_];; Y(v)dr = J;‘ exp{— %L‘ P(s)ds}d-r v
= j;' cxp{— %(t - -r)}d'r

M
I SR Pl
= My {1 exp[ Tl]}.

From (2.1), Y(f) is 2 monotone increasing function of f, so we have

0=7y(r) 'g Y(1)V(r)dr
=Y"(s) j;r‘ Y(r)V(x)dt + Y~ 1(2) -‘;", Y(r)V(r)dv

= Y- Y (O)Y(T)) J;*’ V(r)dr + fT‘1 V(r)dr

1 ot
= chp{-— -;frlP(-r)d'r + €

m
= Cexp{— —p::-(t - Tl)} + €,

(4.11)

(4.12)

(4.13)

(4.19)

(4.15)



KSTS/RR-85/016
October 28, 1985

-17 -

from (4.3) and (4.13). From (4.12), (4.14) and (4.15), if € is sufficiently small and T, (= T,(€)) is

sufficiently large, then for ¢t = T,,
m, (1) = —21";—?
Therefore, taking into account of (3.14), we have

m,(f) = min{—"— c-‘(rz)}

where C~1(¢) is the same as in (3.14). O

Remark. It seems that the constant k in the previous lemma can not be expressed explicitly by

the constants R, p, ¢y, k and the initial data.

Lemma 4.3. We have

1 1 1 1
J; v* + 0%)dx + j;'{j; (02 + v¥vddx + J; vdx- j; vfdx}d'r < C(k). (4.16)
Proof. The proof is almost the same as of Lemma 3.6. w is the same as in Lemma 3.6. From

(1.2), (1.3) and (1.6), we have
[w - cvj: 0 dx)‘ = w, + cy0, — (cvj: de)'

Ov VVx 0. 1 0v, v?]
= — — — — — -— _+ — .
[ Ru +p.u +K“]x J;[ Ru e dx.

Therefore, by use of (2.1) and (4.2) we have
- {—f (w—cvf Odﬁ) }
= f [ —_+ K%x-] (w - cV_!;l 6 dg]dx

Bv, vZ
_ J;l(w - cyj;‘ede)dx-j;‘[—x : + p.—u—]dx

= P(1) [— %ﬂ(l,:) + %ﬂ(o,:)
+ cvv(l,z‘)[.j;l 0dx — 6(1,:)} - r:vv(O,t‘){_[(;l 0 dx — O(O,t)}]
-j;'[—R—oul+ ][ +cve]

- —de_[[xev"+ 3]dx
£ o
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sC [lv(l,t)P + (0,0)P
+ }V(L:){J;‘ 0 dr — 9(1,:)} + 'V(O,t){j;l 0 dr - °(°")}ﬂ

KCy 103 1| 6242 vzvg]
3 udx+c'!(.)[u + —=|dx

- [P‘- - e]j" vzdx-j;lﬁdx + c(e)f! viax-[' 6%x
2 0 u 0 0 .

for any € > 0. Taking e sufficiently small, and taking into account of (4.6) and (4.7), we obtain

{f°‘ [w - ef adg]zdx} + j;‘ o2s + [ viar [ vids
= cfycwop + bosp + }«m{f; o - 0.0}

v2v2
+f1—i-dx+ k max vzflezdx :
0 u x€[0,11 0

+ ‘V(O,t){.’;‘ 0 - O(O,t)}

From (3.16) and (3.17), we have

Ve = ej;l v¥vidx + C(e)V(2),

and

1
= Cvz(‘)lfy:o 0,dx| = ef ' 62dx + C(V(s),

‘v(j: odx — 6

where y(¢) is the same as in Lemma 3.4.

From (4.17) - (4.19) with e sufficiently small, (3.17) and (3.19), we get

_ [ J;l{(w -y J(',l ] d£]2 + Cv“}dx]' + j;l(e?, + viv2¥)dx + j;‘ vZdx J;' vidx
= cv(r) [1 + kf) o).

On the other hand, we have

_];l(w —evflo dﬁ)zdx = [ whdx - 2e0f! war [ 0 ax + ca[J;‘ 0 dx]z.

From (4.3), we bave

1
1 1 1 2 .1 1,1
j; wdx-J; ede[j; wzdx} fo odxsEJ; w2dx + C.

Integrating (4.20) over [0,¢], and by use of (4.3), (4.21) and (4.22), we have

J; ! wldx + J;‘{j;) ! (0?; + vzvf]dx + _‘;l v2dx~_’;l v?dx}d-r

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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= C + C®); V() j;‘ widxd-r.

Applying Gronwall’s lemma, we get the assertion. O

Lemma 4.4. We have

-’;‘ uldx + j;' J: OuZdxdr < C(k). 4.23)
Proof. Multiplying (1.2) by (log u),, and integrating over [0,1], we have
»le 2 o f[u 2
2 .'; (log u), dx'+_‘(‘)R_;__u_ dx
(v -1{{2) 2}
x=1
= {J;l v(log u).dx } +f [_ + Rexu, dx [ ] . w2t
x=0

Multiplying (1.2) by v, and integrating over [0,1], we have

1 ( 12 ] _ Bvu, 0,v

E"; dx) = juv|— f = - 7+R " dx. (4.25)
From (4.24) and (4.25), we have ’

[f p.(logu), +v ] j;R []dx

- {f v(log u)xdx} . f R[ 81 e:: _ e;v]dx.

Integrating over [0,t] by use of Lemma 4.2, we have

- J;l(uf + v¥dx + _‘;‘j;l OuZdxdr
= C(k)[l + J;‘ ugdx + [ [|e,u,| + |ovuy| + |9xv|]dxd'r}
1(pt 1
< 2(f' utac + [ oudrar)
2
+ C(k){l + j;‘ vidx + L‘};‘ [% +ov2+ 02+ v2]dxd-r}.
From (4.16), (4.3) and (3.17), we have
62 2
foj; —o-+6v2+9,+v2dxd-r
02
sc(k)f{f [ +02]dx+ m(gx”vz[1+f edx)}

s cwfve + [o2dx)d= = C®).
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Thus, we get the assertion. O

Lemma 4.5, If there exist a positive function €,(x,t) and positive constants €, €3, €, such that

»_ ., __1 p2R
el yo [ez + o + R =e >0, (4.26)
€(xt)=¢>0 4.27)

for t = 0, then there exists a constant C(e;, €3, €4, k) which tends to infinity as ¢; - + 0 (i = 2,3, 4),

such that

Ll ! v2dxdr = Cley €3 €4 k) (4.28)
holds.

Proof. From (1.5) and (4.3), we can rewrite (4.25) as follows:
2
1,1 1,1 1 0 v,
3 j; v {(x,t)dx = Y j; v§(x)dx + J;'J; {[R: - P]vx - p.—;:—}dxd'r
2
telfle - k]2 1 |g8 _
=C+ _|; j; {[el ” ]v, + Ze, [Ru p] }dxd‘r. (4.29)
Integrating (1.2) over [0,x], by use of (1.5) we have
*,at) = [- =2 %
(j; vd&]'—[—Ru+P]+p.u. (4.30)
Multiplying both sides by R-:— — P, and integrating over [0,1] X [0,7], we get the estimate as fol-
lows:
‘ eol] 0 2
_ j; j; [R; - P] dxdr
tpl -] x A N)
= j")j; {[P - R;—] [j; vd ]' + p.—u-{R7 - P]}dxd-r
T=t
_ 1 _ 2. x _ rtrilpr _ 9 x
= [J; (p Ru]j; vdgdeo N {P R[u]'}j; v didxdT
tel on
+ J; J; p.{R

Z P(log u),}dxd-r

1
sc+ | vzdx)%[MP +Zle dx]] + (£ vax) > Tvep)

2
et R v  om ¥ k8] 1]
+R[ [ [CV+1]u2+cV u2+cv[u xuj;vdgdxd-r

V.0 1 ]""" tel _,
uzdxdf—[pJ;)Plogude_o+pj;J; P’log u dx

+ L e
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= C(k) +R[c ]ff {(iv2 [ v Buy

) oo

J‘(f Vde] f‘v"dxd ——ff[ - ‘""j; dg]dxd-r

+ L5

= ck)|1+ fot[,’é‘[‘o’ﬁ, ) J;‘ 9 dx

+ (j;lvzdx]%(f (92+v2+0u,)dx+ max v2[' edx] dr

x€[0,1]1 0

© e

02
+ Lo+ v+ [eug +or+ 03] (" v2ax) * fteas

v2
+ j;‘{ez j;':’;—dx c‘z,cgl;)z [ s f! 24;}

= Cleg, k) + €& J;’ (4.31)

Here we use (1.1), (4.3), (4.7), (1.9), (1.5), (3.17) and Lemmas 4.3 - 4.4. The last term can be cal-

culated by use of (1.1) and (1.3) as follows:

e =—ff[ L) oanin
[ j;ledx] ‘o'dxd
- [_ (e ] {-R(:;" + p§-+ x[%]x%}dxd'r
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Therefore from (1.5), (4.3) and Lemmas 4.3 - 4.4, we have

T=¢

¢ 01 OV _ 1 10 tpl V3 0,u,
A 2 dxdt = cy + R c"[ 5 udx]T_o+ A [”‘uz tx3 dxdt

2 2
to1] o 0% 2 B pretVz
= C(k){l + Lj; [e, + e + eu,]dxd-r} + o Rj;j; = dxdr

2
tplVy
s Ck) + _ch R j; j; = dxdt (4.32)

Combining (4.27) and (4.29) - (4.32), we have

1,1 eetfp 1 p2R 2
2-’;) Vzdx*"‘;";{u “ 4elu2[52+0v+R sdedr = Cleg, 4, X).

This gives the assertion. O

Lemma 4.6. There always exist €\(x,t), €, €3, and €,.

Proof. Consider a function ®({ ; #) of { with a parameter u:

e g2y By L bR
Q(I »u) c2+ u; 4“2 [€2+ Cv+R].

Maximum value of P is

wlcy = €(cy + R)

cu) = o(E 0 = 4.33
max ®(C ;1) = @(Fo 5u) = T (4.33)
_ We choose ¢, sufficiently small such that
m?x oL ;u) > 0.
The condition (4.26) can be rewrite as follows:
D(ey(x,?) ; u(x,r)) = ezei(x,0) > 0. (4.34)
So we choose
(x,8) = 27&_;)' (4.35)

From (4.6), the constant €, exists, and (4.27) holds. From (4.33), (4.35) and (4.6), we can choose
€; such that

D(ey(x,0) s ux,t))  wicy = &ley + R) _ wley = ex(cy + R)
€(x,1) T 2p(ey + R)u(x,t) 2p(cy + R)C

= €3,
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so (4.34) holds. O
Lemma 4.7. We have
2
5 [R% - P] dxdr s C(k), (4.36)
Jim ' v = o. (4.37)

Proof. (4.36) follows from (4.31), (4.32) and (4.28).

To prove (4.37), we rewrite (4.25) again as follows:

2
£ % £ vzdxld-r <[ fo‘{[R% - p] + C(k)vf}dxd'r.

" Since the right-hand side is bounded from (4.28) and (4.36), liin _j; ' V2dx exists. On the other hand,
tetx

j; ' v2dx € L1(0,+w) (see (3.17) and (4.3)). Therefore the limit must be zero. O

Lemma 4.8. u and j;l 0 dx have limitsas t -+ ;

u(x,t) ~u as t-+w (4.38)

uniformly in x € [0,1], and

flodc-8 as 1+, (4.39)
where it and § are positive constants given by (2.3) and (2.4).

Proof. In order to prove the convergence of u, it is enough to show that for any € > 0, there

exists T; > 0 such that

[u(x,2) ~ %(0,2)] < C-e, (4.40)
and

b;' u(x,f)dx — @] < C-e (4.41)
uniformly in x € [0,1] for = T;. Indeed (4.40) implies

lu(x,t) -f u(x,t)dx|< Ce

uniformly in x € [0,1] for = T,.

In the similar way to Lemma 3.3, we have

uxh) = 3 ox ;T:)Y(t 5 [u(x,T4) + fT" f—e(x,-r)a(x,f s T)Y(T ;T4)d1‘], (4.42)
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where

B(xt 3T, = exp{ﬂ,‘(v@,m - v(e,t))de},

(4.43)
Y(t 3Ty = ﬂp[% J'T“ P(’l‘)d‘f} (4.44)
for any T, € (0,T3).
From (4.43), we have
1 1
exp| - %[[.(,' (e.0a)* + ([ Vz(ﬁ,‘r)dglz]
1 1
B(x,7 ;Ts) 1 > —]
= ety = cxp[;;[[fo‘ eade)® + ([ vAenae)® ] (4.45)

Therefore because of (4.3), (4.6), (4.16), (4.28), (4.37), (4.44) and (4.45) we can choose
T, = T4(e) such that

(BT
B(X,t H T4)

t ol
fr‘_’; (62 + v3)dxdr < €2,

4.46
b;‘ u(x ) v(§,t)d§dx| <e, (4.46)

L[ s grsasse - £ e

max 1i<e,
x€[0,1]

<e
\

for t =t = T,. Nextwe choose T3 (> T,) such that
( u(x,T,) u(0,T,) <
Bt TY(E:Ts) - Y(3Tq)
1

YG 3 To) J;l u(x,T;)dx| < e,

(4.47)
;Ttl;T_o-Ql u(x,Tq) [[” v(6.Ts)dbdx

<e€

\

for ¢t = T,. Itis possible to choose T; as above by use of (4.6), (4.3), (4.43), (4.44) and (2.1).

From (4.42), we have
u(x1T4) u(O,T4)
) = w0 = g Sva Ty T Y6 TS
1 R 1.t B(x,73Ts) )
+ mfn;'[_‘; 6de+1+ TJ;J Ofdx] m = 1[¥ (7 ; T4)d~
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1 R 1 ptg )
+ TR fT‘ " [e * j; e,(x,-r)dx]y(t ;s To)dr
Y(7;T
= Cre+ cref XiTo)

TYG Ty

= C-e.

Here we use (4.46), (4.47), (4.3) and (2.1), and estimate the integral [’ Y(r;Ta)

T‘md'r in the similar

way to (4.10). Thus we have shown (4.40).
Before proving (4.41), we must have some calculations. From (2.2) and (4.6)
. ¢, 1
’1_1.?; J; P ('r)j; u(x,t)dxd
exists. By L’Hospital’s theorem, we have

. 1 ¢ 1 . 1
‘l_lﬂ YG 3T j;.‘ -;-L—Y('r s Ts) j; (cv® + Pu)(x,7)dxdT

%Y(t ST[ (evd + Pu)(x.a)dx

e —i—r(r)r(z iTy)

lim }%)'{fol [%vg + eyl + P(O)uo]dx

+ [P utxr)dxdv - ! %vz(x,t)dx}

— _Cv+R_
- R

Here we use (3.4) and (4.37). Therefore (if necessary, we reset T larger,) we may assume that

1 ¢t 1 . 1 cy + R
TG T fr. " Y(7;Ts) j; (cy® + Pu)dxdr R xr|< € (4.48)
for t=T,.

Now we multiply both sides of (4.30) by », and integrate over [0,1]. We get
1 1 1 1 x 1 x
['ROdr= [ Puds+uf vods- [_ro uff vdtds), + [l uf’v deds

= [ Pudr+ (f wax- g wf*vdtds), - [ vdx. (4.49)

Here we use (1.1) and (1.9). Therefore, we have



KSTS/RR-85/016
October 28, 1985

-26-

1 ¢ 1 1
Y(t;Ts) J;-‘ . Y(r; TA)J; RO(x,7)dxdT

= y(,?n)f‘ iI’('r;T.;){_l;ll’udxﬁ- [""J;l“d"J:“J:Vtiﬁdx]t—j;lvzdx}d’r

Ts i

- 7(,—1;5{ [Y(v STOf) wGemdz =S¥ T wGen) ff v(e,f)dgdx]“n

S (D) [fp(f)fo‘ w(e,) [ v(Em)dtdx - f! vz(x,f)dx]dr}
= [ ute)ax - % £ ute) 7 v(ededs

- T Tk T+ Sy MO e Todes

+ Ydm I Ly ;m[fs)-fo‘ wGem) [ V(g m)deds — [ vz(x,'r)dx]d'r. (4.50)

Te @

On the other hand, we have

1 t
Y(t;T4) s

= Y(ttﬂ) [Y('r ;T4).,;l “(‘:T)d’]:;'o - mﬁ. Y( ;T")j(‘)l u(x,)dxd

- _’: u(x,t)dx — ﬁ_f: u(x,T4)dx — ﬁf;‘ Y(r :T4)J("l v (x,7)dxdr.

From this and (4.50), we have

%Y('r s TOP() [ u(e,)dxds

YG 3T4) J;.: —:TY(T ;T4)j;l(cv9 + Pu)(x,7r)dxdt — CV—;R-J;‘ u(x,t)dx|

C
s_v_{
R

- + IT‘ITJ [fo‘ u(eTds = [ uG T [ v(s,n)dgdx”

-y wCe ) v(E g

* yrTyhYe ;ml& (igl £ uGen [ v(g gz - f) v2(x,-r)dx] |d-r}

1 1
+ a1 j; u(x,Ty)dx + €

t Y(T H T4) 1 ‘ol )
J;‘ Y(t ;T4) dr + de -‘;'4.,; Vx (x"r)dxd’l‘
- (4.51)
The last estimation is a consequence of (4.46) and (4.47).

(4.48) and (4.51) imply (4.41). Taking t-+= in (3.4), we can easily get (4.39) by use of
(4.38). o

Lemma 4.9. We have
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f w2 + vZ + Oz)dx + f j' (v& + 03)dxdr = C(k), (4.52)
lim f (2 + v2 + 02)dx = 0. (4.53)

e

Proof. The proof is carried out only in the case in which the initial data and P(r) possess the
greater regularity such that a classical derivative v,, exists. It is easy by the density argument to see

that we can eliminate the need for the extra regularity.

Multiplying (1.2) by {v, - %(Re - Pu)} , and integrating over [0,1], by use of (1.1) and (1.5)

X

we have

2 2 2
1rtos Upl % Yo  R2 8 | R POu;
{21; vxdx}+_];[1’[u]‘u,,+pu + " t T2 dx

0
-j;{ L®e - Puyv, + R ‘:’“ -R

R 00.u, 0,Vye viu,8, R Pe,u,}
+ = +R -R + = dx
u? u u2 | ]

[
11 l_& xx 2 02
:(Re—Pu)vx,dx+f ——dx + C(k) f 02+ —= o dx
1 1 1
(('odr+ 1+ [ o2ur) [ oular
+ (c@ £ vz + ef! v,,dx ] (4.54)
for any € > 0. Here we use (4.2) and (4.7).

On the other hand, from (1.1), (1.3), (2.2), (4.2), (4.3), (4.6), (4.7}, (4.11) and (4.23) we have

T=t

- J'T’.‘; [— u dxdr = [ lI"u u (x,-r)d'l’] ur,
u 2 Pv, lu z
- bA {%E[Tx] + 2‘[; }dxd-r, (4.55)
J:,’;llp'lufdxd-r = f'lp'l_rl u,%dxd-r = C(k)j;.‘JP'Id'r, (4.56)

fr"j b, lu2dzd = C [ { 2 4 (j(',‘ 0 dx — e)2 + ez}u,%dxd-r

= Cf;’{(c(e)j;l vidx + e_l;l vidx + j;‘ ogdx]j;‘ uldx
+(floar+ 1+ f! 62ax) [ Oufdx}d'r, (4.57)

N r(" —:.—(RO - Pu)v,dxdr = [ J;' —&_—(Rﬂ - Pu)vx(x,'r)dx]'_n

2 By v2 0
‘U[ B % R R O
0 cvu uw oy u  cyp



KSTS/RR-85/016
October 28, 1985

= J;‘(ev,% + C02)(x,0)dx
+ C(e) J;‘{j(‘)‘ RO(E,0)dE - P(t)u(x,t)}zdx
+C L‘{[R—Z— - P]z + v}}(x,rs)dx
+ I C(k){(j;l 0dr+ 1+ fo‘ 02dx + j;‘ vidx + [P'I]j: vidx

+ (C(e) f vz + e fo' vfxdx) J uldx + |p'|}

+ [ vide [ viax + eg,dx]df (4.58)

for any €, Ts > 0.

We put ¢ sufficiently small and integrate (4.54) over [Ts,t] taking into account of (4.55) - (4.58).
Thué we have
_’;l(uf + v3)(x,0)dx + j;_:_’: vidxdr

2 2
=cmf ! {u,% +v2+ [R% - P] }(x,TS) + {j;‘ RO(E,1)dE — P(t)u(x,t)} ]dx
Lol o, 2y g2, 8
+CEf ), (0uF +vi + ok + Sy fdr + ]
+ _;;‘(vg + 82)dx- j;l(euf +v24 [P'I)dx}d'r

+ Cfr;l;l vf,dx'j;lvfdxd'r

+c(f ozax+ Lf 6%.dxdt). (4.59)

Here we use (2.1), (4.1), (4.3) and (4.23).

Multiplying (1.3) by 0,,, and integrating over [0,1] X [Ts,f], we have in the similar manner,

1 t pl
_j; 03(x,Ndx + [, ’J; 02 dxdt
= j;‘ 02(x,Ts)dx + C(k) J;;{J;l(v} + 02)dx + fo'(vg + 02)dx- J;‘ vgdx}dr

+cf, ,j;‘ vids-f| vidudr. (4.60)
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From (4.59) and (4.60), we have
Ll + v2 + 62)(xdx + [ [ + 0%)dzdr
2
= C,(k) j;‘ [{u;‘— +v2+ 02+ [R% - P] }(1,7'5)
2
+ {j;‘ RO(E,)dE - P(t)u(x,t)} ]dx

+ B, {Fl('r) + Py f) ud + v2 + eg)dx}a

1 5 t el
+ c,[rs%;‘] j; v,(x,'r)dx] fr ’fo vZdxdr

€[Ts,
where F;(r) € L1(0,+%) (i = 1, 2; see (2.2), (4.3), (4.16), (4.23) and (4.28)). Applying Gronwall’s

lemma,
L@+ o2+ od(xds + [ [0 + ef,,)dxd'rz
= {cl(k) J;‘ [{u,% +vi+ 082+ [R%— - P] }(x,Ts)
2
+ {j;‘ RO(E,)dE — P(t)u(x,t)} ]dx

1 1
+ Cy(k) j;.: Fi(v)dr + C; [T sup_ j; v,f(x,-r)dx] _j;,‘ ’j; v,%,dxd-r}

x exp{Cz(k) fT: Fz(‘r)d‘r} (4.61)
for t =Ts.

Since F,(r) € L'(0,+=) and Lemma 4.8, for any €5 > 0, it is possible to put T4 > 0 such that

2
C,(k) j; ‘[j; ! RO(,0)dE — P(t)u(x,t)} dx < e,

Ca(k) fr: Fi(v)dr < es, (4.62)
exp{Cz(k)j;’ Fz('r)d-r} <1+ e,
for t=T5> Ts.
5 .
Since j;‘{eu,% +vZ+02+ [R-:— - P] }dx € L1(0,+») (see (4.16), (4.23), (4.28) and (4.36)),

there exists Ts (> Tg) such that

2
of1(3) fo'{ug +vZ+02+ [R% - P] }(x,Ts)dx < es. (4.63)
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Indeed, if there does not exist T's, from (3.12) and (4.7) we have

2
o> fr’:'j;‘{eug +v2+ 02+ [R% - P] }dxd-r

==
Cy(k)

S+ min {1, E Lir =+,
Te

=T.® ‘T4

This is contradiction.

J.” min {1, my(r)}dr

Thus we have from (4.61) - (4.63),
1 1
£ G2 + v+ oD(ndx + [ [[0% + 0%)dxdr
1 4 tpl o
=1+ es){3e5 + C; [fgggd J; vx(x,f)dx]_];.’_’; vzdxd"r} : (4.64)
for t = Ts.

We put €5 such that

€s 1
max {—C—l(—kj—, 3es5(1 + ‘5)} < m

Therefore, from (4.63)

1

1, 1
_[; vi(x,Ts)dx < 0,04+ )"

Thus we can define T5:

= . 12 1
Ty = sup {t S j; vi(x,m)dx < XS] } (4.65)
—~ We assert Ty = +%. To prove this we assume Ty < +, so we get from (4.64) with ¢ = T,

1

1 4 1
j; v2(x,T7)dx = 3es(l + €5) < TR ETAR

This conflicts with the definition (4.65) of Ty, if T; < +o.

Hence from (4.64) and T; = +, we have

j;l(uf + v2 + 0%)(x,0)dx + J:J;l [%v}, + Oi]dxd-r = 3es(1 + €5)
for t = T;.

Since €5 > 0 is arbitrary, it follows from the above estimate that the assertions are valid. O

From Lemmas 4.7 - 4.9, we can easily show Theorem 2.
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5. Concluding remarks.

Remark 5.1. In order to prove the local existence theorem, it is enough that P(r) has

1+a
C ? —smoothness.

We do not know that C!—smoothness of P(r) is a necessary condition for proving the global

existence theorem or not.

Remark 5.2. Under the assumption of Theorem 2, the estimate (4.36) means that the difference

between the inner and outer pressure is square integrable on (0,1) X (0,+).
In this connection, it follows the formula on the integral of the amount R® — Pu:
L7067 + R8 = Pudsdr = [ (u = uoddx = [ (e " vt v)dtaz] s
00 ) o o V7l TN =0
from integrating (4.49) over [0,t].

Therefore under the assumption of Theorem 2, by use of (3.17), (4.3), (4.6), (4.37) and (4.38),

we conclude that RO — Pu is summable on (0,1) X (0,+) in Riemann’s sense, and
+x o1 +% a1 - 1 1 X
LS R0 = Puyduds = = [[* [ vPaxas + w7 = [ uods) + [ uol) 7 vo(®)dedx  (5.1)
holds.

Unfortunately, we can not answer whether RO — Pu is integrable in Lubesgue’s sense or not.
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