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ABSTRACT

A geodesic joining two points of the boundary of a Riemannian manifold is
called an orthogonal geodesic chord if it intersects with the boundary orthogonally.

Bos’ theorem [B] asserts any convex n-disk has n orthogonal geodesic chords.
In this case, the involution y - y~! = y(1— -) can be considered and equivariant
(co)homology of a path space plays essential role. This note gives n such chords for

compact contractible manifold instead of the n-disk.

These chords are expected to give periodic solutions on energy surfaces of

Hamiltonians of the type " kinetic energy " + " potential ".
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§1. Introduction.

On any compact energy surface of a Hamiltonian system, we can always find a periodic solution
if the Hamiltonian H is a physical one, that is # = T + U = "kinetic energy” + "potential” [H2]
[GZ].

Solutions of the Hamiltonian system of given energy e correspond to geodesics with respect to

the Jacobi metric

ds’=(e—-U)T.

And orthogonal geodesic chords of a compact manifold with boundary, which is diffeomorphic to
{U=<e}, yiclds the periodic solution of the Hamiltonian system. Here an
orthogonal geodesic chord means a geodesic starting from and ending at a point of the boundary
orthogonally.

A partial result has been obtained by Seifert [S] for the case { U < e } = D", the n-disk. In a
footnote of the paper, Seifert conjectured that one may have n periodic solutions by the method of
Lusternik-Schnirelmann [LS]. This problem is still open, although a partial result for the system near
the rotationally symmetric one is obtained [H3]. (Remark that this is not the so called "Seifert Con-
jecture".)

[LS] gives n orthogonal geodesic chords of any convex body in R" and Bos [B] extends it to con-
vex n disks.

In this note, we define a number v(M) , where M is a compact C* manifold with boundary,
and show that there exist at least v(M) orthogonal geodesic chords of M if the boundary is convex

with respect to the Riemannian metric given on M .
Furthermore we have v(D") = n and

viM)=n
if M is contractible (n = dim M ).
For n = 1 and 2, compact contractible manifold with boundary is always a disk. For n = 3,
this question is equivalent to the Poincaré Conjecture. For n = 4, there are examples of compact
contractible manifolds with boundary, which are not homeomorphic to a disk [Ma]. In this case, the

boundary is a homology sphere with nontrivial fundamental group.
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§2. Numbers determined by compact manifold with boundary.

Let M be a compact C* manifold with boundary

B = oM + .

We define four numbers v(M), v.(M), vg(M), and vy(M) as follows.
We put ¥y = Q(M;B,B) = {w0:[0,1] - M; continuous and «(0),w(1)€B} endowed with com-
pact open topology and regard B as a subset of Yy by the usual way. For simplicity the coefficient

field Z, is understood.

1 if m(¥y,B) # 0 forsome k=1,
O] veM) = | 0 otherwise
(i) vu(M) = Max{k=0; Fagay ..., 01 € H*(¥y)
with dega; > 0,j =1, -, k=1; ¥ a € Hi(¥y, B)

such that (a;U - Uag—1)Na # 0}

We remark that

(2.1) vy(M)=1  iff Hu(¥y,B) #0

(iii) Let & : Yy - Y be the involution defined by

to =0 = o(l- ).

viM) = Max{k=0; oy . -0 1 € Hp*(Yay),
with deg o; > 0 ,and 3 4 € H(¥y, B)
such that (o;U * * - Uag-1)Na # 0}

HI (Hp*) means Z,-equivariant (co)homology (see [H1] [N]).
Finally we define a nonnegative integer

() v(M) = Max {v,(M), vg(M), vu(M) }
Lemma 2 of [H2] gives

(2.2) va(M) =1

or
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(2.3) va(M) = 1 ( <> H.(Yy,B) #0),

hence we have

(2.4) v(M) = 1.

We also have
Lemma 1. Let L be a closed manifold and N a compact manifold with boundary. Then, if
vy(N) = 1, we have

vy(NXL) = (cuplength L) + vyz(N).

(proaf) Letay, « - * ,oa;_€EH*(N), deg a; > 0 and a €H+(N, 3N) with
a’ = (yU - Uo-1)Na # 0.

And let By, . . . ,B;€H*(L), deg B;>0, with B’ = B;U - - - UB; # 0. We choose b€H.(L) so that

<(BiU - - - UB), b> = 1, then B'Nb # 0. Now axb€H.((N, N)XL) = H«(NXL, d(NXL)).

And we have

(AxBYuU * - UAXBIU@X DU -+ Ulee-1%1) N (axb)

AxBIN (X DY - - - Ulax-1X1)) N (axb)
(1xB')N(a’'xb)
a'x(B'Nd)

#0 in H«((NXL), a(NXL)).

I

This proves the lemma. Q.E.D.
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§3. Orthogonal Geodesic Chords

First we have

Therem 1. Let M be a compact Riemannian manifold with convex boundary. Then there exist at

least v(M) orthogonal geodesic chords of M.

Before giving the proof, we set a path space and distances on it. Let A be the set of all p.w. (
piecewise ) C* curve A : [0,1] - M with A(0) and A(1) € oM .
For A, M\ € A, we define

a0 A2) = Max dOu(8), Ma0)

where d is the distance derived from the Riemannian metric on M , and
l . .
di(A, M) = do(Ap, Ng) + (_[) (@1 = Pa()])? ar )2
Let E be the energy functional E : A - [0, ©) defined by

EQ\) = %fo' ()P d .

E is continuous w.r.t. d; ( §16 in [Mi] ).

Now we have a sequence of continuous mappings
(A, dy) é (A, dy) (j: Yy, dx)
We remark that these i and j both give homotopy equivalences by Theorem 17.1 in [Mi].
For X = 0, we put
Ak={N€A;EQN)=K} .
Then Lemma A.1.4 in [K], slightly changed so as to suit for our situation, that is, with convex boun-
dary, gives

Lemma 2. We take the distance d. on A . For given K = 0, there is a deformation ( con-

tinuous map )

@ : A¥ x [0, 1] - AX
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satisfying
6] @(-,0) = iy : A¥ ~ AK
(ii) @ is E - decreasing, that is
E(@(\, 1)) < E(@(\,s)) if t=s
(iii) @(N, 1) = N if and only if N is an orthogonal geodesic chord ( or constant curve on
B =M ).
(iv) Let 0 < k < K and C, be the set of all orthogonal geodesic chords of Energy x . Then for
any open neighborhood W of C, ( one may choose W = & in the case C, = & ), there exists

p > ) such that
WAPCWU AT

where @ = @(-, 1) : AKX 2 AKX .

™) @(-, 1) : AX » AX is equivariant for any t € [0, 1] .

This lemma means that the convexity of the boundary plays the role of the condition (C) of

Palais-Smale.

( Proof of Theorem 1 )
First we prove v,(M) = 1 gives at least one non-constant orthogonal geodesic chord.
As usual there is an € > 0 with
(A, A9) = m(A, A°) = w(Yy, B)
( see the remark above ). Let a be the non-trivial element of (A, A%) . We put
Kg = }1615 sup E(f(D¥)) .
Although E is not continuous w.r.t. d. , this is finite because
i:(A,d) C(A,dy)

is a homotopy equivalence. As usual Lemma 2, in particular (iv), gives that k. is a critical value of

E, thatis, C, # @, and k, =€ by the fact that a is non-trivial in the relative homotopy

’ﬂ'k(A, Ai) .
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The case vy(M) is also the usual one.
Now consider the equivariant case.

We put Ag =5~ >I§ A , the orbit space of §* X A under the involution (L, A) |-~ (—¢, &N) .

Since E is invariant under &, we can define
E :Ap~[0, )
by E[{, \] = EQ\) , where [{, A] is the equivalence class represented by ({, \) .
Let a be the nontrivial element of H,7(A, A¥) = H,(Ap, Ag®) . We put
¥, = inf ECll) ,

where {z|=UImo;, z =3 o;, 0;:8,~ Ay, singular simplex.
i l‘ -

Then, by Lemma.Z in[H3], C, # & and K, =€ .

Furthermore, assume that there exists o € H*(Ap) with dega > 0, such that b = afNa # 0
in H,(Ag, Ag®) . Then «,, is also a critical value with Kp = €.

In this case, in general, k, = ¥, and if Ky, = K, , then there are infinitely many critical points
on the level ( a version of Lemma 2 in [H3] ).

Remarking that

aN(e;Na)=(oUay)Na,

we have at least vp(M) critical pointswit‘h = e ( non-constant orthogonal geodeéic chords ).

Q.E.D.

So (2.4) gives

Corollary. Any compact Riemannian manifold with convex boundary has an or?hogonal geodesic
chord.

This is Theorem C of [GZ].

[GZ] also gives another proof for Bos’.theorem. There is an example of compact Riemannian
manifold with boundary with no orthogonal geodesic chords[B]; hence thé assumption of convex

boundary is necessary.
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Since we have
3.1 v(D") =n
(the proof is given later), Theorem 1 also gives Bos’ theorem.

Now we have

Theorem 2. Let M be a compact contractible manifold with convex boundary. Then there exist

dim M orthogonal geodesic chords of M.

In this case we shall show

(3.2) vo(M) = dim M,

giving Theorem 2 using Theorem 1.
To prove Theorem 2, we prepare the following
Lemma 3. Let B be a closed manifold of dimension n . Put B? = BXB and define the involu-
tion &:B2-B% by
£(x,y) = (0, %)
Then there exist a € H,, (B2, A) and 6 € H'y(B) with e"Ma # 0 in H,"(B2, A), where A
denotes the diagonal set.

(Proof) This is Theorem 2 of [H1], which needs the work by Steenrod [N]. Q.E.D.

(Proof of Theorem 2)

We put B = M. Let

m Yy - B2
be the projection defined by
o - (2(0), o(1)).
Since the mapping
@'t §TXYy ~ S*XB?

defined by

(;, "’) g (g: '"'("’))
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is equivariant, we have the mapping
W S°°>I§YM - S°°>1§B2.
It is easy to see that 4 gives a fibre space.
We fix base points » € B and 4 € §* and take
# =[x, (&, B)]
as the base point of S* EBZ. Then we can identify the fibre %~ (;) and QM . Thus we have a fibra-
tion

(3.3) (977 s°°>I§YM - s°°§32.

Until we obtain the fibration (3.3), we don’t use the assumption that M is contractible.

Now, since M = b, we have QM = b. Hence the spectral sequence of the (co)homology of

the fibration is a very simple one and we can easily have the conclusion
vp(M) =z dimB +1 = dim M

using Lemma 3.

This is (3.2), giving the theorem. Q.E.D.
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§4. Open Problems.

In this section, we propose some open problems.
Let M be a compact manifold with boundary.
® vp(M) =17
Although this gives only one orthogonal geodesic chord by Lemma 2 and it is already obtained

from (2.2), there is a little meaning because it appears in the assumption of Lemma 1.

G) o) = ve(M)?
For the case M = D", we have
4.1) vp(D™) = n.

In fact (3.2) gives vy(D") = n. And if vy(D") > n, we have always n+1 orthogonal geodesic
chords. But for the solid ellipsoid whose lengths of axes are all different, we have exactly » orthogo-

nal geodesic chords if the Riemannian metric considered is the standard one.
One can easily obtain v;(D") = 2, hence in this case we have (ii).
This corresponds to the fact that

cup length "1 = 1

but

cup length RP"™! = n-1,

showing the importance of Z,-action, in particular, Z,-equivariant cohomology under an involution.

(iii) Study the structure of Hp* (Yyy).
For contractible M, this is isomorphic to Hy*(dM X dM), which is completely determined by the
Isomorphism Theorem by Steenrod [N]. For general M, it seems to be difficult to determine the

equivariant cohomology, but this is indispensable in order to count vg(M) .
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