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1. Introduction
Let F(a) be defined by

2

- a"x"
z

F(a) = F(a,x)
n=0 (1-x) (1-x2)...(1-x™

(x| < 1).
Then F(a) satisfies

F(a) = F(ax) + ax F(ax?),

so that F(a)/F(ox) can be developed in the Rogers-~Ramanujian continued

fraction

3
1 +

(1) F(a) _ ax axz ax
F (ax) 1 + 1 + 1 + °°°°?

In particular, by virtue of the Rogers-Ramanujian identities, we have

z
LLx X _n=0 (1) (1-x)...0=x™) _ 7 1P a3
L+1+ ® n’+n =0 (1-x""H) (-

T X
2 n
n=0 (1-x)(1-x%)...(1-x")
(For details see for example [1],[5].) We put for frevity
N
f(a,x) = F(a)/F(ox).
In 1971 Osgood [8,9] proved that, if a, b, and d are non~-zero integers

with |d| 2 2, then, for any ¢€>0, there is a positive constant 9y =
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qy(asb,d,e) such that

a 1 P ~2-€

‘f(j;»'a—) "jrlb> q
for all integers p, q (2qy).

For the values of the exponential function at rational points more
precise results have been obtained (c.f. Bundschuh [2], Durand [3], Mahler
[7], Shiokawa [10]): If a/b 1is a non-zero rational number, then there
are explicit positive constants B=B(a/b) and C=C(a/b) such that

lea/b q-Z-B/loglog q

_JLI > C
q

for all integers p, q (23). Especially, Davis [3] proved that, if b is
a non-zero integer and

1/|b] if b is even,

1/|4b| otherwise,
then, for any ¢€>0,

-2 loglog q

2/b _p g .
B c :
le g | < (C+e)q Tog 1

for infinitely many integers p, q, while there is a positive constant
q0=q0(b,€) such that

IeZ/b -2 loglog q

-P > C-¢€
q > )a log q
for all integers p, q (Zqo).
Comparing these results, we see that it would be interesting to

replace, if possible, the € 1in Osgood's theorem stated above by a

function of q. In this connection, we prove in this paper the following

theorems.
Theorem 1. Let a, b, ¢, and d be non-zero integers with
2
(2) la] > le]”.

Then f(a/b,c/d) is an irrational number, and furthermore, there is a
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positive constant C=C(a,b,c,d) such that

-2-2A-B/V1
5. 5y -2] > /Y108 4

for all integers p, g (Zqo), where

log|c|

A=
logld/czl

and

- loglazdl ~ A log|b/a

Vlog|d/c2[

N Corollarz. Let a, b, and d be non-zero integers with |d|22.

2
B L.

Then there is a positive constant C=C(a,b,d) such that

“2-8//Tog 5
8. 4) -2 | > cq 2B/ Ios @

for all integers p, q (22), where

B = loglazd[ .
Vlog!dl
Theorem 1 is in a sense best possible since we have the following
theorem:
Theorem 2. Let a, b, and d be positive integers such that

(a,b)=1, d22, and a divides d, and let

b 2
VTS SERR
a
/ _ﬁ otherwise.

Then, for any ¢€>0,

(o B < r 0T/ A

for infinitely many integers p, q (20), while there is a positive constant
qo'_'qo (a,b,d,E) such that

a 1

lf(i;"ﬁf )q-Z—Vlog d/ Ylog q

)-71;_|>(c-e
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for all integers p, q (Zqo).

2. A lemma.

We shall make use of the following lemma which itself is of some

interest.
Lemma. Let al,az,a3,... be a sequence of real numbers such that
>
|anan+1| > 4 (n2l) and

I |a
- n=1

-1
a =0 < o,
n n+l.I

Define as usual pn=anpn_1+pn_2, 9,=a, 4 1%, 5 (n21) with p0=q_l=0,

n
p_l=q0=l. Then pn/(aza3...an) and qn/(alaz...an) converge to finite
non-zero limits, and they satisfy

-4 20
P lpn/(azaB...an)I < e,

=40 20
e < |qn/(a1a2...an)[ < e,

so that the continued fraction

1011 . ln Pn
a; +a, +a+ e q
is convergent.
Proof. By definition, q;=3;» q2=ala2(1+l/(alaz)), and we have
1 62 2
q, = a;aja,(l +—)(1 + )y S< 8, <2,
3 17273 aa, a,a, 3 2

in view of the inequalities |anan+1| >4 (n2l1) and 2/3 < 1/(l+xy) < 2
if |x| < 1/4, 2/3 <y < 2. Repeating this, we get
n 8

k
q. = a,8,...4a I (1 +————
no 12 A+

If we regard q, as a polynomial in n variables apsay5.ee5a) and write

) %< Gk <2 (m,k21).
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it as qn=qn(alaz...an), we have pn=qn_1(a2,a3,...,an); namely

n

Py = 3y33...2, I(l

y
K 2

t——), <7 <2 (n,k32).
k=2 2k%k+l 3k

Hence, the lemma follows from the absolute convergence of the series

«©

-1

z (anan+1) .
n=1
To apply Lemma, we transform the continued fraction (1) by using the
formula
RN S| S U U U |
1 +1 +1 + 1 +_El.+ b2 . b1b3 .
b b b,b b,b

1 1 1
a"n fla,x) =1 +—  — — ceee s
al + az + a3 +
where
-1 -1 -k
(3) a1 =@ lx s By =X (k21).

We note here that

2 2
-k_-k -k -k“-k
(4) 81850008y 4 T O X > 8135e0.8, = QX (k21),
and hence
n2 n
(5) log|a1a2...an| - - log|x| -5 loglax| + o(1).

3. Proof of Theorem 1.
Let a=a/b and x=c/d be as in Theorem 1. Then an, and hence,

P, q_ are rational numbers for which d p_, d q_  are integers for all
n’ 'n n‘n’ n'n

n2l, where

2
d = !akck |:

4 - | akck2+k |
2k-1 2k ?
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so that

(6) log dn = ~%—log|c| +-%-log|ac| + 0(1).

Here and in what follows constants implied in O-symbols as well as positive

constants m, Dy Cgs Cyseee depend possibly on a, b, ¢, d (and € in §4).

3

. -1_-n . . -
Since aja ., = o x (nzl) with [x]| < 1, the series nil(anam_l)

is absolutely convergent and there exists an integer m2l such that

I > 4 (n2m). We may thus apply the lemma and find that the continued

Ianan+l
fraction
1 1 1
(7) 2 + +3 p e = Gn, say,

n+l an+2 n+3

is convergent for each n2m and

-60 60
(8) e < |an+k+1en+k! <e
(n2m, k21),

-60
e

60
< |an+k+1qn,k/qn,k+ll <e

where P, k/qn Kk is the k-th convergent of the continued fraction (7) and
o= ; la a |-1 Hence
n“n+l :
n=1
I _ pn,k - 1 < 2
n q 2 -
mk |90, 9, e 1*Osicr1 %, | 190,k 20eicen ]

for all sufficiently large k. But using again the lemma with (5) and (6),

we get

_ ZIOglc! _

2
1°g|qn,k an+k+1I 5 2

o
Logld 119 1] logld| &

so that, for any ¢€>0,

4 kP, k < Ja

!—2+2(log|c|)/log|d|+e
dn+kqn,k

|e

n n+kqn,k
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for all sufficiently large k. This establishes the irrationality of eu

(n2m), since d d are integers and 2(loglc|)/log|d|<l by

n+kPn,k’ “n+kdn,k

(2).
is

Now we may assume pmqm=0, since at least one of P._19,-1° Pp9,

different from zero, because an=0 (n2l). It follows from the formula

pnspmqm,n-m+Pm-lpm,n-m’ qn=qmqm,n—m+qm—1pm,n—m that

Pa Pn qm,n—m pm—l pm,n—m>
bl

= 1 +
8,8,:..8 a,d4...4 a eeed
n n n pm qm,n—m

m+1
qn - 1 m 1 m,n-m 1+ qm—l pm,nﬂm>
n 9

3182...an alaz...a a eeed qm’n_m

n m+l
By the lemma, quantities in the right-hand side above converge as n+= to

finite limits which are different from zero, because of the fact that %m
is irrational and pmqmzo. Hence the continued fraction (1') converges to
f(a/b,c/d), which, as easily seen, is also irrational. Thus we have,

using (5),

n2 d n bd
) logla, | =4 log|-— | +5log| 2 | + 0CD),

and so, using (6),

q q
(10) log| % | - log| 2 | = 2 10g] 4 | + 0CD).
n+l n c
Hence, noticing (2) and (8), we can choose noam such that
(11) leg| <172, fa ;1 < lapls lag /a1 < lay/a ] (nznp).

Now let p,q be given non-zero integers. We may assume that

|qn /dn | < 4q. Then by (10) and (11), there is an integer n=n(q)2n0
0 0

such that

(12) la,_,/d ;| s 4a < lq /a_|.
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By virtue of the formula pnqn_l—pn_lqn=tl, at least one of P 1979, P>
P 4-9,P is different from zero. Assume first that pnq-qnpzo. Then we
have

) d (p a-q.p)

2 ey _p 2, ey
0, (E(F, ) -5 +d (4 E(o,5) -p),

q n
where Idn(pnq—qnp)| 21 and
la (q £(=, %) -p)]| = o S n <L
’ - 3
nn b ’d n an+l+en+1qn| anl 2q
so that
-1-(logld_q_[)/1og q
2 <y _>p L n'n
(13) e ) -1 >4 .

The same inequality will be obtained also in the case of pn_lq—qn_lp=0.
It remains to estimate ldnqnl from above in terms of q. Combining
(3)’ (6)’ (9)9 and (12), we get

logldnqnl S log q + log(d _,d ) + 1oglan| +C

S log q +—%—log|c[ +~%—log|a2d| + CZ‘

Here it follows from (12) with (6) and (9) that

n2 d n b
% log| =5 | +5-log| =5 | - ¢y < log q

(2]
[\

so that
n= 2 Ylog q / ¢logld/c2| + o(l),
and hence
2
nZ < 4log ¢ _ 4 Ylog q log|b/a®| +C..

logle/d?|  Yiog|e/da?| loglc/d?|
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Therefore, we obtain

logld q_|
___l_n_t_l_ <1+ A +—B__ >
og q /Tog 4

which together with (13) leads to Theorem 1.

4, Proof of Theorem 2.
Let o=a/b and x=1/d as in Theorem 2. Then £f(a/b,1/d) can be
developed in the regular continued fraction

11 1 1 1 1

ves ceee s
barge2a? g2 iy
a a a

a 1 _
f(i;n :r) =1+

whose partial denominators are positive integers, so that its convergents
pn/qn (n2l) are just all the best approximations to £f(a/b,1/d). Thus we

have only to estimate

a 1 Pn, _ 1 1
(14) HES - = A
+

__) .
b?’d 2
9, an+]. n-1 I l qnan+1|

1+ 2
n+l n+1%

We note first that

lim 9n+1/an+1 = 1lim qn—l/(qnan+1) = 0.

n->ro n->ro

If n=2k, then by (3)

log ayel = k log d + log(db/a).
But by (4)
/ log q
k = 2k _ log(db/a) + o(l),
Ylog d 2 log d
and hence

198 2k+1 , JAogd , L
Log 92k Ylog Q9 2

log(db/a) + o(l).

Similarly, we get

log a T
— 2k > log d +-%—1og(a/b) + o(l).
& k-1 /log qpy
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(14)

1]

(2]

{31

[4]

[5]
[6]

(7]

{8]

[9]

[10]

together with these estimates yields theorem 2.

References

G.E. Andrews, "The Theory of Partitions." Addison-Wesley, London,
1976.

P. Bundschuh, Irrationalitdtsmasse fiir ea, a#0 rational oder
Liouville-Zahl, Math. Ann. 192(1971), 229-242.

C.S. Davis, Rational approximations to e, J. Austral. Math. Soc.
(ser. A) 25(1978), 497-502.

A. Durand, Simultaneous Diophantine approximations and Hermite's
method, Bull., Austral. Math. Soc. 21(1980), 463-470.

G.H. Hardy, "Ramanujian." 3rd ed., Chelsea, New York, 1978.

W.B. Jones and W.J. Thron, "Continued Fractions: Analytic Theory and
Applications." Addison-Wesley, London, 1980.

K. Mahler, On rational approximations of the exponential function at
rational points, Bull. Austral. Math. Soc. 10(1974), 325-335.

C.F. Osgood, On the Diophantine approximation of values of functioms
satisfying certain linear q-difference equations, J. Number Theory
3(1971), 159-177.

C.F. Osgood, The Diophantine approximation of certain continued
fractions. Proc. of the Amer. Math. Soc. 3(1972), 1-7.

I. Shiokawa, Rational approximations to the values of certain hyper-
geometric functions, to appear in "Number Theory and Combinatorics,

Japan 1984." World Scientific Publ. Co., Singapore, 1985.

- 10 -



