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A Willmore type problem for 82x 82

Osamu Kobayashi

+
Let ¢:Mn + g" l(l) be an immersion of a compact n-manifold into
the Euclidean unit (n+ 1)-sphere, and h the second fundamental form

o]
of ¢. By h we denote the traceless part of h i.e.,
o 1
h=h- H(trg h)e,
where g is the metric on M induced by ¢. Define w(¢) by
[}
w(o) = [ |n|™ av
M2 g

It is easy to see that w(d)) is a conformal invariant of the immersion

¢, that is, w(¢) = w(aod) for any MObius transformation aC—.Conf(Sn+l).

The famous Willmore conjecture is stated as follows: For any immer-
3(J.) of 2-dimensional torus into the unit 3-sphere, the

T2

sion q):T2 - S
following will hold: (i) w(9) > w(q)Clifford)’ where ¢Clifford:

s3(1) is the Clifford embedding sl(l//é)xsl(l//é) C‘_S3(l): (4) w(d)
= W(¢Clifford) if and only if ¢ is conformal t0 ¢uy;epo.q » ChAt is,

there exists a MObius transformation a eConf(S3) such that ¢ =

3%0015 rrord

We consider the same problem for SZXSZ. In order to state our

~1-
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result, we introduce a conformal invariant v(g) of a Riemannian metric

g of a compact n-manifold M, which is defined by

n

vig) = ,fmlwgl2 av

2

g

where Wg is the Weyl conformal curvature tensor of g. It is easy to

see that v(g) depends on the conformal class of the metric g.

Theorem A. Let ¢:521c82 - SS(l) be an immersion, and g is the

induced metric on ngcse. Assume that

() vg) 3 B8

Then, (i) w(¢) Zw(d’Clifford);

(iL) wi(¢) = w(¢ ) if and only if ¢ is conformal to the

Clifford

Clifford embedding ¢ :52(1/@)x52(1//§) C s5(1).

Clifford

The author thinks the assumption (*) may be unnecessary. We have
the following result which partially supports this conjecture. We

denote by MUM) the space of all smooth Riemannian metrics of M.

Theorem B ([ 4], [5 1). The functional \):W{(Sex 82) -+ R has the

following properties: (0) v(go) = 256ﬂ2/3 for the standard Einstein

metric go; (i) if g is a Kahler metric for some complex structure,

then v(g) 2 v(gy)s (4) gy is a "strictly" stable critical point of

the functional v; (i) v(g) > 6hn2, if the scalar curvature of g is

nonnegative.

From (i), we can see, for example, that V(g) 2 V(go) for any

product metric g = & + g, & ¢ M(s?). In (i), "strictly” means that

o=
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(d/dﬁ)'2| V(g(t) 2 0 for any variation g(t) with g(0) = 8q> and the

t=0
equality holds only when (d/d‘b)ltzog(t) = fgo, + LX gy for some func-

tion f and some vector field X.

§1. Total conformal curvature.

In this section, we shall give a brief review on the conformal

invariant v(g) (cf. [ 4], [5]).

From the conformal invariance of Vv(g), we have

=

J 191 %avs ;
(a) v(g) = [sup{ —5 g is conformal to g}l

(J‘dvé) o

inf{Vol(M,g); g is conformal to g,and

o
<
(o]
—
W

[Wé(x)l < 1 for all xe€M}.

The expression (a) bears some resemblance to the Yamabe constant tk(g),

which is defined by

[R-av~.

u(g) = ini‘{—g—g'g_2 ; & is conformal to g}.

(J',d-vé) o

For the Yamabe constant Y, it is known that inf{u(M,g); g< M(M)}

=-», if n.=dim M > 3. Correspondingly, we have
(¢) sup{v(g);geW (M)} = +», if dim M > k.
This property motivates us to the following definition.

Definition 1.1. v(M):= inf{v(g); geMM)}.
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From the expression (b) of v(g), we can see

(a) wv(M) < chin Vol(M) for some constant c, depending on n = dim M,

where Min Vol(M) = inf{Vol(M,g); |sect. curv. of gl <1} ([31).

If M admits a free S action, then Min Vol(M) = 0 ([ 3]), hence
_ 2 .3 . 2 .3
v(M) = 0. For example, v(S°x8~°) = 0. Since S”x S~ has no conformal
flat metrics, v(%}(&ges not always imply that M has a flat conformal
=0
structure.

As for lower bounds of V(M), we have

(e) For any Pontrjagih number p, there is a constant cp such that

‘p(M)! < cpv(M).

In particular, if dim M = 4, we have

(f) h8ﬁ2|sgn(M)| < v(M). If M admits a half conformally flat metric,

then the equality holds.

It is known that a connected sum of conformally flat manifolds
admits a flat conformal structure ([ 6 ]). -The following is related to

this fact.

(g) v(Ml# M2) < (M )+ u(My).

1 2

From (f) and (g), we can see, for example, that v(kCP2)=h8kﬂ2. There
exist Ml and M2 for which the strict inequality of (g) holds. For
example, it is the case when M1 = CP2# CP2 and M2 = —CP2.

In dimension 4, the Gauss Bonnet formula gives some information

on v(g).

b
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(h) Suppose that dim M = L4 and g <M (M) is a Kahler metric for some

complex structure of M. Then,

v(g) > -167°sgn(M) + %LLWQX(M),

with equality implying that g is a Kahler Einstein metric.

From this, we see (0) and (i) of Theorem B.

(1) If dim M = 4, then v(g) > 32Tr2X(M) - u(g)?/s,

with equality implying that g is conformal to an Einstein metric.

Since Szx:s2 admits no conformally flat metrics, we have u(g)
< 86w for any g€ WK(SEX:SE) (ef. [ I 1), which shows (iii) of Theorem
B.

To show (i) of Theorem B, we compute variational formulas for
v:MWM(M) + R. When dim M = 4, these formulas take relatively simple

form. For details, see [4].

§2. Proof of Theorem A.

In this section, we prove the following result, which is a

generalization of Theorem A.

2p+l(

Theorem 2.1. Let ¢:5PxsP + g 1) be an immersion, and

ge’W[(pr sP) the induced metric. Assume that p > 2 and

(2.1) v(g) 2 vigy),

where N is the standard Einstein metric, i.e. (Sp)(SP,gO) =

sP(1)x sP(1). Then, (i) w(¢) > w(¢ ); and

Clifford

-5—
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2p+l(

embedding ¢Clifford;sp(1//§) xsP(1//2) s 1).

Remark. If p is odd, the assumption (2.1) looks too restrictive,

since we know from {(d) in §1 that V(pr:Sp) = 0 for odd p.

Proof. From the Gauss equation, the curvature tensor of g is

given by

= - + -
Riske = 8ix850 7~ 81985k * Pkl T Bielyx o
where h is the second fundamental form of ¢. From this, a direct

calculation shows

2 n-2,2,k 2n ;,° 2.°9,2 n-2,%%54
(2.2) |w_|® = 2==F|n|" - ==5l(on) |7 g 2 =F[nl",
where n = 2p, and
o o O © _ [} Ok o 2
15 = By (trgh)glJ , (hoh)lJ =hyhy - nlhi 8 5
Hence,
2p-1 2
_P_—_l_
(2.3) w(o) > (h(P' l)) vig).

It follows from (2.2) that the equality in (2.3) occurs only when

o 0 O
(hon) = 0. This equality condition is equivalent to that at each

point, either ¢ is umbilic or ¢ has two distinct principal curvatures
each of which is of multiplicity p. Thus the argument used by Cecil

)P/2

and Ryan [ 2 ] shows that w(¢) =((2p-1)/(k(p-1) v(g) if and only

if ¢ is conformal to the embedding

%:sp(,}ai =) x 57 fui 5 < s2P* (1),

+"av sowme X, —6—-
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In particular, for the Clifford embedding ®.y;reopg = 91 >

el
(2.4) (s ppopa)= (=)

Hence, from (2.3), (2.4) and the assumption (2.1), we have

2 2

2p-1 .2 op-1 .2 _
w(@) 2 (Groooy) Ve 2 Gy Ve = "0ciieroral

which proves the assertion (i).

Now, suppose w(¢) = w(¢ }. Then by the above argument,

Clifford
¢ must be conformal to ¢a for some 0. Moreover, then v(go) =
v(sP(1/vaTI) x sP(/a/Ta+ 1)) should hold. On the other hand, we

get, by direct calculation

1 /a-1)%,P
W8Pl 2 x P25 = e B2 g ).

Therefore, oo = 1, and ¢ is conformal to ¢

a

Clifford’
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