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ABSTRACT

In this paper, we define a Hilbert transform Hu for any tempered distribution
u. And we show that this Hilbert transform A has some suitable properties, i.e. the

boundedness, the inversion formula and the signum rule.

1. Introduction

A Hilbert transform H of a function f on real field R is defined as :

1&:—‘)-4: (x€R).

- e 1
Hf(x) = lim Hf(x)= lim - J. <ll<N
N Nm
The Hilbert transform H plays an important role in Fourier analysis. The properties of Hilbert
transforms in the following Proposition are fundamental and well-known.

Let LP(R) be the class of all measurable functions f on R for which
- L

ey, = (f_g[f(x)l”dt)" <m,
Proposition. Let p be a real number such that 1<p <. Then
(i) [existence] Jfor any fELP(R),

Hj = limHA
f(x) . ,‘:‘_l)?' wf(x)

exists in the topology of L? (R),
(ii) {boundedness] there exists a constant C>0 ( independent of e N and f ) such that

NHfUe<CUflle (WH yfV»<ClIfilr)  for all fELP(R),

(iii) finversion formula]

HH) = —f for all fELP(R),
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(iv) [signum rule]

(Hf)* = —isgn(x)f for all fELX(R),

where f is a Fourier transform of f.

Many mathematicians have tried to define the Hilbert transforms naturally on more general
space ( see, for example, [2},[31,{4],(6],7],[8],[10],[11] and {14]).

S.Koizumi ([10],{11]) introduced a generalized Hilbert transform H for f€¢ W2(R) through

Hf(x) = l-iom xti _L(:‘;‘)_d,
e=-0+

w Je<lit(t+i—x)

where W2(R) ( often called Wiener’s class ) is the class of all measurable functions f for which -
IL‘E)-—ELZ(R) . And he obtained the similar results in the above Proposition for W2(R) instead of
L?(R) . Moreover, he studyed Hilbert transforms on the class of functions f for which

%&%EL‘(R) for some p=1, a>0.

Also, H.G.Tillmann ({14]) , E.J.Beltrami and M.R.Wohlers([2]) have studyed Hilbert transforms in
connection with distribution theory. They showed that the Hilbert transform could be well defined on
the subspace @, of distributions which is firstly introduced by L. Schwartz ( see {13] ). The class
@, will be studyed in the following scctiqn as @;p . And they obtained the similar results in the
above Proposition for @, ( or its dual space\\ @}, ) instead of LP(R) .

In this paper, we generally consider the Hilbert transform on tempered distributions &' ( which

' nciudes @, and W(R) ) and show that it has the suitable properties as in the above Proposition.

IL. A space @;(R) and its dual space D,(R)"

Let R be a real field. We denote by #'(R) , or simply by @ ( throughout this paper we con-
sider only about one variable functions ), the space of distributions. @' is the strong dual of @, the
space of infinitely differentiable functions with compact support in R. And we denote a continuous

bi-linear functional on @' X @ by <u,p> for all u€ and ¢ €.

7 will denote the space of functions on R having derivatives of all order satisfying sup[xPD ¢ (x)|<»
g xég

(-3
for all indicies « and 8 of non-negative integers, where D= d It is well-known that 7 is a
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-3.
Fréchet space with the system of semi-norms { seuile"D“‘b(x)I:a B are non—negative integers} . @’
X

is the dual space of 7 , called a space of tempered distributions.

The Fourier transformation ¢ of a function ¢ €7 is defined by

b)) = [ e "d(x)dx

Since the mapping ¢~ of 7 onto & is linear continuous in the topology of 7 , the Fourier transform

i of a tempered distribution  can be defined as the tempered distribution i defined through

<G,0> = <u,d> (d€F).

Definition 1. Let p be a real number such that 1<p<o . And let | and k be non-negative integers.

Lg ((R) denotes a subspace in 7 " of functions on R satisfying

qf(d)=sup{ Ix*DP(x)li;, : Osask, 0sBsi} < =

]
where DB= ﬁ- in the sense of distributional derivative.

Moreover Cﬁ"(R) denotes the space of functions on R such that B-th derivative(0sB=l) is continuous

and

Hllcp=sup{k*DP(x)|: 0=a=k, 0spsl} <=.

The following Lemmas 1 and 2 easily follow by the usual arguments of functional analysis.

Lemma 1. Let p be a real number such that 1<p<o . And let [ and k be non-negative integers.

Then,

() LE(R) is a reflexive Banach with norm qf,
() 2 CLL.(R) CLEMR) CF and P C LE (R) C LE(R) C T,
and
(iii) each imbedding map in (ii) is continuous and 7 is a
dense set in each space.

Lemma 2. [f we define

df ($)=sup{ IDPx2d(x)l, : Osask, 0sBsi}
then qf; and §§.; are equivalent norms in LI'I(R).

Definition 2. We can, by Lemma I, define, for 1<p <o and non-negative integer k,
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Dy(R) = lim proj [LE,(R)].
Clearly, Dy(R) isa Fréchet space with the system of countable semi-norms {98, :1=0,1,2,...} . And
Q)Lg(R). is the dual space of ng(R).
If a generalized sequence {x\} ¢, in a Hausdorff topological vector space X converges to x as A=Ay in

the topology of X, we denote it by (X) %ixilx\ =x.
=AQ

By Lemma 1 and the properties of the projective limit, the following Lemma 3 immediately fol-

‘lows.

Lemma 3. Let p be a real number such that 1<p<® . And let | and k be non-negative integers.

Then,

(i) 2 C Dy, (R) C DyR) C T

and
(ii) each imbedding map in (i) is continuous and 7 is a dense set
in each space.
Theorem 1. Let p be a real number such that 1<p <o . And let |l and k be non-negative integers.

Then,

() DuR) = Iiul1_ind [Lf,I(R)"]

and !

(il) Dy(R)is a reflexive Frechet space.
Proof. Since Lemma 1 shows that {L ,(R)"}=g is an increasing sequence of reflexive Banach
spaces, linll ind [L ;(R)"] is a regular inductive limit ([9]).
By the properties of inductive limits and projective limits ( see, for example, [5],[9] and [12}]) and
Lemma 1(i) , we get that
[linll_ind [Lf_,(R)']]'=linLgroj [Lf_,(R)"]=liuLEroj (L2 (R)]=Dy(R). (¢))

Also, we see ( [9] ) that linl1 ind [L{ ;(R)"] is reflexive i.e.

[lim ind (g ,(R)"]}"" =lim ind [LE ((R)"]. @

Then, we, by (1) and (2), get that
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(@RI =[lim ind [L¢,/(R)'T]"" =1im ind [£,(R)"]

(@RI =([lim ind [LE,(R)]}"™ = [lim ind [L (R)']]" = Dyy(R).
Therefore, we obtain (i) and (ii). This completes the proof.
Lemma 4. Let q be a real number such that 1<q<wo. And let k and a be any non-negative
integers. Let g be any function in LY(R) and P, be any function having derivatives of all order such
that

DIP(x)
Ii —_—l<e
’,ff’:lipl (1+2)2 !

Then there exist functions ;gj(j=0,1,2,...,a) such that

for any non—negative integer j .

IIg_,~(x)/(1+x2)m!IL, < and Py(x)D%g(x) = j%ongj(x) . 1)
Proof. We shall prove this Lemma by induction. Let a=0. Since
Pi(x)g (W (1+ ) 2ELIR)
(1) immediately follows, if we put go(x)=P,(x)g(x) .
Next we prove (1) for a+1 under the assumption that (1) is true for a. Since DP; is a function
having derivatives of all order such that

i IDIDP,,(x)
imsup|———2
e (1+x3)*2

we, by assumption, see that

|<e for all non—negative integer j ,

Py(x)D**'g(x) = D[Py(x)D*g(x)]-[DP;(x)][D*g(x)]
= D(jgoD"g,-)—jgonx}

‘86"’}.%[0"(8]—|'8})+D¢+13u
where Hg;(x)/(1+x2)*211,, <= and Iig;(x)/(1+x2)*21 <= (j=0,1,2,...,a).
This completes the proof.
Theorem 2. Let p be a real number such that 1<p <o . And let | and k be non-negative integers.
Then the following statements are equivalent:

@  feoy®R)

and
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(ii) there exist functions f;(j=0,1,...,1) such that
’ n
Nf/(1+x2)* 2 <o and f=_EODJf,-
ju
where —1-+ 1 1.
P 9
Proof. Firstly, we shall prove that (i) implies (i). Put C =0z2;1xlllfj/(l+r")"’zll,_.. We see, by
=
Lemma 2, that ,for any ¢ €D,

[<f > = I< £ D61 = | 2 (-17/<,D4>]

!
S (- 1) i<f/(1+ 22, (1+ 22 2Dip>
j=0 !

fl

i :
_Eollfj/(1+x2)'"21|ulI(1+x2)"’2D/¢IIL,
! { . .
s c{zon(1+x2)*’zof¢uu = C'qf ()
j=
which implies that (i) holds.
Next, we shall prove that (i) implies (ii). Assume that fGID,_:(R)' . Then, there exist M>0 and
non-negative integer m such that, for any ¢ €D,
I<f,b>|sMqf . (b)sMsup{ Nx*DP(x),, : Osa=k, 0SBsm} < =.
Since lilxla'supI[Df(l+x2)""’2](1+x2)"’2|<°°, (j=0,1,2,...) , this implies that ,for any ¢ €D,
lx|==
[<fr+x2)*2,6>| s |<f,d/(1+22) 2>
=M sup Hx*DP(d/(1+ 221,
Osask
o=p=l
8 .
=M Ix® B=J +x)2)Dipll
\Sup 1= 2 (IDPI(U(1+ 1) )D bl
osp=i
=M’ DR, .
o200

Hence we see that
fGY QA+ edg(R)’
Then, from the theorem of L.Schwartz [13] , this implies that there exist functions
2.(a=0,1,2,...1) (€LY(R) ) such that
, 1
fx) = (1+)*? 2 D -
a=

Putting Py(x)=(1+x)*? in Lemma 4, we see that there exist functions fo;
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(«=0,1,...,/ and j=0,1,...,a) such that

I a i { L
g /(1422 <o and  f(x) = onEOD’fa.j = jEODJ(QEJfa.j) .
This completes the proof.

Lemma 5. Let p be a real number such that 1<p <o . And let | and k be non-negative integers.

Then,

0] LR+ 1 (R)CCEI(R)

and

(ii) c (R)CLE (R)

Moreover each natural imbedding map in (i) and (ii) is continuous.

Proof. By Lemma 2 and the theorem of Barros-Neto J.([1]), we see that, for any ¢ €L ;. ;(R)

il p= su apk
dllcp=sup suph“D7d|
oxp=(
=C sup sup|DPx®
Oi:%h%gu) ¢I
=<C’ sup {lIDBx%dil,,+!IDB*1x2it
OSQF;"{ x% i, x*dllg}
0xp=l
=C’ sup |IDPx%oll
Ochk * d’ 54
Ospsi+|

SC qhir1(d)

which implies that (i) is true and the natural imbedding map is continuos.
Next we see that , for any $€C{?,(R)

= apnB
g£.1(9)= sup IIz*DPII,,

t=pxt

U‘ l&l_"'f_l “Dﬂtbl"dx]"’

== (1+x?

05 Sk

- -:aTx‘z),—/z l"’[ suv sugl(1+x2)“2 x2DB[]

=C ”‘"“CL‘I,
which implies that (ii) is true and the natural imbedding map is continuous. This completes the

proof.

Theorem 3. Letp be any 1<p<wx ., Then,

(@) lim proj [2,4(R)] = #
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and
(i) lixi:.ind (@ (R)'} = 7.
Proof. Since
tim proj [,(R)] = lim proj [L;¢,(R)] snd ¥ = lim proj [CI(R)]
ke = =
we see, by Lemma 5, that (i) is true. Also, since
Hn}_groj (D (R)'] = linLgroj [Lyg(R)] and o = lin:_groj [CLR)"]
o fm

we see, by Lemma 5, that (ii) is true.

IIL. Generalized Hilbert transforms in 9;;(R)
Definition 3. Let a=(ay,, ...,a;) be a ktuple of complex numbers such that
Im{a;]#0(j=1,2,...,k). where Im[a;] denotes the imaginary part of a complex number a;.

We define that, for any €D (R)

HAD=—mn ey [ Gmtma)Gmmap 2,

w(x—ay)-.-(x—ay) «<lil<¥

specially, if k=0

@=L =0y |

i<y \

The following Lemma ecasily follows.
Lemma 6. Leta=(ay, . . . ,a;) be a k-tuple of complex numbers such that Im[a;]#0(j=1,2,...,k).

A mapping T,: D1(R)-D(R) such that

T ¥ = ﬁz“_ﬂk). for all €D ((R)

is a bi-continuous surjection.

Theorem 4. Let a=(ay, ...,a;) be a k-tuple of complex numbers such that

Im{a;]#0(j=1,2,...,k). Then, for any €D (R), (Pry) I_iom (HEN$) exists in D(R) .
[t -
Nes

Proof. Let k=0. By Proposition (i), we scc that, for any $€®,(R) and any

0<e’'<e<N<N'<om,
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qB(HN—H ')
= sup DAL | @dﬂly

o=ps! ™ e'<1{l<c
N<|

-0 as e -0+ and NN’ -,
This implies that {H*"$} is a Cauchy net as €-0+ ,N-= in #¢(R) . Hence l_iom (H3V$) exists in the
e+
N--

topology of @¢(R) .
In general case, by the above argument and Lemma 6, we see that, for any ¢ € D,(R)

1 (x—t—ay)...(x=t—ay)

o preNg _ : e
(mL’)gll-:oniH" ¢ (mu)gl;onl w(x—ay)...(x—ay) J;<|1I<A\' t b(x—r)de

. H e Nepr—1
(mll)il’-tonl TaH (Ta ¢)

=Tl i VT o)

which exists since 7, ' € 2,;.

Definition 4. Let a=(ay,...,a;) be a k-tuple of complex numbers such that
Im[a;]#0(/=1,2,....,k).

We define a generalized Hilbert transform H,:@po(R)~D¢(R) such that

Ho = @ Imas's  (dePyR).

Note that a generalized Hilbert transform H, is also represented by T, HT, !
Theorem 5. Let p be a real number such that 1<p <o . And let l and k be non-negative integers.
Let a=(ay, . . . ,ay) be a k-tuple of complex numbers such that Im(a;]#0(j=1,2,...,k).
Then,
(i) H, is a bounded linear operator on Dp(R)

and

(h) Ha(”a‘b) =-¢ (¢GQ’L£(R))"

Moreover, H,:@y(R)~;,(R) is a bi-continuous surjection such that H; V= -q,.
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Proof. It is sufficient to prove (i) and (ii) for k=0 since H,=T,HT, !, Though this theorem for
k=0 has been proved in [14] , we shall show the proof for the self-consistency.
By the similar way in the Theorem 4, we can easily obtain , from the Proposition (ii), that for any

$€D(R) and any 0<e<N<,

1 Dﬂggx—t!
N =
a8 (H )= sup IV =f T
= 1DBHII
€, 238,104l
=Cqf.(d)
/which implies (i) for k=0. Also, by Proposition (iii), (ii) immediately follows since @, ((R)CLP(R) .

his completes the proof.

IV. Generalized Hilbert transforms in 7

Definition 5. Let p be any 1<p < and k be any non-negative integer. And let a=(ay, . . . ,a;) be
a k-tuple of complex numbers such that Im{a;}#0 (j=1,...,k). Since the generalized Hilbert transform
H,:Dpy(R) - Dyg(R) is linear continuous in the topology of @(R) , we can define the generalized Hil-
bert transform Hyu of u €@y(R)" as the element of Dyy(R)" defined though

<Hju,0> = <u,H,6> (€D (R)).

Similarty, HSN * is defined as the adjoint operator of HEV |

The following theorem immediately follows from the property of the adjoint operator and
Theorem 5.

Theorem 6. It follows that

(i)  H, is linear continuos in the topology of !DL‘(R)'

(i) Hi(Hgu) = -u, (u€Dy(R)")

[} .

Therefore, H, =—H, .
Theorem 7. Let p be a real number such that 1<p <= . And let | and k be non-negative integers.
And let a=(ay, . . . ,a;) be a k-tuple of complex numbers such that Im[a;]#0 (j=1,...,k). Then, for any

u €D(R)’

Hiu = (9]p) lim HSY u (e (R)").
e~-0+

Nem
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Proof. Firstly we shall prove this theorem, when k=0. Let u be any element in m“(n)‘
By theorem 2, we see that, for any ¢ Em“(R)
[<(HSN " -HYu,b>|
= ]<}éonuj,(H"N *—HYo>|
=j\:l:og<uj,(ﬁ‘-"’ *—H"D/$>|
-_-jé0|<(11'-"’ *—H"Yu;,Dig>|
sj‘:l:on(m-"’ = H")u;l1 1D DI,
where u; (j=1,2,...,!) are defined as in the Theorem 2.
By Proﬁosition(i), this implies that, for any bounded set B C;4(R)
glexg|<(li"” “—HYu,b>|
=Cjéoll(H"‘V "—H"u;ll Y,
-0 (as -0+, N-»).
Hence we get that , for any u €2g(R)"
Hu = (EL")‘I_ioan;'Nu.
i
In general case, we see that, for any u EQ’L{(RY
(wz,)};i‘?ﬂs-” ‘u= <mz,>3;i@ (T =N "T,)u)
=72 (@ig) lim (@Y " To)w)
=T, '((H'T,)u)
=Hu.

This completes the proof.

Theorem 8. Let p be a real number such that 1<p<® . And let k be a non-negative integer.
And let a=(a), . . . ,a;) be a k-tuple of complex numbers such that Im{a;]#0 (j=1,...,k). Then, for any
u, Eml{(R).

-i<i,p> for all €D such that supp[d]C(0,»)

(Hau)" ($)=
i<i,p> forall €D such that supp[d]C(—,0)
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where @ is the Fourier transform of u in %" .
Proof. Let ¢ be any element in @ such that supp($]C(0,»). From the properties of Fourier

transforms and Proposition (iv), we see that

<(H u)"\o>=<Hju,b>
=<u,T]'HT,$>
=<u,I;'H[[(i"'D-a)(i"'D-ay)...(i"'D-a)¢]" ]>
=<u,I;[-i(i"'D—a)(i"'D~-ay)...(i"'D—a,)d]" >
=—i<u, T \T,b>
== i<u,$>
=—i<d,p>.
In a similar way, we can prove this theorem when ¢ is any element in @ such that supp{¢]C(—=,0).
 ence this completes the proof.

Corollary 1. Let p be a real number such that 1<p<w. Let k,m and n be nonnegative integers
such that k=m=n. And let a=(a,, * * * ,a,,) and b=(b,y, . . . ,b,) are m-tuple and n-tuple of complex
numbers such that Im{a;]#0 (i=1,2,...,m) and Im[b;]#0 (i=1,2,...,n) .

Then, for any uE!ZJ,_{(R)' (C:ZJL:_(R)' c ng(R)' ), H,u — Hyu is a polynomial.

Proof. By Theorem 8, we see that, for any ¢ € @ with supp[¢]C(0,»)

<(Hju—Hju)">=<(H,u) 0> —<(Hyu) " o>=—i<d,p>—(—i)<d,|(*f>=0. ¢))

Similarly we see that, for any ¢ €D with supp[$]C(—=,0) {
<(Hju—Hyu)$>=0. 2)

By (1) and (2), it follows that supp((H,u—H,u)"}={0}. This implies that (H,u—Hyu)" is a finite
anear combination of a Delita function 3(x) and its derivatives. Therefore, H,u—Huz is a certain

polynomial. This completes the proof.

Remark. Let u be any element in P . Since Theorem 3 shows that uému(k) for some k, the gen-

eralized Hilbert transform Hu can be defined by H,u, where a=(ay, * * * ,ay) is a k-tuple of complex
numbers such that Im[a;]#0 (j=1,2,...,k) . The above Corollary 1 shows that Hu is well defined under

the identification of the difference of polynomials independently of choosing k and a.

The author wishes to express his sincere thanks to Professor S.Koizumi of Keio University.
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