Research Report

KSTS/RR-85/011 15 June 1985

On large scalar curvature

by

Osamu Kobayashi

Osamu Kobayashi

÷

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

Dept. of Math., Fac. of Sci. & Tech., Keio Univ. Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

On large scalar curvature

Osamu Kobayashi

Introduction.

For a compact Riemannian n-manifold (M,g), we set

$$\mu(\mathrm{M},\mathrm{g}) := \inf \left\{ \int_{\mathrm{M}} \frac{\mathrm{R}_{\mathbf{g}} \mathrm{d} \mathbf{v}_{\mathbf{g}}}{\mathrm{g}'} (\int_{\mathrm{M}} \mathrm{d} \mathbf{v}_{\mathbf{g}})^{(n-2)/n}; \; \mathbf{\widetilde{g}} \; \text{is conformal to g} \right\},$$

where R_g is the scalar curvature of g. As Yamabe's problem is affirmatively and completely solved ([1], [6]), we have a metric g in any conformal class such that the scalar curvature R_g is constant, and $R_g Vol(M,g)^{2/n}$ = $\mu(M,g)$. This metric has relatively small scalar curvature, for $\mu(M,g) \leq \mu(S^n,g_0) = n(n-1)Vol(S^n,g_0)^{2/n}$ holds in general [1], where (S^n,g_0) is the Euclidean unit n-sphere. Moreover, recently, Schoen [6] has proved that $\mu(M,g) = \mu(S^n,g_0)$ if and only if (M,g) is conformally equivalent to (S^n,g_0) , which was the unsolved part of Yamabe's problem.

We introduce a quantity $\mu(M)$ defined by

$$\mathcal{L}(M) := \sup_{g} \mathcal{L}(M,g)$$

M admits a metric of positive scalar curvature if and only if $\mu(M) > 0$. Also, $\mu(M) \leq \mu(S^n) = \mu(S^n, g_0)$ from the above inequality by Aubin. Then compared with Schoen's result, it is interesting to ask whether there is an M other than S^n for which $\mu(M) = \mu(S^n)$. We give such an example.

<u>Theorem A</u>. If $n \ge 3$, $\mu(s^1 x s^{n-1}) = \mu(s^n)$.

-1-

Next, we consider the following problem: For a given constant c, does there exist a metric g of S^n $(n \ge 3)$ such that $Vol(S^n,g) = 1$, and that the scalar curvature $R_g = c$? If $c \le \mu(S^n)$, we can get such a metric by solving Yamabe's problem. Otherwise, Yamabe's method loses its power. Under a slightly relaxed condition on constancy, we prove the following. <u>Theorem B.</u> For any r > 0 and any $\varepsilon > 0$, there exists a metric g of

 S^{n} $(n \ge 3)$ such that $Vol(S^{n},g) = 1$, $R_{g} \ge r$ and $\max_{x} R_{g}(x) / \min_{x} R_{g}(x)$ $\le 1 + \xi$.

<u>§1.</u> Preliminaries.

Let (N,g_N) be an (n-1)-dimensional compact Riemannian manifold whose scalar curvature is constant (n-1)(n-2). We always assume $n \ge 3$. Suppose that f is a positive function on R which satisfies

$$(1.1) \quad 2(n-1)ff - n(n-1)f^{2} + (n-1)(n-2)f^{2} = n(n-1).$$

Then, $(\mathbf{R} \times \mathbf{N}, \mathbf{f}(t)^{-2}(dt^2 + g_N))$ has constant scalar curvature n(n-1). (1.1) is integrable and we have

$$(1.2) \quad f^2 = -1 + f^2 - (2c/(n-2))f^n,$$

where c is an integral constant, which relates to the Ricci curvature as follows;

(1.3)
$$\operatorname{Ric}_{g(c)} - \frac{1}{n} \operatorname{R}_{g(c)} = c f(t)^{n-2} (g_{N} - (n-1)dt^{2}),$$

where we put $g(c) = f(t)^{-2}(dt^2 + g_N)$ with f satisfying (1.2). From (1.2), we observe that, in order for f to be defined on whole R, the constant c must be in the interval

 $(1.4) \quad 0 \leq c \leq ((n-2)/n)^{n/2} =: c_0.$

-2-

Then, we have

$$(1.5) \begin{cases} f(t) = \cosh(t+t_0) \text{ for some } t_0 \text{ if } c = 0; \\ f \text{ is a periodic function with prime period } T(c) \text{ if } 0 < c < c_0; \\ f(t) = (n/(n-2))^{\frac{1}{2}} \text{ if } c = c_0. \end{cases}$$

Hence, if $0 < c < c_0$, g(c) is the lift of a metric (also denoted by g(c)) of $(\mathbf{R}/T(c)\mathbf{Z}) \times \mathbb{N}$. We denote by V(c) the volume of $((\mathbf{R}/T(c)\mathbf{Z}) \times \mathbb{N}, g(c))$. Remark that $(\mathbf{R} \times \mathbb{N}, g(0))$ is isometric to $S^n \setminus (\text{antipodal two points})$ if $(\mathbb{N}, g_{\mathbb{N}}) = (S^{n-1}, g_0)$.

Lemma. T(c) and V(c) are continuous function in c, and (i) $\lim_{c \to 0} T(c) = \infty$; $\lim_{c \to c_0} T(c) = 2\pi/\sqrt{n-2}$. (ii) $\lim_{c \to 0} V(c) = Vol(N,g_N)Vol(S^n,g_0)/Vol(S^{n-1},g_0)$; $\lim_{c \to c_0} V(c) = 2\pi(n-2)^{(n-1)/2} n^{-n/2} Vol(N,g_N)$.

<u>Proof</u>. We compute only $\lim_{c \to c_0} T(c)$ and $\lim_{c \to c_0} V(c)$. The other assertions are easy to prove.

For $0 < c < c_0$, let 0 < a(c) < b(c) be the two positive roots of the equation

(1.6)
$$1 - \lambda^2 + (2c/(n-2))\lambda^2 = 0.$$

We define a polynomial $F(\lambda,c)$ in λ with parameter c as

(1.7) the left side of (1.6) = $(\lambda - a(c))(\lambda - b(c)) F(\lambda, c)$.

It is easy to see that $\lim_{c \to c_0} a(c) = \lim_{c \to c_0} b(c) = \lambda_0 := (n/(n-2))^{\frac{1}{2}}$. Then by a direct calculation, we obtain

(1.8) $\lim_{(\lambda,c)\to(\lambda_0,c_0)} F(\lambda,c) = n-2.$

-3-

It follows from (1.2) that

(1.9)
$$T(c) = 2 \int_{a(c)}^{b(c)} F(\lambda, c)^{-1/2} \frac{d\lambda}{\sqrt{-(\lambda - a(c))(\lambda - b(c))}}$$

and

(1.10)
$$V(c) = 2 \operatorname{Vol}(N,g_N) \int_{a(c)}^{b(c)} \lambda^{-n} F(\lambda,c)^{-1/2} \frac{d\lambda}{\sqrt{-(\lambda-a(c))(\lambda-b(c))}}$$

These combined with (1.8) and the elementary formula $\int_a^b d\lambda / \sqrt{-(\lambda - a)(\lambda - b)} = \pi$ for a<b, give the desired formulas. []

<u>Remark</u>. From the second variation formula for the functional $g \mapsto \frac{1}{2} \int_{R_{g}} dv_{g} / (\int dv_{g})^{(n-2)/n}$, it follows that, if $T \ge 2\pi / \sqrt{n-2}$, the product metric $g_{T} = dt^{2} + g_{N}$ of $S^{1} \times N$ with $length(S^{1}, dt^{2}) = T$ is not a solution to Yamabe's problem (we call a metric g a solution to the Yamabe's problem, if the scalar curvature R_{g} is constant, and $R_{g} \operatorname{Vol}(g)^{2/n} = (\mu(g).)$, although this metric has constant scalar curvature (cf. [/]). This fact corresponds to our computation $\lim_{c \to c_{0}} T(c) = 2\pi / \sqrt{n-2}$.

The following is a corollary of the above lemma.

Proposition. Let $(S^1 \times N, g_T)$ be as above. If $T \ge 2\pi k/\sqrt{n-2}$ for some integer k, then there are at least (k+1) metrics conformal to g_T with the same volume such that they have constant scalar curvatures but are not isometric to one another.

<u>Proof.</u> From Lemma (i) and the assumption on T, we find $c_j \in (0, c_0)$, $j = 1, \dots, k$ such that $T(c_j) = T/j$. By the natural j-fold covering $(\mathbb{R}/T\mathbb{Z}) \times \mathbb{N} \longrightarrow (\mathbb{R}/(T/j)\mathbb{Z}) \times \mathbb{N}$, we lift the metric $g(c_j)$ to $(\mathbb{R}/T\mathbb{Z}) \times \mathbb{N}$. Then the lifted metric, denoted by g_j , is conformal to g_T . Normalizing

-4-

the volumes of $g_T^{}$, $g_1^{}, \dots, g_k^{}$ by homothetical changes, we get the desired metrics. []

<u> \$2. Proof of Theorem A</u>.

Let g_T be the product metric of $S^1 \times S^{n-1}$ with $length(S^1, dt^2) = T$. Let f be a positive function on $S^1 \times S^{n-1}$ such that $f^{-2}g_T$ is a solution to Yamabe's problem with constant scalar curvature n(n-1). We lift the metric $f^{-2}g_T$ to the universal covering $\mathbb{R} \times S^{n-1}$. Since $f^{-2}(dt^2 + g_0)$ $= (rf)^{-2}(dr^2 + r^2g_0)$, $r = e^t$, and $dr^2 + r^2g_0$ is the Euclidean flat metric of $\mathbb{R}^n \setminus 0 \cong \mathbb{R} \times S^{n-1}$, putting $u = (n(n-2)/4)^{(n-2)/4} (rf)^{(2-n)/2}$, we have

$$\Delta u + u^{\frac{n+2}{n-2}} = 0$$

where Δ is the Laplacian of the flat metric $dr^2 + r^2 g_0$. Moreover, $u \to \infty$ as $r \to 0$, and $r^{n-2}u \to \infty$ as $r \to \infty$, because min f>0 and max f< ∞ . Then, we can apply a theorem of Gidas, Ni and Nirenberg (Theorem 4 of [4]), and conclude that f depends only on t; f = f(t). Hence, $f^{-2}g_T$ is one of the metrics described in Proposition of §1. Now, it is easy to see that if $T \leq 2\pi/\sqrt{n-2}$, then f is constant, and that if $T > 2\pi/\sqrt{n-2}$, take $c \in (0, c_0)$ such that T(c) = T, then $f^{-2}g_T = g(c)$ in §1 for $(N, g_N) =$ (s^{n-1}, g_0) . Thus, for $T > 2\pi/\sqrt{n-2}$, $\mu(s^1 x s^{n-1}, g_T) = n(n-1)V(c)^{n/2}$. Therefore, from Lemma in §1, we have $\lim_{T\to\infty} \mu(s^1 x s^{n-1}, g_T) =$ $n(n-1)\lim_{c\to 0} V(c)^{n/2} = n(n-1)Vol(s^n, g_0)^{n/2} = (\mu(s^n))$. That is, $\mu((s^1 x s^{n-1}) \geq \mu(s^n)$, so $\mu((s^1 x s^{n-1}) = \mu((s^n))$.

-5-

 $\frac{\hat{y}3. \text{ Proof of Theorem B.}}{\text{Let } f_c: \mathbf{R} \longrightarrow \mathbf{R}_+, c \in (0, c_0) \text{ be the solution of}}$ $(3.1) \begin{cases} \dot{f}_c(t)^2 = -1 + f_c(t)^2 - (2c/(n-2)) f_c(t)^n \\ f_c(0) = a(c) \qquad (\text{see } \$1 \text{ for } a(c)). \end{cases}$

Let $\eta: \mathbb{R} \to \mathbb{R}$ be a smooth function such that $\eta(t) \equiv 0$ for $t \leq 0$, $\eta(t) > 0$ for t > 0, and $\eta(t) \equiv 1$ for $t \geq 1$. We put

$$(3.2) \quad F_{c}(t) = \begin{cases} (\gamma f_{0} + (1 - \gamma) f_{c})(t) & \text{for } -kT(c) \leq t \text{ (see } \text{$$\sc{l}$ for } T(c)$); \\ ((1 - \gamma) f_{0} + f_{c})(t + kT(c) + 1) & \text{for } t \leq -kT(c), \end{cases}$$

where k is an integer satisfying

(3.3)
$$k+1 > (r(1+\xi)/n(n-1))^{n/2}/Vol(S^n,g_0).$$

Then, the Riemannian metric $g_c := F_c^{-2}(dt^2 + g_0)$ of $R \times S^{n-1}$ is smoothly extendable to the two point compactification S^n . Its scalar curvature $R_c = R_c(t)$ is given by

(3.4)
$$R_{c}(t) = 2(n-1)F_{c}(t)F_{c}(t) - n(n-1)F_{c}(t)^{2} + (n-1)(n-2)F_{c}(t)^{2}$$
.

From the definition of F_{c} , we have

(3.5)
$$R_{c}(t) = n(n-1)$$
 for $t \notin [0,1] \cup [-kT(c)-1,-kT(c)]$.

Note that $f_c > [0,1]$ converges uniformly to $f_0 = [0,1]$ up to second derivatives as $c \rightarrow 0$. Hence, R_c converges uniformly to the constant n(n-1). Therefore, there is a small $c_1 > 0$ such that

(3.6) $\max_{c_1} R_{c_1} \min_{c_1} R_{c_1} \leq 1 + \mathcal{E}.$

Also, from Lemma (ii) in §1 and (3.3), taking a smaller c_1 if necessary,

-6-

we have

 $(3.7) \quad \operatorname{Vol}(g_{c_1}) = (r(1+\xi)/n(n-1))^{n/2}.$ Now, we define a metric g of Sⁿ by g:= $\operatorname{Vol}(g_{c_1})^{-2/n}g_{c_1}$. Then, clearly, $\operatorname{Vol}(s^n,g) = 1$, and max $\operatorname{R}_g/\min \operatorname{R}_g \leq 1 + \xi$, from (3.6). Finally, $\operatorname{R}_g = \operatorname{Vol}(g_{c_1})^{2/n}\operatorname{R}_{c_1} \geq (r(1+\xi)/n(n-1))\min \operatorname{R}_{c_1} \geq r$.

§4. Remarks on Theorem B.

We can also show that if $\mu(M) > 0$ and $n = \dim M \ge 3$, there exists, for any constant r, a metric g of M for which Vol(M,g) = 1 and $R_g > r$. But this is not interesting. A reason why we stick to $(\varepsilon -)$ constancy of scalar curvature is in the following result.

<u>Proposition</u>. Suppose that for any constant r and $\xi > 0$, there is a metric $g(r, \xi)$ such that $Vol(M, g(r, \xi)) = 1$ and $\left(R_{g(r, \xi)}(x) - r\right) < \xi$ for all $x \in M$. Then, for any nonconstant function f, there exists a metric g for which Vol(M, g) = 1 and $R_g = f$.

This proposition is a corollary of the following generalization of a theorem of Kazdan and Warner [5].

<u>Theorem.</u> Let g_0 be a smooth Riemannian metric of a compact manifold M with $Vol(M,g_0) = 1$ and with nonconstant scalar curvature $R(g_0)$, and f a smooth function satisfying min $f \leq \min R(g_0)$ and max $R(g_0) \leq \max f$. Then there is a smooth metric g such that Vol(M,g) = 1 and R(g) = f.

Before the proof, we give some other corollaries.

<u>Corollary 1</u>. If $n \ge 3$, then for any function f with min $f < \mu(M)$,

-7-

there is a metric g with Vol(M,g) = 1 and R(g) = f.

<u>Corollary 2</u>. Let M_1 and M_2 be compact manifold such that $\mu(M_1) > 0$ and dim $M_2 \ge 1$. Then, for any function f on $M_1 \times M_2$, there is a metric g with $Vol(M_1 \times M_2, g) = 1$ and R(g) = f.

<u>Proof of Corollary 2</u>. Under the assumption, it is not hard to see that for any constant c, there is a metric g_c of $M_1 \times M_2$ with $Vol(M_1 \times M_2, g_c)$ = 1 and $R(g_c) = c$. []

<u>Proof of Theorem</u>. The proof is similar to that given in [5]. So, we only sketch it. Let S^2T (resp. $S_+^{2}T$) denote the bundle of (resp. positive definite) symmetric covariant 2-tensors, and $\mathring{S}^2T = \{h \in S^2T; tr_{g_0} h = 0\}$. Let $H_{2,p}(M;S^2T)$, $H_{2,p}(M;S_+^{2}T)$, ... be the Sobolev spaces of $H_{2,p}$ -sections (i.e., up to 2nd derivatives are L_p) of S^2T , $S_+^{2}T$, ... We always assume that $p > n = \dim M$. $H_{2,p}(M;S_+^{2}T)$ is an open subset of $H_{2,p}(M;S^2T)$, and $Vol:H_{2,p}(M;S_+^{2}T) \rightarrow R; g \mapsto Vol(M,g)$ is a C^1 -mapping whose differential is not zero. From this, there are a neighborhood U of 0 in $H_{2,p}(M;\mathring{S}^{2}T)$ and a C^1 -function $\propto: U \rightarrow R$ such that, putting $\underline{\Phi}(h) = g_0 + h + \alpha(h)g_0$ for $h \in U$, we have the following properties; (1) $\underline{\Phi}(h) \in H_{2,p}(M;S_+^{2}T)$; (2) $Vol(\underline{\Phi}(h)) = 1$; (3) $\underline{\Phi}(0) = g_0$; (4) $D\underline{E}$ at 0 is the inclusion map $H_{2,p}(M;\mathring{S}^{2}T) \subset H_{2,p}(M;S^{2}T)$. We note that $\underline{\Phi}(h)$ is a C^{∞} metric if and only if h is a C^{∞} section.

The scalar curvature $R:H_{2,p}(M;S_+^{2}T) \rightarrow L_p(M;R)$ is defined as a C^{1} mapping for p > n. So we get a C^{1} -mapping $R \circ \underline{\Phi} : U \rightarrow L_p(M;R), U \subset H_{2,p}(M;S^{2}T)$.
The differential $A:H_{2,p}(M;S^{2}T) \rightarrow L_p(M;R)$ of $R \circ \underline{\Phi}$ at 0 is computed to be

 $A(h) = - \Delta h^{i}_{i} + h^{ij}_{;ij} - h^{ij}R_{ij} ,$

where the connection, Ricci curvature, etc. are relative to ${\rm g}_{\rm o}.$ The

-8-

formal $\rm L_2-adjoint \ A^{*}$ is given by

 $A^{*}(u) = \overline{A}^{*}(u) + \beta(u)g_{0}.$

where $\bar{A}^*(u) = -(\Delta u)g_0 + \nabla^2 u - u \operatorname{Ric}(g_0)$ and $\beta(u) = \int R(g_0) dv_{g_0}/n \operatorname{Vol}(g_0)$. $A^*:H_{4,p}(M;R) \longrightarrow H_{2,p}(M;S^2T)$ is a continuous linear map. From the assumption that the scalar curvature $R(g_0)$ is not constant, we can show that $A \circ \bar{A}^*:H_{4,p}(M;R) \longrightarrow L_p(M;R)$ is a linear homeomorphism, and $A \circ A^*:H_{4,p}(M;R)$ $\longrightarrow L_p(M;R)$ is injective (cf. [2], [3], [5]). Then, since $A \circ (A^* - \bar{A}^*)$ is a compact operator, we conclude that $A \circ A^*$ is invertible. (Remark. If g_0 is an Einstein metric with constant negative scalar curvature, then $A \circ A^*$ is not invertible. This is a difference from the case without volume constraint.)

Let $V = (A^*)^{-1}(U)$. Define a C^1 -mapping $Q: V \rightarrow L_p(M; \mathbb{R})$ by $Q = \mathbb{R} \circ \mathbf{\Xi} \circ A^*$. Then the differential of Q at 0 is $A \circ A^*$. So, by the inverse function theorem for Banach spaces, Q is locally invertible. In particular, Q(V) contains some \mathcal{E} -ball centered at Q(0) in $L_p(M; \mathbb{R})$.

Now, for the function f given in Theorem, we have a diffeomorphism \mathcal{G} of M such that $|Q(0) - f \cdot \mathcal{G}|_L < \mathcal{E}$ (see [5]). So, there is $u \in V \subset H_{4,p}(M; \mathbb{R})$ with $Q(u) = f \cdot \mathcal{G}$. Although Q(u) includes integrals of u, ∇u and $\nabla^2 u$, we can see that the elliptic regularty argument is applicable, by writing down Q(u) explicitly. So, we see that u is smooth. Thus, $\bar{g} := \Phi \cdot A^*(u)$ is a C^{∞} Riemannian metric with $Vol(M, \bar{g}) = 1$ and $R(\bar{g}) = f \cdot \mathcal{G}$. Then the desired metric g is given by $g = (\mathcal{G}^{-1})^* \bar{g}$.

-9-

References.

- [1] T. Aubin, Equations différentielles non linéaires et problème
 de Yamabe concernant la courbure scalaire, J. Math. pures et appl. 55 (1976), 269-296.
- [2] J.-P. Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
- [3] A. E. Fischer and J. E. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math. 27 (1975), 219-262.
- [4] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rⁿ, Math. Anal. and Appl. Part A, Adv. Math. Suppl. Studies Vol. 7A (1981), 369-402.
- [5] J. L. Kazdan and F. W. Warner, A direct approach to the determination of Gaussian and scalar curvature functions, Inv. math. 28 (1975), 227-230.
- [6] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, preprint.

Department of Mathematics Faculty of Science and Technology Keio University Yokohama 223 Japan

-10-