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Introduction.

For a compact Riemannian n-manifold (M,g), we set
“(M,g):: inf E SM Rédvgl( SM dv»éfn-2)/n; % is conformal to g} ,

where Rg is the scalar curvature of g. As Yamabe's problem is affirmatively
and completely solved ([1], [6]), we have a metric g in any conformal

class such that the scalar curvature Rg is constant, and RgVol(M,g)z/n
= (J(M,g). This metric has relatively small scalar curvature, for

HM,g) ¢ M(s%,gy) = n(n- l)Vol(Sn,go)a/n

holds in general [1], where
- (Sn,go) is the Euclidean unit n-sphere. Moreover, recently, Schoen [6]
has proved that H(M,g) = H(Sn,go) if and only if (M,g) is conformally

equivalent to (Sn,go), which was the unsolved part of Yamabe's problem.

We introduce a quantity (((M) defined by

)= sup {(M,g).
g

M admits a metric of positive scalar curvature if and only if H(M)? 0.
Also, (A((M) < {-{(Sn) = H(Sn,go) from the above ineq_uaiity by Aubin. Then
compared with Schoen's result, it is interesting to ask whether there is
an M other than S® for which (~4(M) = H(Sn). We give such an example.

Theorem A. If n > 3, H(Slx Sn_l) = H(Sn).
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Next , we consider the following problem: For a given constant c,
does there exist a metric g of st (ng 3) such that Vol(Sn,g) =1, and
that the scalar curvature Rg =c? Ifc< H(Sn), we can get such a metric
b.y solving Yamabe's problem. Otherwise, Yamabe's method loses its power.
Under a slightly relaxed condition on constancy, we prove the following.

Theorem B. For any r>0 and any ¢0, there exists a metric g of

s (a 2 3) such that Vol(Sn,g) =1, Rg 2r and max Rg(x)/ mg.'{n Rg(x)

1+E&.

A

§1. Preliminaries.

Let (N,gN) be an (n- 1)-dimensional compact Riemannian manifold
whose scalar curvature is constant (n-1)(n-2). We always assume n 2 3.

Suppose that f is a positive function on R which satisfies

(1.1) 2(n-1)ff- n(n-1)%2 + (n-1)(n-2)f° = n(n-1).

2

Then, (R xN,f(t)_z(dt +gN)) has constant scalar curvature n{n-1).

(1.1) is integrable and we have

(1.2) = -1+ - (20/(a-2))E%,

where c is an integral constant, which relates to the Ricci curvature

as follows;
(1.3) Ric, () = %Rg(c) = cf(t)n-z(gN - (n-1)at?),

where we put g(c) = f(t)-2(dt2+gN) with f satisfying (1.2). From
(1.2), we observe that, in order for f to be defined on whole R, the

constant ¢ must be in the interval

(L.4) o Scg ((n-—2)/n)n/2 =:icy -

2=
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Then, we have

£(t)

cosh(t+t0) for some to if ¢ = 03

(1.5) 1 f is a periodic function with prime period T(c) if 0<c< g’

.

(n/(n-2))% if ¢ =c,..

£(t) 0

Hence, if 0<c <eqyo g(c) is the 1lift of a metric (also denoted by g(c))
of (R/T(c)Z)x N. We denote by V(c) the volume of (IR/T(c)Z)xN, g(c)).
Remark that (RxN, g(0)) is isometric to s”\ (antipodal two points) if

n-1

(N,gN) = (s ,go).

Lemma. T(c) and V(ec) are continuous function in ¢ , and

Q3 lim T(c) = 27/\[n-2.
c>c,

(1) lim, Lo T(c)

. . n n-1 A
(ii) Lim, Lo v(e) Vol(N,gN)Vol(S »8q) /VoL(87 ",gy)s

1 )(n-l)/2 n—-n/2

im 27(n-~-2
crey

V(ec)

Vol(N,gN).

Proof. We compute only lim T(c) and lim V(c). The other
—_— c>c, cvey
assertions are easy to prove.

For 0<c<c., let 0<a(c)<b(c) be the two positive roots of the

0’

equation

(1.6) 1 ->2+ (2c/(n-2)) A% = 0.

We define a polynomial F(A ,c) in X\ with parameter c as

(1.7) the left side of (1.6) = (X - a(c))( X = b(c)) F(A ,e).

. . Coas - = _ %_
It is easy to see that llmc_,coa(c) lIMCﬁcob(c) )\,0. (n/(n-2)
Then by a direct calculation, we obtain

(1.8) 1lim ) F(A,c) =n-2.
0

(A,c)> ("o »C

-3-
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It follows from (1.2) that

b(e)
1.9) T(e) = 2g F(A ,0)71/2 ax
a(e) V-(a-a(e))On-1(c))

and

1/2 ax .
¥-(a-ale))(x-1(c))

b(c)
(1.10) V(ec) =2 Vol(N,gN)S AT F(X,e)T
a(e)

These combined with (1.8) and the elementary formula f: ax /A-(x-aXa-1b)

=7C for a<b, give the desired formulas. 0

Remark. From the second variation formula for the functional g+
S Rgdvg/( S dwg)(n'2 )/ % it follows that, if T > 2TAn- 2, the product
metric &p = dt2 + gy of Sl::N with 1ength(Sl,dt2) = T is not a solution
to Yamabe's problem (we call a metric g a solution to the Yamabe's problem,
if the scalar curvature Rg is constant, and RgVol(g)2/n = W(g).), although
this metric has constant scalar curvature (e¢f. [ []). This fact corres-

T(e) = 2R Nn- 2.
o

ponds to our computation limc_’

The following is a corollary of the above lemma.

Proposition. Let (stx N,gT) be as sbove. If T 2TkAn-2 for

some integer k, then there are at least (k+ 1) metrics conformal to &p

with the same volume such that they have constant scalar curvatures but

are not isometric to one another.

Proof. From Lemma (i) and the assumption on T, we find ¢ é(O,cO),
j=1,...,k such that T(cj) = T/j. By the natural j-fold covering
(R /TZ) xN—> (R/(T/j)Z)x N, we 1lift the metric g(cj) to (R/TZ)x N.
Then the lifted metric, denoted by gj , 1is conformal to &p- Normalizing

<L
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the volumes of - SR by homothetical changes, we get the desired
&> & &

metrics. a

§2. Proof of Theorem A.

Let g be the product metric of st x %71 with leng'th(Sl,dtz) =T.

1 1

Let f be a positive function on S x S — such that f-ng is a solution

to Yamabe's problem with constant scalar curvature n(n-1). We 1lift the

n-1

metric f—ng to the universal covering R xS . Since f_2(dt2+ go)

= (r£)2(ar® + £°

go), r = et, and dr2+r2g0 is the EBuclidean flat metric
of B®*\ 0 ¥ Rx Sn-l, putting u = (n(n- 2)/)4)(11-2)/)4 (rf)(2-—ny2’
have
n+2
A u + un-2 =0,

where A is the Laplacian of the flat metric dr2+ r2go. Moreover, u —=> @
as r—> 0, and rn-gu—)oo as r-»00, because min £>0 and max £<oQ.

Then, we can apply a theorem of Gidas, Ni and Nirenberg (Theorem 4 of [41),
and conclude that f depends only on t; f = f(t). Hence, f_ng is
one of the metrics described in Proposition of §1. Now, it is easy to

see that if T < 2m/yn-2, then f is constant, and that if T > 271/\’n— 2,

take ce(O,cO) such that T(c) = T, then f‘ng = g(c) in §1 for (N,gN) =

n-1 n/2

(87 ,8.). Thus, for T>2W A/n-2, (Slen—l,g } = n(n-1)V(e)
0 T

Therefore, from Lemma in §1, we have im0 (/((Slx Sn_l,gT) =

n(n-1)lim v(e)™? = n(a- 1)Vo1(sn,go)n/2 = kA(sn). That is,

Wistxs™™) > U(s™), so H(sTxs™™) = W(sh). O

-5-
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§3. Proof of Theorem B.

Let fc:ZR—> R _, ce(O,cO) be the solution of

: 2 _ 2 n
gy § BT = oL g0 - e/t 2) £ (0)

fc(O) = a(c) (see §1 for a(c)).

Let M:R—>R be a smooth function such that 7(t) = 0 for ¢ <0,
“(t) > 0 for t7 0, and N(t) =1 for t 2 1. We put

("l_fo + (l-’z)fc)(t) for -kT(c) £t (see §1 for T(e))s

(3.2) F () =
¢ (-, + £)(t+kI(e)+1) for t g -kT(c),

where k is an integer satisfying

n/2

(3.3)  k+1> (r(1+8)/n(n-1)"*/vol(s",g,).

Then, the Riemannian metric g := Fc-e(dt2+ go) of Rxs™ 1 is smoothly
extendable to the two point compactification s". TIts scalar curvature

Rc = Rc(t) is given by

(3.5)  B_(t) = 2(n- 1)Fc(t)'ﬁc(t) - n(n—l)f‘c(t)z + (n- l)(n-2)Fc(t)2.
From the definition of FC , Wwe have
(3.5) RB_(t) =n(a-1) for t & 10,11 [=kT(c)-1,-kT(c)].

Note that fcj[o,l] converges uniformly to fO\ [0,1] up to second derivatives
as ¢ = 0. Hence, Rc converges uniformly to the constant n(n-1). There-
fore, there is a small cl>0 such that
(3.6) mex R /min R <1 +&.

‘1 €1 7

Mso, from Lemma (i) in §¢1 and (3.3), taking a smaller c; if necessary,

-6-
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we have
2

(3.1) Vollg, ) _ (r(1+€)/n(a-1))"2.

1
. . n -2/n
Now, we define a metric g of S~ by g:= Vol(gc ) g, - Then, clearly,
1 1

vol(s®,g) = 1, and max R /min R < 1+ €, from (3.6). Finally, R, =

Vol(gc )2/ch 2 (x(1+ €)/n(n-1))min R, Zr. 1]
1 1 1

- §4. Remarks on Theorem B.

We can also show that if r((M) > 0 and n = dim M 2 3, there exists,
for any constant r, a metric g of M for which Vol(M,g) =1 and Rg? r.
But this is not interesting. A reason why we stick to (g ~) constancy

of scalar curvature is in the following result.

Proposition. Suppose that for any constant r and €3> 0, there is

a metric g(r,g) such that Vol(M,g(r,e)) =1 and (R (x) - r { <€

g(r,e)

for all x€M. Then, for any nonconstant function f, there exists a

metric g for which Vol(M,g) = 1 and Rg = f,

This proposition is a corollary of the following generalization

of a theorem of Kazdan and Warner [5].

Theorem. Let g, be a smooth Riemannian metric of a compact manifold M

with Vol(M,g.) = 1 and with nonconstant scalar curvature R(g,), and f

a smooth function satisfying min f < min R(go) and max R(go) < max f.

Then there is & smooth metric g such that Vol(M,g) = 1 and R(g) = f.

Before the proof, we give some other corollaries.

Corollary 1. If n 2 3, then for any function f with min £< ‘.l(M),

~T-
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there is a metric g with Vol(M,g) = 1 and R(g) =f.

Corollary 2. Let Ml and M2 be compact manifold such that \.A(Ml)>0

and dim M2 2 1. Then, for any function f on MlxM » there is a metric g

with Vol(MlxMZ,g) =1 and R(g) = f.

Proof of Corollary 2. Under the assumption, it is not hard to see

that for any constant c, there is a metric gc of M, xM,_ with Vol(MlxM2 ,gc)

1 2
=1 and R(gc) =c. 0

Proof of Theorem. The proof is similar to that given in [5]. So, we

only sketch it. Let 82T (resp. S?_T) denote the bundle of (resp. positive

o
definite) symmetric covariant 2-tensors, and 82'1' = iheS2T; trg h = O}.
0
Let H (M S T), p(M;SiT), .. be the Sobolev spaces of H p—sections
k]
2 2

(i.e., up to 2nd derivatives are Lp) of 87T, S+T, w. . We always assume

that p >n = dim M. H (M;S2T) is an open subset of H, (M;SZT), and

2,p 2,p
Vol: H (M S T)—>ZR, g+>Vol(M,g) is a Cl-ma.pplng whose differential
is not zero. From this, there are a neighborhood U of 0 in H, (M 8 T)

and a Cl-function X :U—>R such that, putting $(h) = g.+h+ o((h)go

€
for h€U, we have the following properties; (1) $(h)e H (M s T),
(2) vol(E(n)) =15 (3) (o) = &g (4) DE at 0 is the inclusion map*
H2’P(M;§2T) C)HZ’P(M;S2T). We note that &(h) is a C¥metric if and
only if h is a C*® section.

The scalar curvature R: H (M S T)—} L (M;R) is defined as a Cl-
mapping for p>n. So we get a ct -mapping R°§ U‘?L (M;R), UCH (M § T).

The differential A:H2 p(M;S T)—aLp(M;R) of Re® at 0 is computed to be
?

i ij ij
= o + -
A(h) An ; * R (13 h Rij »

where the connection, Ricci curvature, etc. are relative to gy The

-8



KSTS/RR-85/011
June 15, 1985

formal L2—adjoint A* is given by

A¥(u) = A*(u) + @ (u)g,.

where A*(u) = —(Au)gO + Vau -u Ric(go) and B(u) = SR(gO)dvg /nVol(gO).
0

[
A*:Hh P(M;R)"—)H p(M;SZT) is a continuous linear map. From the assum-
2 ’

2
ption that the scalar curvature R(go) is not constant, we can show that

At’T&*:H,4 p(M;R)-—)Lp(M;B) is a linear homeomorphism, and A°A*:Hl+ p(M;R)
b

>
‘ﬁLp(M;B) is injective (ef. [2], [31, [51). Then, since
Ao(A* - A*) is a compact operator, we conclude that AeA* is invertible.
(Remark. If 8 is an Einstein metric with constant negative scalar cur-
vature, then AeA* is not invertible. This is a difference from the case
without volume constraint.)
Let V = (A".")-l(U). Define a Cl—mapping Q:V——)LP(M;R) by
Q = ReBoA*. Then the differential of Q at 0 is AcA¥. So, by the
inverse function theorem for Banach spaces, Q is locally invertible.
In particular, Q(V) contains some . £ -ball centered at Q(0) in LP(M;]R).
Now, for the function f given in Theorem, we have a diffeomorphism
% of M such that |[Q(0) - £e9| <€ (see [51). So, there is uev<C
Hh,p(M.’B) with Q(u) = f=¥. Altll?lough Q(u) includes integrals of u,
Y u and Vzu, we can see that the elliptic regularty argument is
applicable, by writing down Q(u) explicitly. So, we see that u is smooth.
Thus, g:= $eA*(u) is a C™ Riemannian metric with Vol(M,g) = 1 and

R(g) = £o¥. Then the desired metric g is given by g = (‘-f—l)*é. 0
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