Research Report

KSTS/RR—SS/S

0
14 June 1985

!
Machine Language for
the Reduction Machine
Reducing Recursive Programs
by

Akira Aiba
Masakazu Nakanishi

Akira Aiba
Masakazu Nakanishi

Department of Mathematics
Faculty of Science and Technology
Keio University

Hivoshi 3-14-1, Kohoku-ku
Yokohama, 223 Japan

Dept. of Math., Fac. of Sci. & Tech., Keio Univ.
Hiyoshi 3-14-1, Kohoku-ku, VYokohama, 223 Japan

KSTS/RR-85/010
June 14, 1985

Machine Language for the Reduction Machine

Reducing Recursive Programs

by
A. Aiba and M. Nakanishi
Department of Mathematics
Faculty of Science and Technology

KEIO University

ABSTRACT: By experiments, the cost of the reduction of lambda-
terms which represent applicative programs are compared to the
cost of the reduction of combinatory expressions which represent
the same programs. These programs belong to the restricted linear
recursion schema. Lambda~-terms and two kinds of combinatory
expressions obtained by Turner’s methods are compared,a;l using
the normal order reduction strategy. The main result states that
the method of the reduction by which sub-expressions are shared
is more efficient compared to the method by which sub-expressions
are not shared. The reduction by the lambda-calculus is more
efficient than that by the combinatory logic when they reduce
expressions representing programs belong to the restricted linear

recursion schema.

KSTS/RR-85/010
June 14, 1985

1. Introduction

After the reduction machine for the lambda-calculus and that

for the combinatory-logic were proposed, the relative efficiency
of those machines has been discussed. In this paper, the
efficiency of the lambda-calculus is compared to that of

combionatory-logic when they reduce terms representing recursive
programs. The complexities of terms obtained from recursive
programs, especially those of combinatory expressions are

affected by the number of parameters in the recursive programs.

Comparisons are made on the following grounds.

i) lambda-terms, and combinatory expressions are extended by
adding constants and base-operations on constants. These extended
reduction systems should be Church-Rosser. The Church-Rosser
property of such kind of reduction systems are studied in [Klop-—
8017 .

ii) Terms in the extended lambda-calculus and those in the
extended combinatory-logic are reduced by the normal order
reduction strategy.

iii) A combinatory expression is obtained from a lambda-term

by Turner’s two bracket abstraction algorithms [Turner-78, 79].

In section 2, recursive programs to be measured, terms in
each reduction system are defined, and measured items are
presented. In section 3, the results of the measurement are

presented, and they are compared in section 4.

e

KSTS/RR-85/010
June 14, 1985

2. Basis for the comparison
The class of recursive program schema to be measured is

linear [Strong-71].

Following schema has in common B, the set of base—operation
symbols; P the set of predicate symbols; X the set of argument
symbols; and F the set of function symbols, one of which must be

chosen to represent the particular function being presented.

A branched recursion equation is an equation of the form

t 1f p (%)
1 1
t if not p (x), and p {(x)
2 1 2 '
fix) =4t if not p (x), and not p (x}, and p (Xx)
3 1 2 3
t if not p (x), and not p (x), and not p (xJ,
n 1 2 3
and ... not p (x), and p {(x)
n-1 n
_ where f is a function symbol, p , ..., p are predicate symbols,
1 n
t o, ey t are any expressions consisting of argument symbols,
1 n
base-operation symbols, predicate symbols, and function symbols.

And x denotes a sequence of argument symbols.

A branched recursion equation schema is a system of branched
recursion equations with distinct left sides. Let <E, f> be a
recursive presentation, where f is a function symbol occuring on

the left side of an equation in a branched recursion schema E.

Computations of <K, > can be viewed as derivations in a

KSTS/RR-85/010
June 14, 1985

tree-grammer in which function symbols play the role of non-
terminal; and argument symbols, base—-operation symbols, and

predicate symbols play the role of terminal symbols.

Each line of the branched equation such that

f(x) =t if not p {(x), and not p (x!}, and ..., and
i 1 2
not p (x), and p (xJ
i-1 i
is viewed as a rule as follows:

fix) —-» t if not p (x), and not p (x!}, and ...
i 1 2
not p {(x), and p (x).
i-1 i

f(x) -> t if not p (x:, and not p (x)}, and ...,
i 1 2
not p (x), and p (x)
i-1 i
is linear if t has at most one non-terminal.
i

Definition-3(Linear branched recursion schema):

Branched recursion schema is linear if each line of that rule is

linear.

Programs which belong to the following form of linear

recursion schema is measured.

f{x , .., X)Y = q(x , ..., X) if plx , .., %X !
1 n 1 n 1 n
hix , ..., %,
1 n
fikisx), kix 1))
1 n
if notbt pix e 1)
1 n

KSTS/RR-85/010

June 14, 1985

where p, q, h, and k are base-operation symbols.

The schema (1) can be written as the following lambda-term.

f = Ax A ¥ AX . {(cond (p x ... x)
1 2 n 1 n
(g x ...x) (hx ... x
1 n 1 n
(f (k x) ... (k x)))) oo, (2)
1 n

where p, q, h, k, and cond are base-operation symbols.

There are following alternatives of the reduction machine

on which recursive programs in the form of {1l) are measured.

i) Machine code: There are two kinds of machine codes for
the machine. One consists of lambda-terms, and the other
consists of combinatory expressions. 0f course, both reduction

systems should be extended by introducing constants and base-
operation symbols which are described later.

i1} Sharing mechanism: On both lambda-terms and combinatory
expressions, there is a choice: One 1s to share sub-expressions
and the other is to not shared them. In the lambda-calculus, sub-
expressions which are substituted to occurences of the bound
variable can be shared. Of course, sometimes an extra procedure
called copy operation should be done [Wadsworth-T71]. In the
combinatory logic, the plural occurences of sub-expressions in
reduction rules, such as the third argument of the combinator S,

can be shared as in Turner’s reduction machine [Turner-79!.

There is further alternative to the reduction machine for
combinators. The alternative concerns combinators which are used
to represent the machine code. One uses combinators S, K, I, B,

and C, and the other uses combinators S, K, I, B, €, S’, B’, and

[l

KSTS/RR-85/010
June 14, 1985

C’. By the above alternatives, there are two versions of
reduction machines for lambda-terms, and there are four versions
of reduction machines for combinators. The versions of reduction

machines on which efficiencies are measured are as follows.
1} Type-I reduction machine: Reduction machine for the

lambda-calculus with no sharing mechanism,

no

Type-II reduction machine: One for lambda-terms which has

sharing mechanism,

3) Type—-III reduction machine: one for combinators S, K, I,
B, and C, which has no sharing mechanism,

4) Type-1IV reduction machine: one for combinators S, K, I,
B, and €, which has the sharing mechanism on the
reduction of the combinator S, and

5) Type—-V reduction machine: one for combinators S, K, I, B,

C, S’, B’, and C’ which has the sharing mechanism on the

reduction of combinators S and S’.

We are mainly concerned with the comparison of the
relative efficiency of reduction machines for lambda-terms and
combinators, which corresponds to the comparison of type-1 or

type-I1I, with type-III, IV, or type-V.
To mentain the Church-Rosser property, extra facilities for
lambda-terms and combinators should be restricted as described in

[Klop—801.

In the experiments for Lhe linear recursien in the lPorwm of

KSTS/RR-85/010
June 14, 1985

(1), the followings are used.

1) p(x , ..., x) as onep(x , ..., x) which returns true if
1 n 1 n
all x , ..., x are equal to 1.
1 n
2) q(x , ..., x) as plus(x , ..., x , 1) which returns the
n 1 n
summation of all arguments x , ..., X , and 1.
1 n
3) h(x , ..., ®x , y) as plus(x , ..., x , y).
1 n 1 n
4) k(x) as pred(x) which is the predecessor function.
i i

"cond" is introduced into the reduction systems to represent
the conditional branching scheme. It should always have three

arguments.

Consider the linear recursion in the form of (1) with two

arguments as an example.

fix , x)} = plus{x , x , 1) if onepix , X)
1 2 1 2 1 2
plus(x , x , fflpred{(x ;, pred(x }};
1 2 1 2
if not omep{(x , X ! (2}
1 2

(2) is translated into the following lambda-term.
f = A xl.2aAx2.(cond (onep x1 x2) (plus x1 x2 1)

5

(plus x1 x2 (f (pred xl} (pred x2)}3})

This lambda-term (3) is translated into the following expression
of combinators by Turner’s method [Turner-79}.
f = S(B S(S (B S(B(B cond) onep)) (C{(B C plus) 1)))
(S(B 8 plus} (C{(B B(B f pred)) pred)) (4)
Where as "another bracket abstraction algorithm” [Turner-78]

translates {3 into the following expression of combinators.

KSTS/RR-85/010
June 14, 1985

f = (S’ S{(S’ S(B' B cond onep) (C’ C plus 1))

(8' S8 plus (C’ B(B f pred) pred))) (5)

Measurements are made on the following items.

i) Calling f: The number of the times of extracting the
expression from a variable as its name. That is, the number of
times of the reduction of f.

ii) Base-operations: The number of times of base—-operation
svmbols "onep", "plus”, and "pred" are applied during the
reduction.

iii} Conditional: The number of times of the base-operation
symbol "cond" are applied during the reduction.

iv) Proper reductions: In the results for the reduction
machine for lambda-terms, this shows the number of beta-
reductions during the reduction. And in the reduction machine for

combinators, this shows the total number of combinator reduction.

3. Results
In this section, the results of the measurement are
presented. In the following tables, "n" denotes the number of

times of "pred" is applied before the value of the base operation

"onep" turns out true.

3.1 Reduction machine type-1I

When the machine coecde representing the linear recursion 1is
reduced in the reduction machine type-I, each measured items are
as iu the table-1. The rightmost column shows the general case.

KSTS/RR-85/010
June 14, 1985

table-1 (a): Reduction of one parameter in type-I

0 1 2 3 n
Calling f 1 2 3 4 n+i
Base operations 2 6 12 20 2 +3n+2
Conditionals 1 2 3 4 n+l
B -reductions 1 2 3 4 n+l

table-1 (b): Reduction of two parameters in type-I

0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 8 18 32 2nku2+4n+2
) Conditionals 1 2 3 4 n+l
B -reductions 2 4 6 8 2n+2

KSTS/RR-85/010
June 14, 1985

table-1 (c): Reduction of three parameters in type-I

0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 10 24 44 Inkx2+5n+2
Conditionals 1 2 3 4 n+l1
B -reductions 3 ’ 6 9 12 3n+3

table-1 (d): Reduction of four parameters in type-I

0 1 2 3 n
Calling f 1 2 3 4 n+l
i- Base operations 2 12 30 56 4n%%2+6n+2
Conditiomals 1 2 3 4 n+l
B -reductions 4 8 i 12 16 , 4n+4

3.2 Reduction machine type-II
When the machine code representing the linear recursion
reduced in the reduction machine type-IT, each items are as

the table-2. The rightmost column shows the general case.

10

KSTS/RR-85/010
June 14, 1985

table-2 (a): Reduction of one parameter in type-II

0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 5 8 11 3n+2
Conditionals | 1 2 3 4 n+l
B -reductions 1 1 2 3 4 n+l
|

table-2 (b): Reduction of two parameters in type-II

0 1 2 3 n
i ! !
Calling f 1 2 3 4 n+1l
_ Base operations 2 6 10 14 4n+2
Conditionals 1 2 3 4 n+l
B -reductions 2 4 5 8 2n+2
i

11

KSTS/RR-85/010
June 14, 1985

table-2 (c): Reduction of three parameters in type-1II

;
0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 7 12 17 5n+2
Conditionals 1 2 3 4 n+l
B -reductions 3 6 | g . 12 3n+3 |
| | '

table-2 (d): Reduction of four parameters in type-1I1

0 1 2 3 n

|

| | i E

Calling f 1 ' 2 3 4 n+l

| :

B Base operations 2 8 14 20 6n+2 !
Conditionals 1 2 3 4 n+1 !

|

B -reductions 4 8 12 ‘ 16 4n+d

| |

3.3 Reduction machine type-III
When the machine code representing the linear recursion is
reduced in the reduction machine type-III, each measured item is

as in the table-3.

KSTS/RR-85/010
June 14, 1985

table-3 (a): Reduction of one parameter in type-II1I

0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 6 12 20 nx2+3n+2
Conditionals 1 2 3 4 n+l
Combinators 4 9 14 18 Sn+4d
S 2 5 8 11 3n+2
B 1 3 5 7 2n+1
c 1 1 U 1
i | i

table-3 (b): Reduction of two parameters in type-III

T :
0 1 2 3 n

-~ Calling f 1 2 3 4 n+1
Base operations 2 8 18 32 2nwik2+4n+2

Conditionals 1 2 3 4 n+l
Combinators 11 26 41 56 15n+11

S 4 10 18 22 6n+4

B » 5 13 21 28 8n+5

c ! 2 3 4 [5 n+2

KSTS/RR-85/010
June 14, 1985

table-3 (c): Reduction of three parameters in type-III

0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 10 24 44 3n#x2+5n42
Conditionals 1 2 3 4 n+l
Combinators 21 52 83 114 3in+21
S 6 15 24 33 9n+6
B 12 31 50 69 19n+12
C 3 6 9 12 3n+3
table-3 (d): Reduction of four parameters in type-III
1
0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 12 30 56 dnkk2+6n+2
Conditionals 1 2 3 4 n+l
|
Combinators 34 88 142 196 54n+34
S 8 20 32 44 12n+8
B 22 58 94 130 36n+22
i
: C 4 10 16 22 n+4 |

KSTS/RR-85/010
June 14, 1985

3.4 Reduction machine type-1V
When the machine code representing the linear recursion is
reduced in the reduction machine type-1IV, items to be measured

are as in the table—4.

table-4 (a): Reduction of one parameter in type-VI

i 0 E 1 2 3 n

Calling f 1 2 3 4 n+l
Base operations 2 5 8 11 3n+2 |
Conditionals 1 2 3 4 nt+l
Combinators 4 9 14 19 Sn+d

S 2 5 8 11 3n+2 &

B 1 3 5 7 2n+1

c 1 1 1 4 1 1

I

15

KSTS/RR-85/010
June 14, 1985

table-4 (b): Reduction of twe parameters in type-VI
0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 6 10 14 4n+2
Conditionals 1 2 3 4 n+l
|
Combinators 11 26 41 56 15n+11 !
S 4 10 16 22 6n+4
B 5 13 21 29 8n+5
C 2 3 4 5 n+2

table-4 (c¢): Reduction of three

parameters in type-VI

C 1 2 3 n

Calling f 1 2 3 4 n+1
Base operations 2 7 12 17 5n+2
Conditionals 1 2 3 4 n+l
Combinators 21 52 83 114 31n+21
S 8 15 24 33 9n+6

B 12 31 50 63 19n+12 :

|

C 3 6 9 12 3n+3 |

KSTS/RR-85/010
June 14, 1985

3.5 Reduction machine type-V
When the machine code representing the linear recursion is
reduced in the reduction machine type-V, measured items are as 1in

the table-5.

table-5 (a): Reduction of two parameters in type-V

I 0 1 2 3 n
Calling f 1 2 3 4 n+l
Base operations 2 6 10 14 4n+2
Conditionals 1 ! 2 3 4 n+l
Combinators 8 19 30 41 11n+8

R S 2 5 8 11 3n+2
i
B 1 4 7 10 3n+l
C 1 1 1 1 1
S’ 2 8 8 11 3n+2
B’ 1 2 3 4 n+l
c’ 1 2 3 i 4 ‘ n+l
i : i i

KSTS/RR-85/010
June 14, 1985

table-5 (b): Reduction of three parameters in type-V
T
0 1 2 3 n

Calling f 1 2 3 4 n+l
Base operations 2 7 12 17 5n+2
Conditionals 1 2 3 4 n+l
Combinators 12 28 44 60 16n+12
S 2 5 8 11 3n+2
B 1 5 9 13 4n+1
c 1 1 1 1 1
s’ 4 10 16 22 6n+4
B’ 2 4 6 8 2n+2
' c’ 2 4 6 8 2n+2

L8

KSTS/RR-85/010
June 14, 1985

4. Conclusion

In this paper we presented the relative efficiency of the
reduction machine for the lambda-terms, combinators S, K, I, B,
and C, and combinators S, K, I, B, C, S’, B’, and C’, when they
represent a kind of the linear recursion. The result of the

experiments can be summarized as follows.

4.1 General case

In the following, "n" denotes the depth of the recursion,

which is the same as in the previous section, and "m" denotes the

number of parameters.

table-6: Summaries of experiments

type-1I type-1I1 type-111 { type-VI type-¥
|A Calling f n+l n+l n+l n+l n+l 1
N
{
Base m- n%E2 {(m+2)n+2 mk 2% (m+2)n+2 (m+2)n+2 |
i
Operations +(m+2)n+2 +(m+2)n+2
1 M
Conditionals n+l n+l n+l ; a+l n+l
B -reductions m(n+1) m(n+l)
Combinators (m¥x2+m+1)n Imek2+m+1)n (6m-1)n
! i +1/2(11p%2-9m+8) ¢ +1/2(3mi4xk2+5m) +(4mp-1)
! ;

KSTS/RR-85/010
June 14, 1985

By observing the table-6, it is clear that the reduction

machines which share their sub-expressions, or those that do not

requir the same number of steps of "calling £, "Base
operations™, and "conditionals", independent of their reduction
systems. Thus, the difference between the reduction machine for

the lambda-calculus and that for the combinatory-logic is in the
number of their proper reductions, beta-reductions and reductions
for combinators. However, these number can not be compared
directly, because beta-reduction and combinatory reduction may

need different amount of time or space to perform the reduction.

4.2 Comparison
Suppose that lambda-terms and expressions of combinators are

represented as binary trees in each reduction machine as in the

fig.-1, the «cost of each reductioﬁyéén beVEQﬁpéredig; }nllowing
two cliteria.
1) The number of pointers changed within the tree
- representing a term to perform the reduction.

2) The number of cells consumed to perform the reduction.

(a) v - v (where v is a variable, a constant, or a

base operation symbol)

(b) Av. E - (where E* is the tree representation

of E)

KSTS/RR-85/010
June 14, 1985

(c) (E F) - (where E* and F* are tree

representations of E and F)

Fig.-1: Tree representations

By introducing the above two cliteria, the beta-reduction

can be compared to the combinator reduction.

In the reduction machine type-1T, the lambda-term
representing the linear recursion with m-parameters has (dm+6)
symbols in its body, and the number of terminal nodes of that

tree is (6m+6), and the number of non-terminal nodes of that tree

is (6m+5;. In the reduction machine type-1I1I, with the lambda-
term representing the linear recursion with m-parameters, four
occurences of each parameter are shared in a terminal node. When

subsequent m beta-reductions are performed, non-terminal nodes in
the body and terminal nodes representing a parameter are copied
in the following argument. Consequently, (6m+11) cells are
consumed and {(10m+20} pointers are changed to perform subsequent

m beta-reductions.

The number of cells and the number of changed pointers to
perform a reduction are dependent on the combinator which are
used in the reduction. In table-7, the number of consumed cells

and the number of changed pointers are listed.

KSTS/RR-85/010
June 14, 1985

By these arguments,

the total number of consumed cells and

the total number of changed pointers to obtain the normal form of

expression

which belong to the two way branched linear recursion

in each reduction machine can be summarized as in the table-8.

table-7: Cells and pointers of Combinators

1
Number of cells Number of pointers
S 2 6
B 1 4
C 1 4
s’ 3 8
B’ 2 6
c’ 2)
table-8: Number of ceils and pointers
E
type-1I type-1I type-1I11 type-VI type-V¥
Number of 9mn+9m Tun+7m Inmix2 +7 pick? Inmux2+3/2 -mkx l4mn+10m-6n-9
cells +5n+5 +10n+10 +4mn-2m+n+4 +4mn+9/2-m+7n
Number of 10nn+10m | 10mn+10m | 12nmk2+25m%%2 12nm¥x2 +6mkx2 39mn+27m-13n-11
pointers +10n+10 | +10n+10 ; +10mn-13m+4n+16 | +10mn+14m+22n |
: | {

KSTS/RR-85/010
June 14, 1985

By table-8, the reduction by which sub-expressions are
shared is the efficient method to obtain the normal form than the
reduction by which sub-expressions are not shared, essentially.
And the reduction by the lambda-calculus is also more efficient
than that by the combinatory logic when they reduce expressions

representing functions which belong to the linear recursion

schema.
table-9: Number of cells
m=1 m=2 n=3 m=4
type-1 14n+14 23n+23 32n+32 41n+41
type-I1 17n+17 24n+24 31n+31 38n+38
type-V 8n+l 22n+l11 36n+21 50n+31
J
table-10: Number of painters
m=1 n=2 m=3 m=4
type-1 20n+20 30n+30 40n+40 50n+50
type-11I 20n+20 30n+30 40n+40 50n+50
type-V 26n+16 65n+43 104n+58 143n+97

KSTS/RR-85/010
June 14, 1985

When "m" is given, expressions in the table-9 and 10 can be

obtained. To <conclude, the reduction in the lambda-calculus is

"o "o

more efficient than that in the combinatyory-logic if "m" and "n
are sufficiently large, when they reduce terms representing

programs which belong to the restricted linear recursion schema.

REFERENCES

[Barendregt-81] Barendregt, H. P., 1981, The Lambda Calculus: Its

Syntax and Semantics, North-Holland, Amsterdam.
d

[Ida-84] Ida, T., and Konagaya, A., 1984, Comparison of

[Jones-82] Jones, S. L. P., 1982, Ap Investigation of the

Relative Efficiencies of Combinators and Lambda

pp.150-158.
[Klop—80] Klop, J. W., 1981, Combinatory Reduction Systen,

Theses for the Ph. D., University of Utrecht.

[Strong-71] Strong Jr., H. R., 1971, Translating Recursion

5, pp.254-285.
[Turner—-78] Turner, D. A., 1978, Another Algorithm for

Bracket Abstraction, J. Symbolic Logic

. Turner-79! Turner, D. A., 1979, A New Implementation

