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Introduction

In this paper we investigate multi-dimensional Skorohod stochas-
tic differential equations (abbreviated: SDE's) on a domain D with
reflecting boundary condition. If w 1is a given process in Rd,
our problem is to find a solution £ of the equation £&(t) = w(t) +
o(t) satisfying certain conditions (see (1.2) and (1.3) of §1) so
that & is a reflecting process on D (the precise definition of
the equation will be given in §1). This equation is called a multi-
dimensional Skorohod equation on the analogy of the one-dimensional
case first discussed by Skorohod [7] (see also [1][31). First we
consider a deterministic version of the Skorohod equation. This
kind of problem has been discussed by Tanaka [8] when D 1is a con-
vex domain and then by Lions and Sznitman [2] when D 1is a general
domain satisfying Condition (A) and Condition (B) (see §l1) together
with the admissibility condition. Here the admissibility means

roughly that D can be approximated in some sense by smooth domains.
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One of the purposes of this paper is to prove the existence and
uniqueness of solutions of the Skorohod equation & = w + ¢ only
assuming Conditions (A) and (B). We do not need the admissibility
condition. To prove this result we employ the method of Tanaka
([81) instead of the penalty method ([2]); more precisely, we ap-
proximate w by step functions {wm}, consider the problem Em =

W+ ¢m which is easy to solve and then take a limit in m to

m
obtain a solution of & = w + ¢. In the proof, the estimate of
the total variation l¢m|t of ¢m plays the essential role.

Another problem of this paper is concerned with the Skorohod
d

SDE. Let o: D » R" ® Rd and b: D » Rd be bounded and Lipschitz
continuous. Assuming that D satisfies Conditions (A) and (B) we

consider the Skorohod SDE
dX(t) = o(X(t))dB(t) + b(X(t))dt + do(t),

which gives rise to a reflecting Brownian motion, where B(t) 1is

a standard d-dimensional Brownian motion. Lions and Sznitman [2]
proved the existence and uniqueness of solutions of the above SDE
assuming the admissibility condition plus another additional condi-
tion (Condition (C) of 81). Our result is that we can remove both
of these conditions to have a unique strong solution of the above
SDE.

In §1 we introduce some conditions on D and give the defini-
tion of the Skorohod equation. Several remarks related to the con-
ditions and the main results are also stated in this section. In
§2 we give some lemmas which will be used in subsequent sections,

and in 83 we estimate the total variation l¢mlt‘ Solvability of
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the Skorohod equation is treated in 84 (deterministic case) and. in

§5 (stochastic case).
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§1. Formulation of the problem and the results

Let D be a domain in RY  and define the set ﬂ; of inward

normal unit vectors at x € 3D by

M; = {n€R": |n|] =1, B(x - rn,r) A D = 1,

where B(z,r) = {y & rY: ly - zf <r}, z€ Rd, r > 0. In general,
it can happen that Hx = ¢. We introduce two conditions on the

domain D.

Condition (A) (uniform exterior sphere condition). There exists

a constant L > 0 such that

e =0 . # $ for any x € 3D,
70

Condition (B). There exist constants & > 0 and B € [1,»)
with the following property: for any x & 3D there exists a unit

vector gx such that

<2 _,n> z 1/B for any ne 3. -
= ~  yeB(x,6)n3D Y

In what follows <+,> denotes the usual inner product in R
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Remark 1.1. It is easy to see that the following two state-

ments are equivalent (cf.[2: Remark 1.2]).

(i) gsf(xr

TE1) <y - x,n> + —%?—]y - xl2 2 0 for any y € D.

Remark 1.2. D satisfies Condition (B) if it satisfies the

following condition.

Condition (B'). There exist & > 0 and o &€ (0,1) with the
following property: for any x & 9D there exists a unit vector
2 such that
=X

C(y.%,,0) n B(x,8) € B, Yy e B(x,8) naD,
where C(y,gx,a) is the convex cone with vertex 1y, defined by

C(y.8,.0) = (z € R%: <z - y,2 5 2 afz - y|}.

Remark 1.3. Under Condition (A), there exists a unique x €&

D such that Ix - ;l = diSt(x,ﬁ) for any x € Rd with dist(x,ﬁ)

<r and (x - x)/|x - x| & R; if x & D. The notation x is

O’
used in this sense throughout the paper (there will be no confusion

with the closure D).

The deterministic problem is stated as follows. Denote by
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d = . 4 -
W(R") (resp. W(D)) the space of continuous paths in R~ (resp. D)

and consider an equation
(1.1) E(t) = w(t) + o(t),
where w € W(Rd) is given and satisfies w(0) € 5; a solution of

(1.1) is a pair of & and ¢ which should be found under the fol-

lowing two conditions (we often call & a solution of (1.1)).

(1.2) g € W(D).
(1.3) ¢ is an Rd-valued continuous function with bounded varia-
tion on each finite interval satisfying ¢(0) = O and
t
o(t) = | aterelol,,
0
t
o], - jonaD<s<s>>a|¢|s,
where
n(s) € if £(s) € 3D,
B €(s)
|d>|t = the total variation of ¢ on [O,t]
n
= Sup § :]d)(tk) - ¢(tk—1)|,
k=1
the supremum being taken over all partitions O = t0 <
by < ere <t o=t
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Remark 1.4. For w € D(R+ + Rd) with w(0) € D, the problem
(1.1) can be also posed if we replace W(*) 1in the additional
conditions after (1.1) by D(R+ + *), where D(R+ > Rd) (resp.
D(R+ + D)) 1is the space of right continuous paths in Rd (resp. D)

with left-hand limits. For instance, when w is a right continu-

ous step function with small jumps, a solution of (1l.1) can be

. . = < < =
constructed as follows: let w(t) w(tk), tk st tk+l’ k 0, 1,
*** . where 0 = tO < t1 < ee+« agpnd lim t_ = o and assume that

n>e O
sup|w(t ) - w(t )| < r.. Put
Kz 1 k k-1 0
(w(t) , 0 st < tl,
E(t) =
- { 2 < { S
Ele, ;) + wle) w(t, ), £ St teer (K2 1
(O , C st < £y
(t) =0, ) + &(t, ) + w(t,) - wlty, )
- - w(t 3 < < B
€(tk_1) w\t.k) + w(r.k_l,, Ly st Ll (k 1),

then if t_ =t < t we have

n n+l’

n
fol, = kg(ll{g(tk_p Fw(e) - wlt, )} -

- g(tk~l) - w(tk) + w(tkv1)|.

Since E(tk) € D implies ¢(tk) - ¢(tk—) = 0, we have
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ol, = 1,..(s(s))d]ol.,
lol, (Og,t] oD s

where ¢(tk—) = lim ¢(t). Therefore by Remark 1.3, we have
t4t
k

o(t) = n(s)d|o}_,
(oS 1= el

?

and (&,9¢) 1is a solution of (1.1) for w.

One of the purpose of this paper is to prove the following

theorem.

Theorem 4.1. If the domain D satisfies Conditions (A) and
(B), then there exists a unique solution of (1.1) for any given

w € w(rRY) with w(0) e D.

The above theorem was proved by Lions and Sznitman [2] under
the additional condition that D is admissible. Employing Tanaka's
method ([8]) we can remove the admissibility condition.

Next, given

o: D> R"®R", b: D=+ R,
we consider a Skorohod SDE on a probability space (Q,%F,P):

(1.4) dX(t) = o(X(t))dB(t) + b(X(t))dt + do(t),

where the initial value X(0) € D is assumed to be an 3O—measurable
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random variable and B(t) is a d-dimensional ?C—Brownian motion
with B(0) = 0. Here {9%} is a filtration such that gb contains
all P-negligible sets and 3@ = N g%+€. A solution (X(t),®(t))

>0
should be found under the following conditions (1.5) - (1.7).

(1.5) X(t) is a D-valued g%-adapted continuous process.

(1.6) é(t) is an Rd—valued ,?t-adapted continuous process

with bounded variation on each finite interval such that

$(0) = O,
t
o(t) = jogus))dl@ls,
t
fel, = JdnaDcx(s>)dI¢IS-
(1.7) n(s) € if X(s) € aD.
N X(s)

- Another main result of this paper is the following theorem.

Theorem 5.1. Let D be a domain satisfying Conditions (A),
(B) and assume that ¢ and b are bounded and Lipschitz continuous.

Then there exists a unique strong solution of (1.4).

The meaning of the existence of a unique strong solution is
the same as in [1l: p.1497].
The above theorem was proved by Lions and Sznitman [2:

Theorem 3.1] under the admissibility condition and the following
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Condition (C). See also Menaldi [4], Menaldi and Robin [5] for

related problems.

Condition (C). There exists a function £ in C2(Rd) which
is bounded together with its first and second partial derivatives

such that 3y > 0, Y% e 3D, Vy € D, VE € Hx

(1.8) <y - x,n> + —$—<Vf(x),g>]y - x|2 2 0.

We can prove that if a domain D satisfies Conditions (A) and

(B), then D satisfies the following condition.

Condition (C'). There exists a positive number &' such that
for each Xq € 9D we can find a function f in Cz(Rd) satisfy-
ing (1.8) for any x € B(xo,é') NnoJb, v € B(xo,é') N D and n €
I(x *

In fact, it will be proved that D satisfies Condition (C') with

§'" =6, v = 2r08'1, L= 9 and f(x) = <£,x - x
Bty £ 0

2, B, § are the same as in Conditions (A) and (B). Condition (c")

>, where rO,

means roughly that D satisfies (C) locally. Theorem 5.1 asserts
that this local condition (C'), which is automatically satisfied
under (A) and (B), is enough to have the existence and uniqueness

of solutions of (1.4).
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§2. Lemmas

In this section we prepare some lemmas which will be used
in the following sections. The first lemma is well-known and the

proof is omitted.

Lemma 2.1. (i) Let f € C'(R) and © = (8

)
t’tzp Pe 2
function in D(R+ + R) with bounded variation. Then we have
_ 1 4 - 1
(2.1) df(Bt) = f (St_)det + Af\ﬁt) £ (OC_)ABE,
where Af(Bt) = f(et) - f(et_), Aet = Bt - Bt_, St_ = :i? es
d

(ii) Let g, h be functions in D(R+ - R7) with bounded variation.

Then we have

(2.2) <g(t),h(t)> - <g(0),h(0)> = S <g(s),dh(s)>
(0,t]

+ g <h(s),dg(s)> - E:Z<Ag(s),Ah(s)>.

- (0,t1] sst
Lemma 2.2. Let y € D(R+ + R) be a non-decreasing function
with ¢(0) = 0 and f be a non-negative Borel measurable function.
If
(2.3) £(t) s K1 + K2 S f(s)dy(s) < », t 2 0

holds with some non-negative constants K1 and KZ’ then we have
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(@]
.

(2.4) f(t) s Klexp{sz(t)}, t

Proof. It is enough to show (2.4) in the case K1 > 0. By

(2.3) we have

Kzf(t)
s KZ’ tz 0
K, + K, § £(s)av(s)
(0,0)
Integrating both sides with respect to d¥ over (0,tl, we
have
Kzf(u)
(2.5} dy(u) s sz(t), t z O.
(0.e1 K + X, § £(s)ev(s)
IOJ
\ xu)

If we set

F(x) = log(x/Kl}, x > G,

6 = K, + K S f(eg)d¥(s),
t 1 Z(O,t]

then an application cf (2.1) yields

dF(eu) = F'(Su_)deu + AF(GU) - F'(Gu_)AHu

K2f(u)d¢(u) K2f(u)A¢(u)
= + log{l + ' }
K, + &, | f(sraucs Ky + K, § fis)ducs)
“(CLu - (0,u)
Kzf(u)Aw(u) Kzf(u)dw(u)

K, + K, § E(s)av(s) Ky + Ky | f(s)au(s)
(07w (0,u)

12
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because log(l + x) - x £ 0, x 2 0. Therefore we have
log(Bt/Kl) = F(et)
Kzf(u)
s dy(u) = szl)(t), £t >0
(0,e1 &, + K,  £(s)du(s)
1 2
(0,u)
by (2.5), that is, Gr s Klexp{sz(t)}. Thus by (2.3) we have
f(t) s Gt s Klexp{sz(c)}, t 2z 0,

completing the proof.

Lemma 2.3. Suppose D satisfies Condition (A). (i) Let w,
w' & D(R+ > Rd) and (&,¢), (£',0') be solutions of the Skorohod
equations £ = w + ¢ and &' = w' + ¢', respectively. Then we
have
(2.6) le(e) - e () ]? s [w(e) - w'(0)]?

O ecs) - ersriZactol + 16710
o (o, ¢l S ! 8

+ 2 S <w(t) - wis) - w'(t) + w'(s),dd(s) - dod'(s)>.
(0,t]

(i) Let w, &£, ¢ be as in (i). Then we have for O g s g t,

(2.7) fg(t) - £(s)1? s w(r) - w(s)|?
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0 Je - s Palel, + 2§ cwe) - w(w),a0u)>.
0 (s,t] (s,t]
Proof. (i) By (2.2) we have
leCe) - €7(e)]? = |w(t) - w' ()% + [oCt) - &' (r)]?
+ 2<w(t) - w'(t),o(t) - o' (t)>
= |w(t) - w'(t)|2 + 2 S <hp(s) - d'(s),dd(s) - do'(s)>
(0,tl]
=Y T1ae(s) - 86" (s) |2+ 2¢uw(t) - w'(£),0(t) - 6'(r)>,
ssSt
cw(t) - w'(t),o(t) - o' (t)>
= S <w(t) - w'(t),dd(s) - do'(s)>
(0,t]
= S cw(t) = w(s) - w'(t) + w'(s),do(s) - do'(s)>
(0,t]
+ S <w(s) - w'(s),dd(s) - do'(s)>.
(0,t]
Therefore
(2.8) leCe) - £'°(e)]% s lw(e) - w'(t)]|?

+ 2 S <g(s) - £'(s),do(s) - do'(s)>
(0,t]

+ 2 S w(t) - w(s) - w'(t) + w'(s),dd(s) - do'(s)>.
(0,t]
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By Condition (A),(1.3) and Remark 1.1, we have

S <E(s) - £'(s),do(s) - do'(s)>
(0,t1]

1 2 '
s 57 S ]Ia(s) - g'(s)|"aCfolg + o' 1)
and hence we obtain (2.6).
(ii) By a method similar to (i), we have

leCt) - €(s)]2 = [w(t) - w(s)|? + [6(r) - o(s)|?

+

2<w(t) - w(s),o(t) - o(s)>

= (e - w2+ o) - ()% + 2 § () - wis),do(u)>.

(s,t]

Using (2.2),

2§ <ocw) - o), dou)> - 37 ae(w)]|?

(s,t] s<ust

[o(t) - 6(s)|?

]

2§ <ocw) - o(s),docu),
(s,t]

17

lw(t) - w(s)|2+ 2 § <oCu) - o(s),do(u)>

(s,t]

l£Ce) - £(s)|?

A

+ 2 S <w(t) - w(s),dé¢(u)>
(s,t]

= Ju(e) - ws) 122 § <o) - 6(s),docu)>

(s,t]
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2§ <w(u) - w(s),do(u)> + 2§ <w(t) - w(u),do(u)>
(s,t] (s,t]

- Jue) —w) P2 § <equ) - g(s),docu)
(s,t]

v 2§ cw(e) - w(u),de(u)>.
(s,t]

By Condition (A),(1.3) and Remark 1.1 we have

( cew) - a(o)d0w> s 52— § e - o)1)l

(s,t] 0 (s,t]

u

and hence we obtain (2.7). The proof of Lemma 2.3 is finished.
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§3. Estimate of |¢m|t
Let D be a domain in Rd (not necessarily bounded) satisfying
Conditions (A) and (B). For w e W(RY) define w_e D(R, &%),
m 2 1, by

(3.1) v (t) = w(k2™), k2™ st < (k+ 1)27™, kzo0

and consider the following Skorohod equation for W

(3.2) Em(t) = wm(t) + d)m(t), t 2 0.

For simplicity we assume that w is uniformly continuous in
{0,o) for the time being (this assumption is not essential since
we shall consider (3.2) for O st £ T, T being arbitrary but
fixed). Since wo is a step function, a solution (§m,¢m) of
(3.2) can be constructed explicitly as follows provided that m

is sufficiently large (see Remark 1.4).

w (0) , 0st<27™®
(3.3) g () =
am((k-l)z“m) + Awm(kz‘m), k2™® 5 ¢ < (ks1)27T,
(O , 0st< 27®
(3.4) o () = ¢m((k-1)2‘m) + gm((k-l)z‘m) + Awm(kz‘m)

- 5m((k-1)2'm) - Awm(kz‘m), k2™ s £ < (k+1)27™,
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Here Awm(t) = wm(t) - wm(t-), wm(t—) = ii? wm(s). Notice that

lAwm(t)I <r for sufficiently large m because of uniform

0

continuity of w and hence

-m -m
Em((k - 1)27") + Awm(k2 )
is uniquely defined (see Remark 1.3).

Remark 3.1. Under Condition (A), it is easy to see that for

large m (3.4) implies
Ao I, = a0 ()| s Jaw (o).
The purpose of this section is to prove the following
proposition which plays an essential role in the proof of Theorem

4.1 in §84.

Proposition 3.1. Let T > O be any fixed time. If the domain

D satisfies Conditions (A) and (B), then for sufficiently large m

we have
s
(3.5) lo It s Ko _p,-m (W), 0 ss <t sT,
where AS t(w) = sup Iw(tz) - w(t1)| and K 1is a constant

sst,.<t,st
depending only on the constants ry, B, 8§ in Conditions (A),(B),
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T, []WHT = sup |w(t)| and the modulus of uniform continuity of
OscsT

w on [O,T].

Before proving the proposition, we prepare some lemmas under

the same assumption as in Proposition 3.1. Define

= i > 0:
Tm,O inf{t 0: Em(t) € 3D},
Can = inf{t > Tm,n—I: IEm(t) - gm(Tm,n-l)l z §/2},
Toon = inf{t 2 Ca,n’ g.(t) € 9D} .
Notice that T <t but it can happen that ¢t =T
m,n-1 m,n m,n m,n
Let
A (w ) = sup  |w (t,) - w (t,)],
s,t m sst.<t.st ™ 2 m- 1
1 -2
s n
- log It = sup L3 10(x0) - ope DI
where the second supremum is taken over all partitions s = tg <
t1<"‘<tn=t.
Lemma 3.1. For sufficiently large m, we have
s
(3.6) lo IS s 8(A, () + Ay (W)Y, s, t &[Ty | juty o]
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Proof. If T s s<tst , then by Condition (B) we

have

B,E_(t) = £ (s)> = <Z,w_(£) - w (s)> + <&,0 (t) - 6 (s)>

1\

SLow (8) - w (s)> + B_1|¢m|§,

where £ =% and m is taken to be sufficiently large

Lgm(Tm n—l)
so that |€m(t) - Em(Tm,n-1)| < 8§ holds for Tm,n—l st s tm,n'
Therefore
s
lo 17 s 8Ll (£) - € (s)] + As’t(wm)}, Tpopy S8 St %
Since ¢ is constant in the interval (t , T ), we have
m m,n’ “m,n

S<
I¢mlt = B{As,t(E’m) + As,t(wm)}’ s, t €& [Tm,n—l’tm, ]

Lemma 3.2. Let T > 0 be any fixed time. Then for

sufficiently large m we have
-1 s
(3.7) By o (E) s V2 + €7y (v + elo |
-exp(y|¢m|i), 0 ss<tsT,

where Yy = (ro)_1 and € is an arbitrary positive number.
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Proof. By (2.7) we have

le_(t) - gm(s)|2 s w_(£) - wm(s)lz + Y(Sgt]|5m(u) - Em(s)|2d|¢m|u

+ 2 S ¢<w (t) = w (u),dd (u)>
(s, t] m m m

< A2 s 2
e T L e T L N C R EN

2 s 2
= As,t(wm) + 2As,t(wm)l¢m|t + Y(sgt)igm(u) - Em(s)| d|¢m|u

v vle (e) - g () %ale ], .

Since A|¢m|t ES |Awm(t)| < r0/2 = (2Y)-l, 0 £t s T, for sufficiently

large m by Remark 3.1,
le (e) - £ ()% s 282 (w ) + 48 (uw)lo |3
m m s, t m s,t m m't
+ 2y S le (u) - £ (s)|%dlo_]
(s7t) m m m'u’

and hence, using Lemma 2.2, we have
(3.8) e (£) - € (s)|? s 2082 (w ) + 2a_ _(w)le |5}

m m s,t" m s,t" m m*'t

-exp2v|o_I3).

Therefore for any € > O,



KSTS/RR-85/008

May 31, 1985
22
2 -2,,2 2 s42
| (£) = € (s)|% s 20(1 + e7)As (wp) + e“(fo D)7}
s
cexp(2vlo I9),
that is,
-1 s
le,(t) = & ()| s V201 + €7, ) + elo [}
s
cexp(ylo_I3), 0 s s <t sT.
The proof is finished.
Lemma 3.3. Let T > 0 be any fixed time. Then, for
sufficiently large m we have
(3.9) As,t(gm) = KAS,t(wm)’ s, t € [Tm,n—l’tm,n] v (tm,n’Tm,n)’
provided that Tm n S T, where K 1is a constant depending only
on the constants £y B8, 8§ in Conditions (A),(B), T and ||wHT.

Proof. (3.7) combined with (3.6) implies

1

by ((Bg) 3 V201 + 70 + o)A,  (wp) + Bedy ((E))

'EXP[BY{As,t(Em) + As,t(wm)}]’ s,t € [T 1.

t
m,n-1’ m,n

If we put n = As,t(gm), then
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1

(3.10) NS V20(1 + €7 + Be)A,  (wp) + Ben}eexplBy{n + &, (w)}],

s, t € [Tm,n-l’tm,n]'

Since 0 $n < 28 for s, t € [T ,t 1, we have
m,n-1""m,n

1

n s Vv2{(1l + e~ + Be)AS t(wm) + Ben}leexp{2BY(S + ||W“T)}-

If we take € as 0 < e < (/76)_1exp{—26Y(5 + ||w”T)},

VI(1 + e 4 Be)d, (v )+ exp(28Y(8 + llwll)

n s
1 - V2Be-exp{28Y(S + |[wll )}
and hence
(3.11) As,t(gm) s KsAs,t(wm)’ s, t € [Tm,n—l’tm,n]’
where
- ] /2(1 + €71 & Be).exp(28y(s + il )}
€ 1 - /2Be-exp{28Y(8 + |lwllp)}
If ¢t < T , by the definitions of t , T , we have
m,n m,n m,n m,n
As,t(sm) = As,t(wm)’ s, t € [tm,n’Tm,n)'
Therefore,
As,t(gm) s As t (Em) * At ,t(gm)
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S KBy o (e b ()
m,n m,n
: (KE + 1)As,t:(wm)’ Tm,n—l s = tm,n <t Tm,n
and hence
As,t(gm) s KAs,t(wm)’ s, t € [Tm,n—l’tm,n] v (tm,n’Tm,n)’

where
K = inf[K_+ 1: 0 < € < (V28) " Texp{-28v(6 + [[wll )},
The proof of Lemma 3.3 is finished.
Now we are going to prove Proposition 3.1.

Proof of Proposition 3.1. (3.9) combined with (3.6) implies

A

Ty o)

(3.12) lo If s k'a, (v, s, t€&lT

m,n—l’tm,n] v (tm,n

where XK' = B(K + 1) + 1. By (3.7) and (3.12) we have

(3.13)  8/2 s g (e ) - £ (T | )]

n

T

m,n-1

) A e G+ elogly
m,n-1’ "m,n m,n

1

[ 7Y

V2{(1 + € }

Tm n-1
-exp{Y|¢m|t ’ }

m,n
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s V2(1 + el 4 K'e)Ap (w )
m
m,n-1"m,n
-exp{K'YAT e (wm)}.
m,n-1" "m,n
Now let Ne be the positive root of the equation:
VZ(1 + gl + K'e)neexp(K'Yn) = §/2,
and put A = sup Neg- It follows from (3.13) that
€>0
(3.14) A s AT t (wm).
m,n-1’"m,n
Since w 1is continuous, there exist an integer mo 21 and h > 0

such that for any m 2 My,
8,7,n(¥g) < 4

where AO,T,h(wm) = sup{]wm(t) - wm(s)lz 0 ss<¢tsT, |t - s] s h}.

Note that T = T implies T - T 2 h for m 2 m,.
m,n m,n m,n~1 0
In fact, if T - T < h, we have
m,n m,n-1
A (vg) s Ap o )

m,n-1’"m,n

A

AO,T,h(wm) < A,

which contradicts (3.14). Therefore if m 2 my, T > T for
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n > T/h. By (3.12),

pm (W), 0 ss < T,

t

s v 1"
|¢ml < (T/h + 1)K Ay ((wp) s KA

where X" = (T/h +1)X'. The proof of Proposition 3.1 is finished.
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§4. Solvability of the deterministic problem
In this section we prove the following theorem.

Theorem 4.1. Suppose that a domain D in Rd satisfies
Conditions (A) and (B). Then for any w € W(Rd) with w(0) € D
there exists a unique solution &(t,w) of the equation (l.1),

and £&(t,w) is continuous in (t,w).

Proof. The uniqueness was proved in [2: Theorem 1.1] under
Condition (A) only. In fact, the uniqueness follows immediately
from (2.6).

We prove the existence. Let T > O be any constant. In
what follows m is assumed to be so large that (3.5) holds.
First we notice that there exists a constant C, depending only
on the constants 1, B, 8 in Conditions (A),(B), T, !leT and

the modulus of uniform continuity of w on [0,T], such that
< < -
lo I, sc, o=t sT;

in fact, it is enough to take C = KAO T(w) where K is the

constant in (3.5). For m <n and O st s T we see that

lw (t) = w (t)] 2. ,-ul¥)

g <w (t) = w (s) - w (t) + w (s),d¢m(s) - d¢n(s)>
(0)t] m m n n
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where

A _ (w) = sup{|{w(u) - w(s)|: 0 s s <ust, |u-s]s 27 My,
0,t,27"

Then by (2.6), setting Y = (ro)_l, we have
le (£) - g (£)]% s [w (&) - w (£)]?
i sy §oge o - e o 2adde 1]+ o 1)
(0,t]

+ 2 S <wm(t) - wm(s) - wn(t) + wn(S),d¢m(S) - d¢n(3)>

(0,t]
2 2
ot Y(o,Sc)lE'“(s) LS RLIS LA L L
syl (o) - € (oyl2acfo |, + fo_I.) + sea -a ()

Since Remark 3.1 implies

-1
aCte l, + lo 1) sry/2 =(2v)7", 0 st sT
for sufficiently large m and n, we have
le (e) - g (e)]% s 22% () + 16Ca )
n n 0,t,2 0,t,2

+ 2y OS )Ism<s> - e (o) allo lg + o 1)

’

Hence by Lemma 2.2, we have
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2
1€ (t) - € ()] s 2{A __(w) + 8Cla (w)
n o 0,t,2°" 0,t,27"
-exp{2Y(|¢m|t + |¢n|t)}
s 2{aA _m(w) + 8ClA _m(w)-exp(ACY),
0,t,2 0,t,2
which tends to 0O as m + «». Therefore Em and ¢m converge
uniformly on [0,T] as m » », We denote the limits by £& and
¢ respectively. Then it follows immediately from Propositionm 3.1
that & and ¢ are continuous in t. Therefore all we have to
show is the following:
(4.1) lol, = § 1, cecsnalel,
t (0l¢] aD s
(4.2) oCe) = n(s)dlel,, n(s) €[ , &(s) € 3D,
(0,t1” €(s)
By Remark 1.1 and (1.3),
(4.3) S n(s) - & (s),do (s)> + 5%— S [n(s) - &n(s)|2d|¢n|s
(0,¢t] 0 (0,¢t]

z 0,

for any n € W(D), O st s T. Put

I, = m(s) - &€ (s),dé_(s)>,

1 (Og,t] n n

I, = S In(s) - £ (s)|%d]o |..
2 n nls

(0, ¢l



KSTS/RR-85/008
May 31, 1985

We now prove the following 1° and 2°.

1°. 1m I, = § on(s) - &(s),a6(s)>.
n->® (05t]

Proof. We write

-
]

<g(s),dd_(s)> + S <E(s) - & (s),dd (s)>
(Og,t] n (0,t] n n

1 "
I1 + Il,

where £Z(s) = n(s) - &€(s). Then IY is domonated in modulus by

clle - g, ll, = ¢ OSUptIE(S) - £ (s)]
Sss

which tends to O as n > ». To handle Ii let 0 = to <t <

t/m) of [0,t]

eees < = : R _
t t be an equi-partition (tk te1

m
and set g (s) = C(tk) for te < s = tk+1’ k=0, 1, , m - 1.
Then

<z(s) - gm(s),d¢n(s)>| s Cllz - ;mHt s Ce,
(0,t]

and similarly

| S <z(s),do(s)>| s Cg,
(0,t]

because [} S 5 lim [0} S. Therefore we have
t n't
n-=-c

For any fixed € > 0 we take m so that |[[g - Cm||t < £ holds.

30
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1] - <z(s),do(s)> |
! (o§t1
s | S els) - Cm(s),d¢n(s)>| + | S <g(s) - t™(s),do(s)>]
(0,t] (07t
a=1 m-1
+ Igc(tk)wn(tkﬂ) - o (t)) - }k;Oc(tknwtkH) - oCe )l
§2C€+o(1), n -+ o,
proving that 1im I1 = 1lim Ii = S <z(s),do(s)>.

n-+oo n->o (0,t]

Let da  be any weak limit on [0,T] of d|¢n|u as n + ®

via some subsequence n, < n, < eee,

2°. 1lim I2 = S In(s) - E(s)lzda if t is a point of
0,t] s
continuity for a, s where the limit is taken as n + o via n,4 <

Proof. We have

l C Ins) - e ()12l 1, - (OS In(s) - &(s)%da|

0,tl ,t]

s1 S Ints) - el ale I - n(s) - £(s)l2%dfo 1|
0o t] n n's (Ogt I n's

2 2
+ | n(s) - g(s)|“dle_I. - In(s) - €(s)]|“da_]|.
(Ogtll nos (OS,t] S

If t 1is a point of continuity for a s the second term tends to

0 as n =+ « via oy <n, < e If we put Cn(s) = n(s) - En(s),
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then the first term is dominated by

sup [{lg ()% - Je(s)|%}]-c,

Ossst

which tends to O as n + . Thus the proof of 2° is finished.

Now we are going to complete the proof of the theorem by
making use of a method similar to that used in the proof of Theorem

1.1 of Lions and Sznitman [2]. From |¢|: s lim |¢n|i and the
n->o

definition of the measure das, we have

(4.4) d|¢|S s da_,

and hence there is an Rd—valued bounded measurable function hs

such that
(4.5) do(s) = h_da_.

Making n tend to <« in (4.3) and then using 1°, 2° and (4.5),

we have

(4.6) § <n(s) - &(s),h>da_ + o=

(0,t]

S In(s) - E(S)lzdaS
0 (0,t]

or equivalently
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(4.7) <n(s) - £(s),h > + =—|n(s) - &(s)|“ 2 0, da_-a.e.
s 2rO s
Define a continuous function X (0 = X £ 1) on Rd by
1 on a compact set included in D,
X =
0 on Rd\D.
Since
| S x(&(s))dle |_ - S X(&_(s))dfe |_|
(03t] n's (0,t] n n's
s sup [x(&(s)) - X(En(S))|°C + 0, n > »,
Ossst
we have
0 = lim S X(E (s))d|lo_|_ = lim S X(E(s))d][do |
(0,c1 1 ns (0,tl ns
= S X(S(s))daS z 0.
0,t]
Hence S )((E(s))das = 0. Letting X increase to the indicator
0,t]

function nD, we have

(4.8a) S lD(E(s))das = 0,
(0,t]

or equivalently
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(4.8b) £(s) € 9D, das—a.e.

Thus £&(s) € 9D in (4.7). Therefore by Condition (A) and Remark

1.1 there exist 8(s) 2 0 and n(s) € I( (if &(s) € 9D) such
- E(s)

that hs = 6(s)g(s), das—a.e. Then (4.5) implies that d|¢|s =

|h_|da_ = 8(s)da and hence
s s s
do(s) = hsdas = S(S)rzl(s)daS = g(s)d|¢|s,
which is nothing but (4.2). Now (4.1) is also clear. (4.1) and
(4.2) mean that & 1is a solution of (1.1). The continuity of
in (t,w) follows from Remark 4.1 below. The proof of Theorem

4.1 is finished.

Theorem 4.2. If (£,9¢) 1is the solution of (1.1) for w &

Ww(RY) with w(0) € D, for any finite T > 0, we have
s
lolf = Ko, (W), 0 ss<tsT,
where K is a constant depending only on the constants Tgs B,
§ in Conditions (A),(B), T, “w”T and the modulus of uniform
continuity of w on [O0,T].

The proof is immediate from Propositiom 3.1.

Remark 4.1. Let (£,¢) and (£',¢') be the solutions of

the Skorohod equations & = w + ¢ and &' = w' + ¢', respectively.
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(i) By (2.6) and Gronwall's inequality, we immediately have

lece) - ()% = Lule) - w(e)|? +4Cc+ cOlw - w' )

cexp{(C + C')/ry}, 0=t sT,

where C 1is the constant appearing in the proof of Theorem 4.1
and C' is a similar constant for w'
(ii) Similarly, (2.7) and an application of Gronwall's inequality

yield

l6(e) - &(s)|% s (fwle) - w(s)|? + 2C8_  (W)}eexp(C/ry),

0 ss <t =sT.

Finally we assume that the domain D satisfies the following
Condition (D) and study the Lipschitz continuity of the solution
& of (1.1) in w with respect to the total variation in the w-

space.

Condition (D). Condition (A) is satisfied and there exist

constants C, 2 0, C, € (O,r such that

1 2 0)

Ix -yl s (1 + Ccye)lx -yl

holds for any x, y € Rd with |[x - ;I s C2, ly - ;I = CZ’ where

e = max{|x - x|,|y - Yyt
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Let w, w' € W(RY) with w(0), w'(0) € D and (£,0), (&',0")
be the unique solutions of the Skorohod equations & = w + ¢ and
€' = w' + ¢', respectively. Then we have the following proposition.

Proposition 4.1. Under Conditions (B) and (D), we have for

each T > 0
(4.9) le(e) - &'(e)| s K{]w - w']_+ [w(0) - w'(0)|}, O st sT,

where K > O is a constant depending only on the constants Cl’

CZ’ Ty, B, § in Conditions (B) and (D), T, {A 0 <h s T}

O,T,h(w)'

and {A 0 < h s T}.

0,7,n¢¥")>
Remark 4.2. (i) We can take K = exp(2CC1) where C and C1

are the constants in Proposition 3.1 and Condition (D), respectively.

(ii) Any convex domain satisfies Condition (D) with C1 = 0 and

hence (4.9) holds with K = 1.

(i) In most applications w is supposed to be a Brownian path in

which case let = o, but (4.9) will be of some use if we consider

the Skorohod equation &(t) = w(t) + J;b(&(s))ds + ¢(t) with

Lipschitz continuous b.

Proof of Proposition 4.1. Define W g and ¢m by (3.1),
(3.3) and (3.4), respectively and define also W €' and ¢'

similarly. Then by Condition (D),

-m ' -m
le,(k2™™) - g (k27T |
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= HE ((-1)27") + w (k27" - w ((k-1)27™)}
- L ((k=1)2T") & w1 (k27" - w!((k-1)2")} |
0 l(k-l)z‘m | I(k-l)z"“
s [l +C 0 + |¢! 11
1 m k2—m m kz—m
-m ' -m
-{Iam((k—l)Z ) - & ((k-1)2 ) |
+ ]wm(kz'm) - v (k=127 - w&(kZ—m) + w;((k—l)Z—m)|}.
If we put
X = 18,(k27T) - gr (k2™ |,
(k-1)27" (k-1)27"
am,k = ¢mlkz—m t |¢mlkz—m '
LI |wm(k2‘m) - wm((k-l)z‘m) - wé(kZ_m) + w&((k—l)Z-m)I,
then
xm,k s (1 + Clam,k)(xm,k—l + bm,k)

A

exp(Crap I(xp g + by y)

A

exp(Cya  Ilexp(Cyay  )Cxy 4 o+ by ) + by

A

exp{Cy(a, \ + ay DI xp o+ by o+ Dy )
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k k
<
= exp(Cl z::am,i)(xm,o + z:me,i)'
i=1 i=1
Since & , ¢~ and w_ = are constant in (k27™,(k + 1)2™™), we
have

le () = &x(e)| s explc (o [, + lo 10}

v, = wil + [w(0) - w'(0)|}.

m

By Proposition 3.1, we have for any T > O,

¢ + jo! £2C, 0stsT,
| lo! 1,

nle

and hence, for 0 £t s T,
le (v) - g ()] s k{lw, - w ] + [w(0) - ' (0)[},

where K = exp(ZCCI). Letting m > o, we have (4.9). The proof

is finished.

Before closing this section we state an interesting example,
due to Saisho and Tanaka [6], of a domain satisfying Conditions
(A) and (B).

. . nd

Example. We write x = (xl,xz,"-,xn) for a point of R 7,

where each x denotes a point of Rd. Let D be a domain in

k
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R defined by

D = {(xg,x - le >p for 1 s Yi < Y sn},

20 "Xyl i
where p 1is a given positive constant. Saisho and Tanaka [6] proved
that D satisfies Conditions (A) and (B). Suppose we are given
WiaWos e, W € W(Rd) and write W = (wl,wz,---,wn). We assume that
w(0) € D, that is, lwi(O) - wj(O)I 2 p for 1 s Vi < Y < n.

Then by Theorem 4.1 there exists a unique solution of the Skorohod
equation g(t) = w(t) + ¢(t) for the domain D. The component-wise

consideration of this equation yields the following system of equa-

tions:

t
£, (6) = vy (©) + 3 i)jo(gi(s> - £;(s))d6; (), 1 5 1 5 n.

Here £i(t) and ¢, .(t) satisfy the following conditions.

1]

- (i) Ei(t)'s are continuous and |€i(t) - gj(t)l 2 p for 1 s

i) ¢ij(t)'s are continuous non-decreasing functions satisfying

¢ij(t) = ¢ji(t) and
t
6y (6 = jdn(lsi<s) - B3] = p)doy 4(s)

When wl(t),wz(t),°-°,wn(t) are independent d-dimensional Brownian
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motions, &(t) describes the motion of n

Brownian balls of diameter

Saisho and Tanaka [6].

[

in the space

mutually reflecting

Rd

For details see

40
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§5. Solvability of the Skorohod SDE

Let D be a domain in Rd satisfying Conditions (A) and (B)

and suppose that we are given coefficients

d d = d

® R, b: D~+R

satisfying

lo(x) -~ o(y)| s Llx - y|, [|b(x) - b(y)| s L|x - y],

[T
o

lo(x)] s L, [|b(x)]

for any x, y € D with some constant L 2 0. Let (Q,%,P) be a

complete probability space with a filtration {gt}t>0 which is
assumed that each %  contains all P-null sets and & = [\ F __.
t t >0 t+€E

In this section we study a Skorohod SDE
(5.1) dX(t) = o(X(t))dB(t) + b(X(t))dt + do(t), X(0) € 3,

where B(t) is a d-dimensional 9&—Brownian motion and X(0) 1is

gh—measurable. The main result is the following theorem.

Theorem 5.1. There exists a unique strong solution of (5.1).

The meaning of a strong solution is the same as in Definition
IV-1.6 of [1].

To prove the theorem we first consider a Skorohod SDE
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(5.2) an(t) = G(Xn(hn(t)))dB(t) + b(Xn(hn(t)))dt + d@n(t),
with initial condition Xn(O) = X(0), where
hn(O) = 0,
h (t) = (k - 127", (k- 127" <t s k2™, Kk = 1,2,°+, nz 1.

By Theorem 4.1, we have a unique solution of (5.2); in fact, once

n n n

X (t) 1is obtained for 0 s t = k27", X(t) for k27 <t s (k+l1)2”

is uniquely determined as the solution of the Skorohod equation:

X (t) = xn(kz'“) ¥ O(Xn(kZ_n)){B(t) - B(k2™™)}
+ b(X (k27" (e - k27N + ¢ _(t).
Put
- t t
(5.3) Y_(£) = X(0) + foo(xn(hn(s)))dB(s) + Job(xn(hn(s)))ds,

and denote by Pn the probability measure on C([O,T] » Rd x D x
Rd) introduced by the process {(B(t),Xn(t),Yn(t)), 0 st s T},

where T 1is an arbitrarily fixed time.
Lemma 5.1. The family {Pn, nz 1} is tight.

Proof. It is easy to see that for 0 < g < 1/2
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IYn(t) - Yn(s)l
(5.4) lim sup P{ sup > A} = 0;

Mo nzl  0ss<tsT |t - s|®
in fact, the martingale part of Yn(t) can be handled by transform-
ing it to a Brownian motion by a time change and then by using a
well-known result of Lévy on the modulus of uniform continuity of
Brownian paths. The bounded variation part can be treated directly.
Since (Xn(t),Qn(t)) is a solution of the Skorohod equation Xn(t)
= Yn(t) + ¢n(t), we have by Theorem 4.2

S
(5.5) |<I>n|t s (Y)), 0ss<tsT.

KnAs,t
Kn is random but can be controlled by the modulus of uniform conti-

nuity of Yn(t). Thus it follows from (5.4) that

(5.6) lim sup P{K_ > A} = 0.
Are nzl n

(5.4) implies that P{A > X} > 0 uniformly in n as &€

0,1,eYn’
+ 0 for each A > 0. Combining this with (5.5) and (5.6) we have

pP{a (Qn) > A} - 0 and hence P{A (Xn) > A} > 0 uniformly

0,T,c 0,T,e
in n as € ¥ 0. Therefore {Pn, n 2z 1} is tight.

By Lemma 5.1 there exists a subsequence n, < ny < oo such
that Pnk converges weakly as k + o». To simplify the notation
we assume that Pn itself converges weakly as n » ». Then by
Skorohod's realization theorem of almost sure convergence we can
find, on a suitable probability space (5,?;3), a sequence of pro-

cesses (ﬁ;(t),in(t),?n(t)), n 21, satisfying the following two

conditions.
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(5.7) For each n the process (En(t),in(:),?n(c)), 0 st sT,
is equivalent in law to the process (B(t),Xn(t),Yn(t)),
0 =t =T.
(5.8) En(t), in(t) and ?n(t) converge uniformly in t (a.s.)

as n > o to some processes B(t), X(t) and Y(t)

respectively.

We then define $n(t) and &(t) by

]

(5.9) Xn(t> ?n(c) +F (t), lim § _(t) = F(t).

n--o
From (5.3) and (5.7) it follows that

P t
(5.10) T () = R(O) + | (X (h ()))dB () + J’Ob(i'nmn(s)))ds

and also that the first equation c¢f (5.9) is an equation of Skorohod
type.
Lemma 5.2. (i(t),g(t)) is a solution of the Skorohod SDE

t t
(5.11) () = X(0) + Joo(i(s)>d§(s) + Job(f(s))ds + D).

Proof. Approximating stochastic integrals by Riemana-Stieltjes

sums, we can easily prove

t t
J o(X (h (s)))dB (s) =+ J o(X(s))dB(s) in probability, n =+ o,
0 n n n O
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for each fixed t. Therefore, making n tend to o in the first

equation of (5.9), we obtain (5.11).

In the following lemma Tgs B and & are the constants appear-

ing in Conditions (A) and (B).

Lemma 5.3 (cf.[2: Remark 3.1]). D satisfies Condition (C')

of 81 with Y = 2roB_1.

Proof. Let be the unit vector appearing in Condition

=
[}
ne

(B) and set f(x)

]
~
=

- x~>. Then we have Vf(x) = &. By Condi-

tion (B) and (A), we have

<y - x,n> + +<Vf(X),g>|y - x|?

= <y - x,n> + 2? <2,X;>|y - x|2
N 0

1
ZrO

v

<y - x,n> + ly - x|2 2 0, Y € B(xo,d) n 9D,
Yy e B(xg.8) n D, Ynell,,

completing the proof.
Let X and Xé be solutions of (5.1) with the same initial

value. Suppose that the supports of the coefficients ¢ and b

are included in B(xo,d) for some X € 3D. Then

g Y | 2
Xy - X1,do_ - dol> - IxS - X! <R,do_ + dol>
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- v 1 ~x'2
= - (<Xl - X_,d0 > + > |Xs Xsl <%,de >}
- {<X_ - X',d0'> + ——|x_ - x'|%<x,d0">}
s s’ s Y s s =" s
s 0.
Therefore, making use of Condition (C') and employing a method
similar to [2: pp.524-525], we can prove
A t Cné
E{||X - Xx"|]]} s Comst.| E{]|X - X'|| }ds,
t 0 s
which implies Xt = Xé, t 2 0. Thus we have the pathwise uniqueness

of solutions of (5.1) under the restricted condition on ¢ and b.
Combining this with Lemma 5.2, we have the following lemma by an

arguement similar to [l: Theorem IV-1.11.

Lemma 5.4. Suppose that the supports of O and b are
included in B(x0,5) for some Xg € 3D. Then there is a unique

strong solution of (5.1).

Lemma 5.5. For any Xq e Rd, the pathwise uniqueness of
solutions of (5.1) with initial value Xq holds for 0 s t s T
where T is the exit time of B(xo,r)- More precisely, if
Xi(t), i=1,2 are St—adapted solutions of (5.1) and if Ty =
inf{t > 0: X.(t) & B(xo,r)}, i=1,2, then 1, =171, and Xl(t) =

1
Xz(t) for 0 s t s Ty, a.s.

Proof. For O < r < 8§ we define Lipschitz continuous func-
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. ~n = d d = d
tions ©0: D+ R ®R and $: D+ R such that
o(x) if x € B(xo,r),
G(x) =
0 if x & B(xo,d),
b(x) if x & B(xg,r),
Bx) =
0 if xéB(x0,5).
and then consider the following Skorohod SDE:
(5.12) dT(t) = BR(e))dB(r) + DT())de + d¥(r).
Lemma 5.4 implies that (5.12) has a unique strong solution. Let
X(t) be a solution of (5.1) starting at X and put T = inf{t
> 0: X(t) éB(xO,r)}. We may assume T < ® a.s.; otherwise, it
is enough to consider T A n. Next, define /ﬁ(u) = B(T + u) - B(1)

3 \4
= = € : s 2 u 2 0.
and 5‘u ff'THl (AheF: Anf{T +u t} e ,"]t, t 0}, u 0
Then it is easy to see that B is an ?u—Brownian motion and that

T=t-TAt is an ?u-stopping time for each fixed t 2 0. Since

(5.12) has a unique strong solution,

t t
(5.12")  T(t) = X(1) + JOG(?(S))dﬁ(s) + joﬁ(?(s))ds + T(v)

has a unique /?\-u—adapted solution. We put
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X(t) , £ ST,
Y(t) =

N
Y(t - T) , t > T,

Then, the uniqueness assertion in the lemma follows from the pathwise
uniqueness for (5.12) once we prove that Y is a solution of (5.12).
t
Setting ﬁ(t) = [ 6(?(5))d§(s) and then noting that T is an 5&—
0

stopping time, we have
[+ 2l ® AN ~
iegpM(® = n{-gq;}JOl{35?}0(Y(S))dB(S)

. ALY -n
= 1im 1{T<t}§ﬂ.{(k_l)z—ns?}G(Y((k - 1)2 )

n->o

{Bk2™) - B((k - 1)27™)}

= lim 1{T<t}gn{T+(k—1)2—n§t}8(Y(T + (k - 1)2-'“))

n--o
<{B(t + k2™™) - B(t + (k - 1)2™™)}

e

= 1{r<t}f01{1<sst}8(y(s))d3(s)’
and hence

Y(t) =1 Y(t) + 1{ Y(t)

{est} t>1}

o]

S PRPES (OO PRGNS (C I J 5(Y(s))dB(s)

1
0 {1<sst}

<«

+ Jon{T<sst}%(Y(s))ds + e - 1
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t, t
= n{tﬂ}[xo + JOU(Y(S))dB(S) + job(Y(s))ds + ¢(t)]
t N
+ 1{t>r}[X(T) + Jon{T<S}G(Y(S))dB(S)
t ~ ~
+ J'Oll{,ms}b(Y(s))ds + ¥(t - 1)1
t tA
= Xg + J 8(Y(s))dB(s) + I b(Y(s))ds + ¥(t),
0 0
where

o(t) , t

(1Y
L]

Y(t) =

A\ N
Y(t - 1) + o(1) , £t > T.

Thus Y solves (5.12). The proof of Lemma 5.5 is finished.

From Lemma 5.5 we can easily prove the following lemma.

Lemma 5.6. The pathwise uniqueness of solutions of (5.1) holds.

Using Lemma 5.2 and Lemma 5.6 we can finally prove Theorem 5.1

by a method similar to [1: Theorem IV-1.11].
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