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§1. Introduction.

Let G be SU(1,1) and AP'“(D) (0<p<= and r £ R) the weighted Bergman
space on the unit disc D={z & C; lz| < 1} (cf. §82.1). Forne }Zandn 21

. ,n-1
we define the operators Tn(g) (g € G) on the Hilbert spaces A2 n (D) by

gos)

Tn(g)F(z)=(Eé+E3_2nF(%?iE ) EGand F ¢ Az'n—l(D).

Bz+a

-1
), where g =(i

QR

2'n-l(D)) (n € 3Z and n 2 1) are irreducible unitary represen-

Then (T, A
tations of G called the holomorphic discrete series of G (cf. [Sul,P.235).

Now we define the matrix coefficients of Tn(g) by

(g € G),

Y _ n n
f::q(tzr)—[’l‘n (q)eq,ep]n_1

-1 . .
where {en; m € N} is the complete orthonormal system of Az’n (D) satisfying
T (k.)etze (MMMED Lo 11k =diag(e®/2,e71%/2) (0sp<an) anda [, 1 . is
n 8 m m 9 n-{ |

2,n-1
M"i(D). For ne %z and n £ -1 we put £. =

the obvious inner product of A bq

%;;. These are the matrix coefficients of the anti-holomorphic discrete
series of G (cf. [Sul,P.318). Then by the Plancherel formula on G we see

that LZ(G), the space of all square integrable functions with respect to a
G-invariant Haar measure dg on G, can be written as the direct sum of the

continuous (principal) part Li(G), which consists of wave packets, and the
discrete part °L2(G), which is the L2—span of {¥;q; n e 3z, !n! 2z 1 and

p, 4 € N}, that is,

LZ(G)=L§(G) <] °L2(G) 3 f=fP + °f.

n ;En /” %gqlrz and for f € L2(G),

Here we put £ =
Pa rq

£(n;p,q)= / £(PE (g)dg (ne 3%, |n| 2 1 and p, g e N).
G Pq

Obviously these are the Fourier coefficients of the Fourier series of °L2(G)
and °f= g a f(n;p,q)f;q (cf. [EM]). Moreover in the case of n 2 1, by the
r

Parseval's formula on °L2(G) or equivalently, by the reproducing formula on

*) Not for review. A generalization of this report will be submitted for
publication elsewhere.
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22" 15y e see that the mapping q,:l (m ¢ N) defined by
q)n
Lz-span of {fgm’ g e N} ———r Az'n—l(D)
W W
f(@)= 5 Eig,mE (g ——— Flz)= [ £(9)T (e (2)dg
=0 am G v

=C 7 E(n;z,m)en(z)
m
=0

is bijective and norm—preserving in the sense that the Lz-norm of £ on G

2’n_l(D)-norm of F(z)=¢z(f) up to a constant. Thus the

equals to the A
Fourier coefficients %(n;z,m) (2 & N) of the Lz—span of {f;m; 2 ¢ N} are
determined by the right hand side, that is, they correspond to the Taylor
coefficients of Az'n—l(D) (see Theorem 5.1).

The purpose of this paper is to characterize the Fourier coefficients
%(n;l,O) (2 € N) for £ in LP(G) (1sps2). As in the case of p=2, if (n,p)
#(1,1), we see easily that these coefficients correspond to the Taylor

AP:nP/Z—l 2,n-1

coefficients of (D) instead of A (D) (see Theorem 8.1).

However, when (n,p)=(1,1), this characterization is nonsense, because the
spaec Al'_l/z(D) vanishes. Therefore we need another argument.

Now we note that for a fixed g € G each Tn(g)ei(z) belongs to the Hardy
space Hl(D) (cf. §2.1) and the Hl—norm is bounded uniformly on g e G.

Thus it is easy to see that
1,.1
QO(L (G)) <« Hl(D).

Then the Fourier coefficients %(1;1,0) (2 e N) must satisfy the same prop-
erty of the Taylor coefficients of Hl(D), for example, they satisfy the
Hardy's inequality (cf. [D], p.48). 1In particular, we can obtain an order
of %(1;2,0) as § + ». In §7 we shall give an exact characterization of
oé(Ll(G)) and show that the order is best possible. To do this we shall
use the fractional derivatives and the fractional integrals of holomorphic

functions on D. Actually ¢3(L1(G)) coinsides with the following space on D.

[2r+1] ” 1y < o } (r>-3),

Hé(D)={ F ; holomorphic on D and || z-l(zF(z))
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where H -” 1.r is the norm of the Bergman space Al’r(D) and for a holomor-
’
phic function F on D F[a] is the fractional derivative of F of order a(see
§9.2).

§2. Preliminaries.

2.1. Functions on the unit disc. Let D denote the unit disc {z ¢ C;

[z] < 1}. For a function F on D we put

el —(—- s [F(Z)|P(l—|z]2 2rg,) /P,

=l
T

lim (2r+l)|| F v
e,

el

sup |F(z)],
z e D

where 0<p<®, r € R and dz is the Euclidean measure on D. Let L (D), L (D)
and Lw(D) denote the spaces of all functions F on D with finite ][F[Ip,r’

“ F” P and H F“ respectively. Let A(D) denote the space of all analytic
functions on D. Then the weighted Bergman spaces aP (D) and the Hardy
spaces HP(D) are defined as the intersection of A(D) and Lp’ (D) and one of
A(D) and L (D) respectively. Obviously aF'F(D)={0} for r < -} and || F|| HP=

19)1Pgqy1/P,

1
sup (—— f |F(re For 15p<w, these spaces are Banach spaces

2,r

tﬁe above norms, espec1ally, A (D) and HZ(D) are Hilbert spaces. We

denote the inner product of A ) (r > -4) by
S 2
[F,Gl = = / F(2)G(= (1-]z|%)*"a
D

z.

Then

-+ 4 T (2+2+2x) 3L

r+l _ L (A+242r)
e, (z)=B(L4+1,2xr+1) "z (F(£+1)F(2r+l)) z (2 € N)

is a complete orthonormal system of Az'r(D). Moreover for all F in Az’r(D)

the following reproducing formula holds (cf. [FR]):



KSTS/RR-85/007
May 22, 1985

=2(1+r) 2, 2r

Fz)=22) ; F) a-72) a-|z|% *Faz. (2.1)

D

Now let F be in Lp'r(D) (0O<p<@ and r € R). Then for each fixed 0O<n<l

F(nele) belongs to Lp([0,2n)) and thus, has the unique Fourier series
ljim bl(n)elle. Then putting al(lz‘)=b2(|z])|z|—l (2 e N), we
see that F(z) has the unique expansion F(z) liim ak(|z[)z2. Here we put

Li'r(D)={F e tP'F(D); F(z) ~ ZZO a£(|z|)z£}. The we have

F(nele) "

ATy <« Lﬁ'r(D) = 1P"* ).

10
0-1
and det g=1} and G=KAN the Iwasawa decomposition of G, where the subgroups

2.2. Functions on SU(1,1). Let G be su(1,1)={g ¢ M, (C); tE(é_g)gﬂ )

K, A and N of G are given by

ele/zo
K={ k,=( _in,.) i 0SB<4m 1,
5] 0 e ig/2
ch t/2 sh t/2
a={ a =( )i teR},

sh t/2 ch t/2

1+ix/2 -ix/2
N={ n_=( ) i x € R }.
ix/2 1-ix/2

Then the Haar measure dg of G is given by the following integral formulas ac-
cas +
cording to the decompositions G=KAN and G=KCL(A )K, where A+={at; t > 0}.

For any continuous functions f on G with compact support

AT 400 4o .
J f(g)dg s S r s f(keatnx)e dedtdx
G 0 - -x
1 4T +o 47
==, [ [ f£(k.ak,,)shtdedtds’,

1]
8t o 0 o 67 t8

(2.2)

where d6, d6' and dt, dx denote the Euclidean measures on [0,4n) and R
respectively (cf. [Sul, pp. 251-252). For a function f on G we put

/p

I el =C s £ |Pag?t (0<p<=) ,
P G

||f||m= sup If(g)[.
geG
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Let LP(G) (0<psw) denote the space of all functions £ on G with finite” fH o’
Then for lsps» these spaces are Banach spaces in the obvious norms, espe-

cially, LZ(G) is a Hilbert space. We denote the inner product of L2(G) by

(£,h)= S £(g)h(g)dg.
G
By the Plancherel formula for L2(G) (cf. [Su], p.344) each f in L2(G) can

be written as the sum of the integral part fP of f and the discrete part
°f of £, that is,

@@=t 8 i@ 3 =g, + °f.
Let n £ 3Z. Then xn(ke)=elne (058<47) is an irreducible unitary repre-

sentation of K. For p, q € 1% we say that a function f on G is of (p,9)~
type if it satisfies

f(kegke'>=Xp(k6)f(g)xq(k9') (ke, ke' e Kand g € G).
L 1 .47 R 1 .4rm
Here we put Epf(g)_Epf(g)=Z;J})Xp(k )f(keg)de and qu(g)—qu(g)—4nf0 xq(ke)

R . .
f(gke)de (g € G). Then obviously Ep and Eq are projections to the left

(-p)-type and the right (-g)-type respectively. Eprq is of (-p,—-q)-type.

We put for n € 1Z and O<ps®,

o -0

LP(G)={f € LP(G); f=E £}, whexre E = I EL (n20) and = I EL (n<0) .
n n n o, 0 k=n O

Then it is easy to see that
P = EtP@.
n n

When p=2, noting that H f“ §=p'qz€ iZ” Eprq” 3 for £ ¢ LZ(G), we see that

2, 2
L. (G)=E_L°(G).
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2.3. Discrete series of SU(1,1). The group G=SU(1,1) acts on the unit

disc D by the linear transformations

Q
@™

Zz b—m> gz= S?+E , where g=( ) € G.

Bz+a

w|
Q|

This action is transitive and the isotropy subgroup of G at 0 equals to K,

that is, G/K is homeomorphic to D. We put J(g,z)=Bz+a and define the op-

2,n-1

erators Tn(g) (g € G) on A (D) (n € 32 and n 2 1) as follows.

2,n

Tn(q)F(z)=J(g'1,zf2“F(g'1z) (zeD) for Fea’ ™ Lp.

Then (Tn,Az'n_l(D)) (n € 42 and n 2 1) are irreducible unitary representa-

tions of G called the holomorphic discrete series of G. For p, 9 € N we put

m n n
qu(q)—[Tn(q)eq,e 1

oin-1 (g € G) and

n wn un
£ = .
pq(g) qu(g)/” qu” 2

2

Explicitly we see that || ¥;q“ 2=4Tr(2n--1)—l and for p 2 g

n -1 -3 _1y} [(p+1)T (2n+p) b 1
foq(@=2 ™ "D T T Gnra)) (o)

(th £/2)P % ch t/2)" "

x F(-q,2n+p,p-q+l; (th t/2)2)e TR(6+87) ~ip6 ~1d6"

where g=keatke, € KCL(A+)K (cE. [sal], p.91). Each E;q is a (=(n+p),-(n+q)) -

type normalized L”-function on G. In particular we see that

Tn(g)e;(z)=2n%(2n-l)-% kEo fim(g)ez(z),
B (2.3)

1 -3

fzo (g)=2""m ez (g0) (ch t/2)—2ne—in(9+9' ) '

+ -
where z € D and g=k_a k., € KCL(A )K. For n € 32 and n<-1 we put £ = o

678 pd pd
(p;, g9 € N). These are the matrix coefficients of the anti-holomorphic

discrete series of G (cf. [Sul, p.318). By the Plancherel formula for
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L2(G) we see that for f ¢ L2(G)

°L2(G)= the L2-span of {f;q; n e 1z, ]nl 2 1 and p, q € N}

w
°f = L %(n- )fn (2.4)
n e iz, |n|z1 P Loy -
pP,q e N

where f(n;p,q)=(f,fgq)=(°f,f;q). We call f(n;p,q)'s by the Fourier coeffi-
cients of the Fourier series (2.4) of f on G. We define a projection °Pn as

follows. For f ¢ LZ(G)

-~ n
°p_ (f)=°P (°f)= hX f(n;p,)f_ .
n n p.q e N Pq

Obviously °Pn(f)=°Pn(EnfEn) and
2 2 n
°P L°(G)= the L“-span of {f_; e N}.
n D pq P, 9

. ° P
We denote the extension of Pnl LZ(G)f]Lp(G) to L™ (G) (0<ps») by the same

letter. Then it is easy to see that

° P P_ o
PnL (G) > the L"-span of {qu, P, 9@ € N}.

1/

n(D)) is an irreducible

Let n € 3Z and n 2 4. Then we see that (Tn,H
l/n(D

representation of G and for each g € G Tn(g) preserves the "norm" of H
In particular, when n=%, (Ti,Hz(D)) is an irreducible unitary representa-

tion of G called the limit of discrete series of G (cf. [Sal). Because

“ ei” l/n=B(m«i-1,2n—l)—é (n 2 1 and m € N) and Tn(g) (g € G) preserves the
norm, Hwe see that
n -4
I Tn(g)em” =B (m+1,2n-1) (nz1l, meNand geG). (2.5)

Hl/n

t) When 0<p<l, we can define the metric in #° (D) by d(F,G)=H F-GH pp for
F,G ¢ HP(D). Then these metrics turn HP(D) into F-spaces (cf. [Sh], p.187).

t)

).
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§3. @:-transform.

Let ne 3%Z, n 2 1 and m ¢ N. We note that for each z € D ]Tn(g)ei(z)l

= o((ch £/27%™ (g=kya kg
well define @E(f) for £ ¢ LF(G) (1lsp<w) as follows.

+ -
atk , € KCL(A )K). Then by Holder's inequality we can

n n
@m(f)(z)=(Tn(-)em(z),f)

% b

=217 (2n-1) "7 I f(n;Z,m)eZ(z).

2=0

Clearly, @3(f) belongs to A(D) and

o (£ y=s__ s 2n! (2n-1) Pe" (3.1)
m pqg nn' mq P

for n,n' ¢ %2, n,n' 2 1 and m,p,q9 € N. Moreover for £ ¢ Ll(G) we have

| oo 2,0-1

s “ f” 1 geifﬁse Tn(g) preserzes the normll-” 2,n-1°
Conversely, for F in A"’ (D) we define Wm(F) as follows.

n -1 -1 n
Ym(F)(g)—4 m (2n—1)[Tn(g)em,F]n_1

-1 -3 3 ® n n
T (2n-1)° I £, (g)le  ,FI ..

=2
g=0 "

This operator is well defined, because for each g € G Tn(g)e; belongs to
A2'n_l(D). We denote the extension of Wi to the image of QE by the same
letter. Then using an approximating argument, we see that

0

n n 2 n _,
Yoo ¢m(f)— gEo f(n,l,m)fgm- Pn(f)En+m'

Therefore we can obtain the following

Lemma 3.1. Let ne %32, n 21, m € N and 1Sp<w. Then

. n n R
(1) ¥l o et=R L E on P,
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s NPy B op 1P
(i1) o (L°(G))=¢ (°B L (GE__),

R n .. . . 8 ° jo) . . . n
(iii) o 78 injective on P L (G)En+m and the inverse is given by v

§4. 37 and [1 -transforms.
o 2nd { I _,-transtorms

Let n € 3Z, n 2 1 and 1lsp<e. We shall consider a decomposition of f in

LP(G)En according to the K-types. By choosing suitable functions al on R,

we can decompose f as follows.

f(g)=f(keatke,)

= z 2'1n‘*3(m+1,2n—1)'é

Jy—

- s s
al(th%)(Chg) 2n(th§)le in(6+6 )e 116.

We note that when £ 2z 0, each term equals to al(thg)fZO(g) (see (2.3)).

Here we put

@

$g(f)(z)=2w*(zn—1)'% z 31(]z[)3(1+1,2n—1)'*z2. (4.1)
Q==
Then we have
f(g)=4_ln—l(2n—l)§(ch§)-2ngg(f)(gO)e—ln(e+e ) (gkga kg, )

and by (2.2)

4r 1
I £l P=2a ta t2n-)HP 1 s |8 e®) [P (1-r?) P 2raran
P o ol%0

=222 01y P72 £ |§2(2) [P (1- 2] ) P Paz (4.2)
D

- wn P
"Cn,p” QO(f)” p,np/2-1"

On the other hand, for each F in Lp,np/z-l(D) we can easily define an f in

LP(G)En such that gg(f)=F and (4.2) holds. Therefore we see that the map-
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ing %8 is norm-preserving in the sense of (4.2) of LP(G)En onto Lp,np/Z—l(D

).
Applying the same argument to Lﬁ(G) and the Lp-span of {fzo;z ¢ N}, we can

obtain the following

Proposition 4.1. Let n e 3Z, n 2 1 and 1sp<w. Then
™
Lp(G)En o 1p/np/2-1 D)
u 1n U
P (e)E —0 PR/l
n n + U
U oot

n

. 0 o AP/np/2-1
207

tP-span of {f’ ;% ¢ N} — " (D),

where each mapping is bijective and norm-preserving.

Let 1£ps£2. Then for F in L ,inp—l(D) we define [F]n_ as follows.

1

(F] (2= p by (1-T2) TP - |

2)2n—2
n-1 m b

daz. (4.3)

Because of inp-1 £ n-1 for 15p<2 this is well defined. If F is of the form

in the right hand side of (4.1), we see that

% , = . fégl(r)rzzﬂ(l_rz)zn-zdr
[F]__,(z)=47" (2n-1)" I B(4+1,2n-1) z .

2=0 (2n-1)B(2+1,2n-1)

In particular, we have

Now we denote the images of Lp,%np—l
-1 -1
(PP gy +dnp

4.1, Lemma 4.2 and the reproducing formula (2.1) we obtain the following

p,inp-1
+ (D) under | ]n—l

(D)]n_1 respectively. Then by Proposition

(D) and L by

and [L+

10
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Proposition 4.3. Let n ¢ 32, n 2 1 and 1sps2. Then

q)g" (LP (G) )={LP: inp-l
U

oy (L2 (@) y=(rP P15
n + n

U

p

o1,

-1

—aPrinp-1 5y

® (L"-span of {f;o;l e N})

n

0
2

§5. The case of L (G).

Let notations be as above. Then by the facts we stated in §2 and §3

we see that
n, 2 S < 2
@m(L (G))—<I>m( PL (G)Em_m)

n, 2 n
=¢ (L®-span of {flm;l e N})

o o

n n 2
=0 ({ 2 af, ; £ |a, | <=}
m =0 £ 4m 2=0 L
3 30 -
={(2n"(2n-1) "7 I a,ep(z); I [a,|” < =}
2=0 2=0
® 4 -1-1 > 2
={ Ibyz"i 4 m (2n-1) I B(y.+1,2n-1)\bl| < @}
2=0 2=0
_Az,n—l(D)'

Therefore we have by Proposition 4.3 that
Theorem 5.1. Let n e 32, n 2 1 and m € N.

. o 12 _op 12 12 n
(1) P L (G)En+m— PnLn(G)En+m L°-span of {flm' %2 € N},

(ii) ¢z: °PnL2(G)En+m — Az’n_l(D) is bijective and norm-preserving,

A n, 2 _rp2,n-1 _r;2,0-1 _a2,n-1
(iii) @O(L (G))=I[L (D)]n_l—[L+ (D)]n =A

o (D).

11
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Remark 5.2. We can replace @3 in (iii) of Theorem 5.1 by @3 (see Remark 8.3).

One of our purposes is to study whether Theorem 5.1 is valid or not in
the case of LP(G) (15p$2). To do this we shall consider a generalization of
the [ ]n_l-transform in the next section.

§6. [ ]p-transform.
p,r
Let r £ p and O<p<w. For F ¢ L (D) we put

-2(p+1)

F1 (2= E(r) 1-g2) (1-|¢|?ac.

D
Because of r £ p this is well defined and [F] ¢ A(D). By (2.1) we have
[

Lemma 6.1. Let r £ p, p > -% and O<p<w. Then

AP T oy=aP" T D)yl = 1P F D)1 = IPT )1 = am.
P + 0 P

(1)  If osr<p or -i<r<0, r+} < p, then
11 ’ ’
AT oy=l T o1 =t o .
) )
(ii) Ifp z O, then

1,-%

wh o = 1 (D).

(iii) If Osr<p or -i<x<0, r+% < p, then for any O<esp-1 and 1l<p<e,

(P * (p) 1, <= AP T (D).

12
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(iv) If -#<rgp and p 2 0, then for any l<p<w,

[Lm(D)]p = a2 ().

1,r

(pr) (i) From Lemma 6.1 it is enough to show that [Ll’r(D)]p L (D) -

Let F be in Ll'r(D). Then by the definition

. 1 2n . .
2 - -2 1 2.2
(F] (gel¥y= LB 1 e (e®0) (1onget W70 7200t D) (1 2y 20 5040,
P T 0 o
Therefore,
1 27 .
2
e |, s 22 s rme® (T ) (an?) *nande,
o] 29 m 0 o) Dlr

where

1 27 .
I (== 5 |@a-nge'")]
per ™ o0 o0

20041 (1 22T 4,

Lemma 6.3. Let 0srsp or -3<r<0, r+% < p. Then for Ozn<l,
1+ @2e+1) 1) @+ -r) HanH 2 EP) < o)
I ( < C
| 0, | 1 »
(1+(2r+1l) 7)(1+log(l-n")) (r=p),

where C does not depend on r, p and 7.

2

(pr) We note that |Ip r(n)l <cC fé(l_n2E )—20-1(1_52)2r£dE (c£. [DRS],

Theorem A). Therefore,

Case 1: Osn<i. Since (l—nzgz) > 3/4, IID r(n)| <
Case 2 : %<p<l and r = 0. Since (1—52) < (1—n2g2), |1 r(n)l
2,2)2(rp)-1 briay o2

£dg. Thus, it is bounded by Clp-r) *(1-n2)2(¥70)

s C o1 )
p > r and by Clog(l-nz), when p=r.

Case 2_: #<n<l and r < 0. By changing variables, we have that |ID r(n)]
4

c ra-e5 ear 5 cern L

, when

—lr— 2 - —dy— —-D -
< o 2 02T (1D T hax < e 2 2T (1) ex) TP lax.  since
p 2 r+i, ((l-nz)+x)2(r—'p)+l < (l_n2)2(r—p)+1. Then the integral is bounded
2(r=-p)+1 -2 (x+1 -1 -(2r+1 2(xr=-
by (=022 L2 (1?0 2 P ax = (2re1) amn®) TP (172700

13
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Therefore the desired result is obtained. Q.E.D.

Then we have under the assumption of (i) that

L

Il [F]p” 1r*S,c

1 27 .

2.2
;1 |Fme™® | @-n)*nanas
(O]

=Cp,r” F“ 1,r < =y

where C_ r=c(2p+1)(1+(2r+1)'1)(1+(p—r)'1). Thus [F]p belongs to L. ‘% (D).

(ii) Let p > 0. If we take an r > -} sufficiently small, we may assume that

1,-% i,r

o 2 r+%. Then applying the previous result to F in L™' *(D) =L (D), we

see that
-1
Il [F]p“ 1,r § Cl20%1) (2r+1) ey,
In particular,

s Ce+D) | FI| 3 <=

i [F]p” Hl= lim  (2r+1) || [F]p” 1,z

r -+ -3

Thus [F]p belongs to Hl(D). When P=0, the assertion is clear from (2.5) and

s

the fact that @é(Ll(G))=[ (D)]0 (see Proposition 4.3).

(iv) Let F be in Lm(D). Then by Lemma 6.3, we have

ig

IA

|[F]p(ne )| s eor) || Fllwle’p(n)l

in

ol =l _(1+log(1-?)), where € =2C(p+1).

Therefore if we take an £ > 0 such that O<e<2r+l, we see that for each lsp<e,

1
2 2 2, 2r-
2¢ Bl| #]| B 1 (4109101 (1-n%)% (10?2
(]

A

P
Il S, .

2r-¢

A

< o] t 2
cc, el 2 fo(l-n ) ndn < .

Thus [F]p belongs to aPr*(p).

14
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(iii) We note that r and p under the assumption of (iii) also satisfy the
assumptions of (i) and (iv). Therefore, by (i) and (iii) we see that [ ]

1)
e Tt (o)) Ana @ (o), 22" F (D)) for any 1sp'<e. By an interpola-
q,r

tion argument (cf. [BL], p.17) we obtain that [ ] e P Fy,L (D)),
where éeé + = (1 P . Since p' is arbitrary for lSp'<m, we can obtain the
desired result. Q.E.D.

Applying Lemma 6.1 and Proposition 6.2 to the right hand side of Propo-

sition 4.3, we can obtain from Lemma 3.1 that
Corollary 6.4.

(1) If n=1 and p=1, then

-3

<I>cl)(L1(G))=[Ll' (D)]O [ Hl(D).

(2) Ifne $2, n> 1 aud 15ps2, or n=1 and p=2, then

: ° P o P P oo
(i) PnL (G)En PnLn(G)En L~ -span of {fzo’ 2 & N},

,3np-1

(ii) o7: op LP(G)E — AP (D) Zs bijective and norm-pre-
0 n n p.

serving,

(1ii) op (tP(6))=(rP #P=1 1 =f -1, 1, =A% =1,

(pr) (1) is obvious from Proposition 4.3 and Proposition 6.2 (ii). If we
could prove (2) (iii), the rest of the assertions in (2) follows from

Lemma 3.1 and Propositions 4.1 and 4.3. We shall prove (2) (iii) by an inter-

polation arqument. When p=2, [ ]n 1€ (L2 n—]'(D),Lz’n-l(D)) by Theorem 5.1
Ll,%n-l 1,%n-1

and when p=1, [ ]n-l e ( (D),L (D}) (n > 1) by Proposition 6.2 (1) .

Therefore by the interpolation between these two cases (cf. [BL], p.17), we

t) "T ¢ (A,B)" means that T is a bounded linear operator of A to B.

15
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(D) ,Lpr inp-1

[Lp'%np'l(n)]n_lc: AP IP~L 5y 4o remma 6.1. Thus when 1Sps2, n > 1, (2)

see that [ ] ¢ (@Prinp-l
n-=1

(D)) for 15ps2 and n > 1. In particu-
lar,
(iii) follows from Proposition 4.3. The rest is obtained in Theorem 5.1.

Q.E.D.

Corollary 6.5. Let n e 32 and n 2 1. Then

A1,§n-1 1/

o <= 5/%D).

(Pr) Let £ be in Ll(G). Then it is easy to see from (2.5) that H 3 (f)”

1/n 1/n

< B(m+1,2n-l)-i” f” 1" Therefore, ¢ (L (G)) = H The desired result

is obvious from Corollary 6.4 (2). Q.E.D.

Remark 6.6. If we define the metric in HP(D) (O<p<1l) as in the footnote in
§2.3, the inclusion in Corollary 6.5 is dense. In fact (Tn,Hl/n(D)) (n ¢ 12
and n 2 %) are irreducible representations of G and @8(L1(G)) are G—invariant
subspaces of Hl/n (D): for f € L (G), T (g)@ (£) ¢ (L £), where Lgf(x) f(q x)

for g, x € G. Then Lgf € L (G) and thus, T (g)@ (f) € @ (L (G)).

§7. The case of Tl'

For O<p<w®, r ¢ R and a 2 0, we put

A To)= (F e am;: 2 T zre) e AP T 3,
where F[a] is the fractional derivative of F ¢ A(D) of order a, that is, if
F(z)=, 8, agzl e A, FI*(z2) is defined by
¥ T(1+L 3
F[a](z)= T T Q++a) a z

=0 T (1+8)

(cf. §9). Obviously Ag'r(D)zAP'r(D).

16
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1
Proposition 7.1. Let 15ps2, o > 5_1 and o 2 0. Then

1.p —sL P _,Psip(l+a)-1
8, (L7 (G))=0 (L] (G))=A

(D).
In particular, if p > 1, we can take o=0 and thus the right hand side equals
to P71 (p)

1,%a-%(D)_

(Pr) Case 1l: p=l. Let o > 0. We shall prove that @é(Ll(G))c: Aa

First we note that
-i(e+0")
> ’

2

-1 1 [a] _ T(a+2) (1-n")e
z (z’l‘l(g)eo(z)) (z)= To of
(l-ne” " z)

+
where g=keatke, € KCL(A )K and n=th§. Then we see from Lemma 6.3 that

[al I (M) |T (at2)

UA

-1 1 2
| 27" (21, (g)ej(2)) 1,30-3 A=D1y 4 o)

IA
(@]

< o, where Ca=C(1+a—1) T(a+2).

Therefore for f ¢ Ll(G) we have

-1 1 [a] -1 1 [a]
=" eg @ @)y s el )l 27 @m Creg@n 2, 4

A

cllell, <=

1 -
This means that @é(f) belongs to Aa'iu i(D), because @é(f) belongs to A(D).
Next we shall prove that Ai'*“'*(n) c:@é(Li (G)). Let F(z)= loioalzk be in
Ai'%a—i(D) and we put
-1 -1t -2— -i(6+8"
°£(g)=4"'n " (chg) F(gore OO
-1 -1 2., T — g -ige, -i(6+8")
=4 "1 (1-n")( X a,n’e Eye™ .
2=0 L

t
where g=keatke, and n=th5. Then we see that ®é(°f)=F (see 83 and §4).

Here we define two functions f and fP on G as follows.

17
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<
g~ -1, 2 1+a P{f+a+2) =~ 4 -igp, -i(6+0')
f(g)=4 "o “(1-n%) ( z T(1+a) T (2] 24" © Ye
2=0
and
fo(g)=f(g)-°£(qg)
o
[ S U T (2+2+a) _ -i26, -i(8+6")
=4 "m (1-n")( I a!I,(I'(1+a)I'(JL+2)(l n ) l)n e )e .
2=0
I (2+2+a) 2.a 22+1,
Then because of IO(FTE:ETTTIIET (1-n") "=1)n dn=0 for all % ¢ N we see that
@O(fP)=O, that is,
1 S R
¢O(f)—<1>o( f)=F.
On the other hand,
1 4nm
-1 2, 1+ -1, -1 if 2,-2
lell =2 7 5 a7 @-n® % (1) ™2 2r 2)) [ (et )| (1-n) "“nanase
o 0
I 2
= T+a) T |2 2r(2)) [ (o) | a- [z|$H%1q
D
_ -1, -1 [a]
=T(+a) || 277 (zF(2)) " * || 1da-y < °
Therefore, we see that £ belongs to L (G) and ¢ (£)=F.
Then we obtain that ¢ (L (G))—A1 o= %(D) The deslred result follows from
Lemma 6.1.
1
Case 2: 1<ps2. By the same argument in Case 1 we see that AP’2P(1+ak(D)
1
¢ (LP(G)) Therefore it is enough to show that & (LP(G))C: Ap,%p(l+a) (D) for
o > érl. First we shall prove the following lemma.
, 2,0 -1 [B]
Lemma 7.2. Let B 2 0 and F be in A (D). Then z ~(zF(z)) belongs to
AZ'S(D).
(Pr) Let F(z)= T ayz" ¢ a%’%(D). This means that £ B(2+1,1) |a |2
gEo%pZ € : gLo :

If we put z 1(zF(z)) (8] (z)= T b zl, then b = M a (2 e N). Thus we

2=0_2% L T (e+2) 21"(2+28+2)I‘(2.+2)

® r(e+2) 2 2 o
have JLEOB(,Q,+].,1) (F(£+2+B) f l < ©, Here we note that m)

(2 € N) are bounded below unlformly on %. Therefore g B(2+1,2B8+1) [bllz o,

This means that z—l(zF(z)) 18] belongs to AZ'B(D) . Q.E.D.

18
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[a]

-1
Now we define an operator & by @a (£)(z2)=z (z@é(f) (z)) (z) for a func-

tion f on G. Then <I>a € (Ll (G),Ll'%a_%(D)) by Case 1 and CDH € (L2 (G),LZ'G(D))

by Theorem 5.1 and Lemma 7.2. Therefore by the intexpolation between these

two cases we see that ¢ ¢ (Lp(G) ,Lp'ip(lﬂl)_l(D)) for 1gp£2. 1In particular,

we obtain that ¢ (LP(6) = Aﬁ'*P(l+“"1(D> . 0.E.D.

In what follows we put

1)
1 - 1,%(!-% — . [C!] oo
H, (D)=A m={ Feam; ||r ]ll'%a_i <o} (a>0).
Corollary 7.3.
(1) If a > 0, then
1,1 11 _.1,-% 1,3 _alrde-3 0 1 1
QO(L (G))—¢O(L1(G))—[L (D)JO-[L+ (D”O_Aa (D)—HO(D)  H (D).

(i) If 1l<p<2 and o > %—1, then
1.p _sl P _rP.ip-1 _rPsip-1
®O(L (G))—<I>0(L1(G))—[L (D)]o-[L+ (D)]0

=A§,%p(l+a)-1 p.ip-1

(D)=A )-

(iii) If 1sps2, 8 > é—l and o > 0, then
Ai’%a'*(n) = A§’§p(1+8)—1(D) and Hé(D) = 2Py (1ps2).
(iv) If 1s5ps=2,

1,1 1, p
@O(L G)) <= <I>0(L (G)).

(Pr) (i) and (ii) are obvious from Proposition 7.1 and Corollary 6.4. When

1
1<p=£2 and B > p—l, we see from Lemma 6.3 that

1) See the proof of Theorem 9.5.
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-1 1 [R] _.2 1/p
|z~ (21 (e (z)) ”p,%p(l+6)—1§ (1-n) |1 (m |7/ T (g+2)

p(1+18)-1,p(4+48)-1

A
0
A
8

t s
where g=keatke, and n=th5. Therefore as in the proof of Case 1 in Proposition

7.1, we can obtain that @é(Ll(G)) C:A%'%p(l+8)—l(D). Then (iii) follows from
(i). (iv) is obvious from (i), (ii) and (iii). Q.E.D.

R . 1 1 . .
Remark 7.4. The inclusion HO(D) — H (D) is dense. As stated in §2.3,

1 1 :
(Tl,Hl(D)) is an irreducible representation of G and @é(L (G))=HO(D) is a G-
invariant subspace of Hl(D) (cf. Remark 6.6).
§8. Main theorems.
Summarizing Corollary 6.4 and Corollary 7.3, we conclude the following
Theorem 8.1.

(1) Let ne 32, n 2 1, 15ps2 and (n,p)#(1,1)

. ° P _ P S n
(1) P L (G)En—°PnLn(G)En L"-span of {fzo’ % e N},
(ii) o%: °p F(@E — Ap'%np~1(D) is bijective and norm-pre
0 n n
serving,
e n, p _;7Psinp-1 _frPrinp-1 _aP,inp-1
(iii) @0 (L7 (G))={L (D)]n_1 [L+ (D)]n_l—A (D).

(2) Let n=1 and p=1.
1 1 1 1
3 o -0 - -
(i) P L7 (G)E,= PlLl(G)El¢L span of {fzo’ 2 e N},
(ii) @l' °p Ll(G)E —_ Hl(D) 18 bijective
0o° "1 1 0 ’

3 1,-3

ooy Jlo1 o 1,- _ 1
(iii) ®0(L (G))=I[L (D)lo—[L+ (D)]O—HO(D)-
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As we have stated in §1, the Fourier coefficients f£(n;%,0) (2 e N) for
f e LP(G) (1<p<2) are characterized by the right hand sides of (iii)'s in

Theorem 8.1. In particular, when p=1, we have the following

Theorem 8.2. Let n ¢ 42 and n 2 1.

%)'

(1) If £ belongs to L2(G), then £(n;%,0)=o(%”
2y If an2=o(g'%'Y) (v > %), then there exists a function £ in Ll(G)
such that an2=f(n;2,0) (2 e N).

Moreover, these orders: -1 and -i-y (y > }) are best possible.

(pr) We note that for £ ¢ Ll(G)
© 3 o
2 (£) (z)= T a,zt=2r}(2n-1)"! T E(n;2,00B(2+1,2n-1) 2%
° 2=0 2 2=0

Tdnliny s 1) by

(cf. §3), z"l(z¢é(f)(z))[“] e Ai'%a_é(D) and 00(£) € A
Theroem 8.1. Therefore, (1) is obvious from [DRS], Theorem 4. On the other
hand, under the assumption of (2), we see that F(z})= Rannlz belongs to

@g(Ll(G)) by the same theorem. Thus the desired result is clear. Q.E.D.

Remark 8.3. (1) By considering anti-holomorphic functions on D, we can
obtain quite similar conclusions for the cases of n ¢ $Z and n < -1.
(2) When p=2, we can replace @8 by ¢3 (m € N). We regard any elements Z

in the Lie algebra of G=SU(1,1) as the left invariant differential opera-

tors Dz on G by the formula:

d
D_£f(g)= ——f (gexp(t2)) .
pA at |t=0

0-i

Here we put D-=DX+iDY' where X=(O é) and Y=(i_0). Then we see that

n i n
D £ =-2(q(2n+g-1 £ (n e %2, n 21 and p, e N)
-foq (q(2n+g-1)) oq-1 P, g
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(cf. [Sul, p.216). Then we can obtain that

n,p _n,, P 2 Mo he)
o (L7 (G))=¢ (°P LY (G)E_ )=¢ (D_"°P L"(G)E _ ).
Therefore, to replace QB in Theorem 8.1 by @Q (m ¢ N), we have to character-

. m L . m
ize the image of D_ on °Pan(G)En . When p=2, it is easy to see that D_ :

2 +m

°p L2(G)E — °P L7 (G)E is bijective and norm-preserving. Thus we have
n n+m n n

n, 2 n, m, 2 _ D, 2 _.n. 2
¢ (L7(G))=e (D_"°P L™(G)E_, )=¢,(°P L(G)E )=¢,(L (G)),

and Qg can be replaced by @2.

§9. Appendix.

Let notations be as in the preceding sections.
9.1. Bounded operators. For O<p<w and r ¢ R we put
_4(l+r)

TP r(g)F(z)=J(g—l,z) P F(g-lz), where g ¢ G and F ¢ Lp’r(D).
r

Obviously, if él%;El—

=2n ¢ Z and n 2 %, Tp r coinsides with Tn defined in §2.3.

’

Lemma 9.1. Let O<p<o and r € R. Then each T_ _(g) (g e G) Zs || || -
e e P, p,r

norm-preserving. In particular, Tp 9 belongs to (L Ty, 1P Ty

(Pr) We note that (1—]z[2)dz is a G-invariant measure on D and J(g_l,gz)_zx
(l-]gz(2)=(1—|z|2) (g ¢ G, z ¢ D). Thus the desired result follows from the

definition of Q.E.D.

-

Let n € $3%Z and n 2 4. For a function f on G we define the operator Tn(f) by

T ()= f £(9)T (9)dg.

(
n G

Now we assume that f ¢ Ll(G). Then the following proposition easily follows
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from the definitions of the Bergman and Hardy spaces and Lemma 9.1. Actually

for each norm || -|| , we see that ||Tn(f)F[| s f G]f(g)|]|Tn(g)F|]dg s || £ 1%
el -
Proposition 9.2. Let n e 3Z, n 2 % and £ be in ot (G). Then

(1) If 1sp<e and (n,p)#(1,1), (4,2), then T_(£) belongs to (aPr 0Pl oy aPrdnp=1 )0
(2) T (£) belongs to @), 1t o).
(3) T, (£) belongs to ®? () 5% (D)) .

Moreover, in each case the operator norm of T (f) is bounded by || £]| ;.

Now we note that for f ¢ Ll(G) and h ¢ Lp(G) (1€psw) their convolution
£xh(x)= IGf(xy—l)h(y)dy belongs to LP(G) and then

n n
Qm(f*h)(z)—Tn(f)¢m(h) (z € D).
Then using Theorem 8.1, we can obtain the following

Proposition 9.3. Let 15p22, n e 3Z and n 2 1. Then

1,in-1

(1) For any £ in ¥ (), T (£) (n > 1) belongs to (a (D) ,227 P71 5y

and the operator norm is bounded by c|| £|| _.
(2) For any £ in PG (p > 1), T, (£) belongs to (Hé(D),A rip-1

we define the norm of H(l)(D) by || z‘l(zF(Z)) fa] I

(D)), where
1

1,30-% (F ¢ HO(D)) for a

fized o > 0. Moreover, the operator norm is bounded by c|| €| o

. 1 s .
(Pr) (2) Let H be in HO(D). Then by (2)(iii) of Theorem 8.1 there exists an
°h ¢ °P1L1(G)El( Gt Ll(G)) such that Qé(°h)=H. More precisely, by the proof
of Proposition 7.1, there exists an h € Ll(G) such that h=hP+°h and ” h“ 1=C

” a|| ey where || '” Hl is the norm of Hé(D) defiend above. Then
0 0
_ 1
Iy mll o g=llm @egemil
1
=l oy (£xom || p.ip-1
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={| °p, (F+°m)E_ || o =|| £x(°P, (°*ME)) || o
=|| £%° .
| £een]]
Here we note that f ¢ °LP(G), and thus £*°h=f*h. Then we have

@l =l el

p,ip-1
s el Gl nll =il =11 I =l R

Thus the desired result is obtained.

(1) This case is easier than the first one. We can take an h ¢ °PnL1(G)En

1 -

= 11(6) such that || n|| ,=c|| H|| for each # ¢ Al7¥7L
1 1,in-1

of the proof is quite similar to the first one. Q.E.D.

(D). The rest

The next proposition follows from the Kunze-Stein phenomenon (cf. [C]) and

the same argument as above.

Proposition 9.4. Let 15p<2, n € $Z and n 2 1. Then

- 2
2,n l(D),A ,n

(1) For any £ in P, T (£) belongs to (A _l(D)) and the opera-
tor norm is bounded by c|| £|| o
(2) For any £ in 17(@), T_(f) belongs to @P P71 () 2207l (5yy and the

operator norm is bounded by c|| £|| I

9.2. Fractional derivatives and integrals. Let 8 2 0. For F(z)= lzoalzl €

A(D), we define the fractional derivative (resp. integral) of F of order B8

as follows.

(81 > T (a+1+8) % > r(arl) 3
F (z)= L —5+——— a,z (resp. F (z)= L —"———az)-.
=0 T (2+1) L [8] Q=or(z+1+e) 2
Then by using the [ ]p-transform in §6, we see that for p > -3
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[g] I (2p+1)

F “F(20+1-8)

() [[z|23(1—|z|2)’f31=(z)1p
(9.1)
- T (2p+1) 2p+l _ 2. B -(2p+1)
Flg) (z)—L—r(zp+l+6) z [(1-lz| %z F(z)1

where in the second formula 2p+1 € N and F has a (2p+1)th zero at z=0.

Theorem 9.5. Let r > -+ and 8 2 0. Then
(1) If F belongs to Al'r(D), then F[B] belongs to Al’r+§B(D).
(2) If F belongs to Al'r+§B(D), then F belongs to Al'r(D).

1,-% 1
(D) by Hy

[B1

Moreover, if we replace A (D), the assertions are also valid for

the case of r=-%.

(Pr) When B=0, the assertions are trivial. Let g > 0.

(1) Let F be in Al'r(D) (r > -4). Then since |z|28(1-|z[2)‘BF(z) belongs to

Ll,r+§B [81

(D), we see from (9.1) and Proposition 6.2 (i) that F belongs to

[Li'r+iB(D)]p=Al’r+%B(D), where we can take a sufficiently large p 2 0 such
that 2p+1-8 > 0, r < p and r+4 £ p. Next let F be in Hé(D) and put F(z)=F(0)+

(F(z)—F(O))=FO+Fl(z). Then it is easy to see that z-lF (z) € Hé(D). Thus, by

(81 1,-3+48

1 - -
the definition of H_(D), z l(zz lFl(z)) must be in A (D). In parti-

0
(8] belongs to Al'_%+§B(D).

l,-é+§B(D)_

cular, (F.) Therefore, we see that F

1
(Fl)[B] belongs to A
(2) Let F be in A
that (1—|z|2)8z_1F(z) belongs to Li'r(D). Thus by (9.1) and Theorem 8.1 we see

[B]_ [g]
—(Fo) +
1’r+&8(D) (r 2 -4). If F(z) has a simple zero at z=0, we see

that F belongs to [Li'r(D)]O=A (D) (r > -%) and Hé(D) (r=-%). For a gen-

[B]
eral F we shall devide it as E‘=FO+Fl as in the first case. Then it is easy to
see that Fl(z) has a simple zero at z=0 and belongs to Al'r+%B(D). Thus (Fl)[gl
must be in AY’F(D) (r > -3) and Hé(D) (£=-1). Therefore, F =(F0) o +(F)) o,
belongs to the same space. Q.E.D.
Remark 9.6. This theorem is obtained by [DRS], Theorem 5.
Corollary 9.7. Let 1sps2, r > -+ and B8 2 0. Then
(1) If ¥ belongs to A (D), then plB] belongs to Ap'r+§BP(D).

(2) If F belongs to Ap,r+%Bp(D)’ then F belongs to aP**(p).

{81
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(Pr)

When p=2, the assertions follow from the same argument in Lemma 7.2,

and when p=1, they are just the above theorem. Therefore the desired result

follows by the interpolation between these cases. Q.E.D.
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