KSTS/RR-85/005 24 April 1985

Hilbert transforms on one parameter groups of operators

by

Shiro Ishikawa

Shiro Ishikawa

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

Hilbert transforms on one parameter groups of

operators

Shiro Ishikawa

Dept. of Math., Keio Univ.

ABSTRACT

Let X be a complete locally convex space and let $\{U_t : -\infty < t < \infty\}$ be a one parameter group of uniformly bounded operators on X such that there exists $\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^T U_t x dt$ in X for all $x\in X$, and we assume that operator $H_{\varepsilon,N}$ $(0<\varepsilon < N<\infty)$ on X (where $H_{\varepsilon,N}x=\frac{1}{\pi}\int_{\varepsilon<|t|< N}\frac{U_tx}{t}dt$ for all $x\in X$) is bounded uniformly concerning to ε and N. Then we prove that, for any $x\in X$, $Hx=\lim_{\varepsilon\to 0+\atop N\to\infty} H_{\varepsilon,N}x$ exists in X and H is a continuous linear operator on X. Moreover, as the application of this result, we prove the generalized M.Riesz's theorem on a measure preserving flow which was first proved by M.Cotlar [1].

1.INTRODUCTION

In [1], M.Cotlar showed that M.Riesz's theorem could be extended to on a measure preserving flow as well as a real line or a circle. In this paper, more generally, we shall consider Hilbert transform on a one parameter group of

operators on a complete locally convex space. For this, we define several terms and prepare some lemmas as follows.

Definition 1. Let R be a real field and let X be a complete locally convex space. Then $\{U_t; t \in R\}$ is said to be a one parameter group of operators on X, if the following conditions are satisfied;

- (i) U_t is a continuous linear operator on X for all $t \in \mathbb{R}$, and U_0 is an identity operator on X.
 - (ii) $U_t U_s = U_{t+s}$ for all $t,s \in \mathbb{R}$
- (iii) for any $t \in \mathbb{R}$ and any $x \in X$, $(U_{t+h} U_t)x$ converges to 0 as $h \to 0$ in the topology of X (for short, in X)

Definition 2. A continuous linear operator $H_{\epsilon,N}$ (0< ϵ <N< ∞) on X is defined as follows;

$$H_{\varepsilon,N}x = \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{U_t x}{t} dt \qquad (x \in X)$$

(this integral can be well defined since a mapping $t \in \mathbb{R} \to (U_t x)/t \in X$ is continuous on a compact set $\{t \in \mathbb{R}; \varepsilon \leq |t| \leq N\}$). Also, if there exists $\lim_{\varepsilon \to 0+\atop N \to \infty} H_{\varepsilon,N} x$ in X, we denote it by Hx and call it a Hilbert transform of x. And a domain of H (i.e. $\{x \in X; Hx \text{ exists}\}$) is denoted by D(H).

Lemma 1. Let X be a complete locally convex space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X. Let x be any element in X represented by

$$x = \frac{1}{2\delta} \int_{-\delta}^{\delta} U_t v dt$$

where $\delta > 0$ and $\nu \in X$.

Then, there exists $\lim_{\varepsilon\to 0+} H_{\varepsilon,1}x$ in X.

Proof. Note that

$$\begin{split} \lim_{h \to 0} \frac{U_h x - U_{-h} x}{2h} &= \lim_{h \to 0} \frac{1}{2h} \Big[U_h \big(\frac{1}{\delta} \int_{-\delta}^{\delta} U_t v dt \, \big) - U_{-h} \big(\frac{1}{2\delta} \int_{-\delta}^{+\delta} U_t v dt \, \big) \Big] \\ &= \lim_{h \to 0} \frac{1}{2h} \Big[\frac{1}{2\delta} \int_{h-\delta}^{h+\delta} U_t v dt - \frac{1}{2\delta} \int_{-h-\delta}^{-h+\delta} U_t v dt \, \Big] \\ &= \lim_{h \to 0} \frac{1}{2\delta} \Big[\frac{1}{2h} \int_{\delta-h}^{\delta+h} U_t v dt - \frac{1}{2h} \int_{-\delta-h}^{-\delta+h} U_t v dt \, \Big] \\ &= \frac{1}{2\delta} \Big(U_\delta v - U_{-\delta} v \Big) \end{split}$$

Let q be any semi-norm from the system of semi-norms $\{q\}$ defining the topology of X. From above equality, there exists $\eta>0$ such that

$$q\left(\frac{U_hx-U_{-h}x}{2h}-\frac{U_\delta v-U_{-\delta}v}{2\delta}\right)\leq 1 \qquad \text{for all } 0<\mid h\mid <\eta$$

Then we get that, for any $0 < |h| < \eta$,

$$\begin{split} q\left(\frac{U_hx-U_{-h}x}{2h}\right) &\leq q\left(\frac{U_hx-U_{-h}x}{2h}-\frac{U_\delta v-U_{-\delta}v}{2\delta}\right) + q\left(\frac{U_\delta v-U_{-\delta}v}{2\delta}\right) \\ &\leq 1 + q\left(\frac{U_\delta v-U_{-\delta}v}{2\delta}\right). \end{split}$$

Hence we see that, for any ε, ε ' such that $0 < \varepsilon < \varepsilon$ ' $< \eta$,

$$\begin{split} q\left(H_{\varepsilon,1}x - H_{\varepsilon',1}x\right) &= q\left(\frac{1}{\pi} \int_{\varepsilon < |t| < \varepsilon'} \frac{U_t x}{t} dt\right) \\ &\leq q\left(\frac{2}{\pi} \int_{\varepsilon}^{\varepsilon'} \frac{U_t x - U_{-t} x}{2t} dt\right) \\ &\leq \frac{2(\varepsilon' - \varepsilon)}{\pi} \left(1 + q\left(\frac{U_{\delta}x - U_{-\delta}x}{2\delta}\right)\right) \end{split}$$

which implies that $\{H_{\varepsilon,1}x\}_{\varepsilon>0}$ is a Cauchy net as $\varepsilon\to0+$. Therefore from the completeness of X, there exists $\lim_{\varepsilon\to0+}H_{\varepsilon,1}x$ in X. This completes the proof.

Lemma 2. Let X be a complete locally convex space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X. Let x be any element X represented by

$$x = z - \frac{1}{2T} \int_{-T}^{T} U_{s} z ds$$

where T>0 and $z \in X$ such that $\{U_t z\}$ is bounded in X uniformly for $t \in \mathbb{R}$.

Then there exists $\lim_{N\to\infty} H_{1,N}x$ in X.

Proof. Since X is complete, it is sufficient to prove that $\{H_{1,N}x\}_{N=1}^{\infty}$ is a Cauchy sequence as $N \to \infty$.

Let q be any semi-norm from the system of semi-norms $\{q\}$ defining the topology of X. Now we get that, for any N,N such that 0 < T < N < N,

$$q(H_{1,N}x-H_{1,N}x)$$

$$= \frac{1}{\pi} q \left(\int_{N < |t| < N} \frac{U_t x}{t} dt \right)$$

$$= \frac{1}{\pi} q \left(\int_{N < |t| < N} \frac{1}{t} U_t \left(z - \frac{1}{2T} \int_{-T}^{T} U_s z ds \right) dt \right)$$

$$= \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N} \frac{(U_{t} - U_{t+s})z}{t} dt + \int_{-N}^{-N} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right)$$

$$\leq \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N} \frac{\left(U_{t} - U_{t+s} \right) z}{t} dt \right) ds \right)$$

$$+\frac{1}{\pi}q(\frac{1}{2T}\int_{-T}^{T}(\int_{-N}^{-N}\frac{(U_{t}-U_{t+s})z}{t}dt)ds)$$

$$= I_1 + I_2, \quad say.$$

Since we can, from the boundedness of $\{U_tz\colon t\in \mathbb{R}\}$, take M>0 such that $q(U_tz)< M$ for all $t\in \mathbb{R}$, we see that, for any N.N such that $0< T\le N< N+T\le N$,

$$I_{1} = \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N} \frac{U_{t}z}{t} dt - \int_{N+s}^{N+s} \frac{U_{t}z}{t-s} dt \right) ds \right)$$

$$\leq \frac{1}{2\pi T} q \left(\int_{0}^{T} \left(\int_{N}^{N} \frac{U_{t}z}{t} dt - \int_{N+s}^{N+s} \frac{U_{t}z}{t-s} dt \right) ds \right)$$

$$+ \frac{1}{2\pi T} q \left(\int_{-T}^{0} \left(\int_{N}^{N} \frac{U_{t}z}{t} dt - \int_{N+s}^{N+s} \frac{U_{t}z}{t-s} dt \right) ds \right)$$

$$= \frac{1}{2\pi T} q \left(\int_{0}^{T} \left(\int_{N}^{N+s} \frac{U_{t}z}{t} dt + \int_{N+s}^{N} \left(\frac{1}{t} - \frac{1}{t-s} \right) U_{t}z dt - \int_{N}^{N+s} \frac{U_{t}z}{t-s} dt \right) ds \right)$$

$$+ \int_{-T}^{0} \left(-\int_{N+s}^{N} \frac{U_{t}z}{t-s} dt + \int_{N}^{N+s} \left(\frac{1}{t} - \frac{1}{t-s} \right) U_{t}z dt + \int_{N+s}^{N} \frac{U_{t}z}{t} dt \right) ds \right)$$

$$\leq \frac{M}{2\pi T} \int_{0}^{T} \left(\int_{N}^{N+s} \frac{1}{t} dt + \int_{N+s}^{N} \left(\frac{1}{t-s} - \frac{1}{t} \right) dt + \int_{N}^{N+s} \frac{1}{t-s} dt \right) ds$$

$$+ \frac{M}{2\pi T} \int_{-T}^{0} \left(\int_{N+s}^{N} \frac{1}{t-s} dt + \int_{N}^{N+s} \left(\frac{1}{t-s} - \frac{1}{t-s} \right) dt + \int_{N+s}^{N} \frac{1}{t} dt \right) ds$$

$$\leq \frac{M}{2\pi T} \int_0^T (\log \frac{N+s}{N} + \log \frac{(N-s)(N+s)}{NN} + \log \frac{N+s}{N}) ds$$

$$+\frac{M}{2\pi T}\int_{-T}^{0}(\log\frac{N}{N+s}+\log\frac{(N+s)(N-s)}{NN^s}+\log\frac{N^s}{N^s+s})ds$$

(*)
$$\rightarrow 0$$
 (as $N, N \rightarrow \infty$).

Also we see, by (*), that, for any N,N such that $0 < T \le N \le N \le N + T$ (< N + 2T),

$$I_1 = \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N} \frac{(U_t - U_{t+s})z}{t} dt \right) ds \right)$$

$$\leq \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N+2T} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right)$$

$$+ \frac{1}{\pi} q \left(\frac{1}{2T} \int_{-T}^{T} \left(\int_{N}^{N+2T} \frac{(U_{t} - U_{t+s})z}{t} dt \right) ds \right)$$

$$\to 0 \quad (as \ N, N \to \infty)$$

From this and (*), we see that $I_1 \to 0$ as $N, N \to \infty$. In a similar way, we can also see that $I_2 \to 0$ as $N, N \to \infty$. Hence this implies that $\{H_{1,N}x\}_{N=1}^{\infty}$ is a Cauchy sequence in X. This completes the proof.

2. MAIN THEOREMS

Now we can show the following Theorems by Lemma 1 and Lemma 2.

Theorem 1. Let X be a complete locally convex space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X. Let x be any element in X represented by

$$x = \frac{1}{2\delta} \int_{-\delta}^{\delta} U_s(z - \frac{1}{2T} \int_{-T}^{T} U_t z dt) ds + v$$

where $\delta, T>0$, $z \in X$ and $v \in X$ such that $\{U_t z\}$ is bounded in X uniformly for $t \in \mathbb{R}$ and $U_t v = v$ for all $t \in \mathbb{R}$.

Then $\lim_{\substack{\epsilon\to 0+\\N\neq a}} H_{\epsilon,N}x$ exists in X (i.e. $x\in D(H)$).

Proof. Since it is clear that $H_{\varepsilon,N}v=0$, we see

$$\begin{split} H_{\varepsilon,N}x &= H_{\varepsilon,N} \big(\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s \big(z - \frac{1}{2T} \int_{-T}^{T} U_t z dt \big) ds \big) \\ &= H_{\varepsilon,1} \big(\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s \big(z - \frac{1}{2T} \int_{-T}^{T} U_t z dt \big) ds \big) \\ &+ H_{1,N} \big(\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s z ds - \frac{1}{2T} \int_{-T}^{T} U_t \big(\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s z ds \big) dt \big) \end{split}$$

which implies, from Lemma 1 and 2, that $\lim_{\substack{\varepsilon \to 0+\\N \to \infty}} H_{\varepsilon,N}x$ exists in X, since $\{U_t(\frac{1}{2\delta}\int_{-\delta}^{\delta}U_szds)\}$ is clearly bounded in X uniformly for $t \in \mathbb{R}$

Theorem 2. Let X be a complete locally convex space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X such that a set $\{x \in X: \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} U_t x dt \ (\text{denoted by } x) \text{ exists in X and } \{U_t x\} \text{ is bounded in X uniformly for } t \in \mathbb{R} \}$ is dense in X. Then the domain of H (denoted by D(H)) is a dense set in X.

Proof. Let u be any element in X and let V be any balanced convex neighborhood of 0 in X. Then, we can take $x \in X$ and $\delta, T > 0$ such that

$$u-x\in\frac{V}{3}$$
, $x-\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}xds\in\frac{V}{3}$

and

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} U_{s} \left(\frac{1}{2T} \int_{-T}^{T} U_{t} x dt \right) ds - x \in \frac{V}{3}.$$

Then, we see that

$$u - \left[\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s \left(x - \frac{1}{2T} \int_{-T}^{T} U_t x dt\right) ds + x\right]$$

$$= \left[u - x\right] + \left[x - \frac{1}{2\delta} \int_{-\delta}^{\delta} U_s x ds\right] + \left[\frac{1}{2\delta} \int_{-\delta}^{\delta} U_s \left(\frac{1}{2T} \int_{-T}^{T} U_t x dt\right) ds - x\right]$$

$$(*) \qquad \qquad \in \frac{V}{3} + \frac{V}{3} + \frac{V}{3} = V$$

Also, since we can easily see that $U_t \bar{x} = \bar{x}$ for all $t \in \mathbb{R}$ we get, by Theorem 1, that

$$\frac{1}{2\delta}\int_{-\delta}^{\delta}U_{s}(x-\frac{1}{2T}\int_{-T}^{T}U_{t}xdt)ds + x \in D(H).$$

From this and (*), it follows that D(H) is dense in X, since $u(\in X)$ and neighbourhood V of 0 in X are arbitrary.

Theorem 3. Let X be a complete locally convex space and let $\{U_t : t \in \mathbb{R}\}$ be a one parameter group of operators on X such that a set $\{x \in X : \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} U_t x dt \ (\text{denoted by } x) \text{ exists in X and } \{U_t x\} \text{ is bounded in X uniformly for } t \in \mathbb{R} \}$ is dense in X. Assume that, for any neighbourhood V of O in X, there exists a neighbourhood W of O in X such that

$$H_{\varepsilon,N}z \in V$$
 for all $z \in W$ and $0 < \varepsilon < N < \infty$.

Then, for any $x \in X$, there exists Hx. Moreover, H is a continuous linear operator on X.

Proof. Let x be any element in X. It is sufficient to prove that $\{H_{\varepsilon,N}x\}$ is a Cauchy net as $\varepsilon \to 0+, N \to \infty$. Let V be any balanced convex neighbourhood of 0 in X. Take a balanced convex neighbourhood W of 0 in X such that

$$H_{\varepsilon,N}z \in \frac{V}{3}$$
 for all $z \in W$ and $0 < \varepsilon < N < \infty$.

From Theorem 2, there exist y in D(H) and $0 < \epsilon_0 < N_0 < \infty$ such that

$$x - y \in W$$

and

$$H_{\varepsilon,N}y - H_{\varepsilon',N}y \in \frac{V}{3}$$

for all $\varepsilon, \varepsilon', N$ and N' such that $0 < \varepsilon, \varepsilon' < \varepsilon_0$ and $N_0 < N, N' < \infty$.

Hence we see that , for any ϵ,ϵ',N and N' such that $0<\epsilon,\epsilon'<\epsilon_0$ and $N_0< N,N'<\infty$,

$$H_{\varepsilon,N}x - H_{\varepsilon',N}x$$

$$= (H_{\varepsilon,N}y - H_{\varepsilon',N}y) + H_{\varepsilon,N}(x-y) - H_{\varepsilon',N'}(x-y)$$

$$\in \frac{V}{3} + \frac{V}{3} + \frac{V}{3} = V,$$

which implies that $\{H_{\varepsilon,N}x\}$ is a Cauchy net as $\varepsilon \to 0+$ and $N\to\infty$. Then we get, from the completeness of X, that Hx exists.

Next we shall prove that H is a continuous linear operator on X. Since the linearity of H trivially follows, it is sufficient to prove the continuity of H at 0 in X. Let K be any balanced convex neibourhood of 0 in X. Then there exists a balanced convex neighbourhood G of 0 in X such that

(*)
$$H_{\varepsilon,N}z \in \frac{K}{2}$$
 for all $z \in G$ and $0 < \varepsilon < N < \infty$.

Let u be any element in G. Since $\lim_{\substack{\varepsilon \to 0+\\N \to \infty}} H_{\varepsilon,N} u = Hu$ in X, there exist ε_1 and N_1

such that

$$Hu - H_{\varepsilon_1,N_1}u \in \frac{K}{2}$$

Hence we see, from this and (*), that

$$Hu = Hu - H_{\varepsilon_1, N_1}u + H_{\varepsilon_1, N_1}u$$

$$\in \frac{K}{2} + \frac{K}{2} = K$$

which implies the continuity of H at 0 in X. Therefore we have that H is a continuous linear operator on X. This completes the proof.

Corollary 1. Let X be a Banach space and let $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of operators on X such that

- (i) a set $\{x \in X: \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} U_t x dt \pmod{by \ x} \text{ exists in } X$ and $\{U_t x\}$ is bounded in X uniformly for $t \in \mathbb{R}$ is dense in X
 - (ii) there exists a C>0 such that $||H_{\varepsilon,N}x|| \le C||x|| \quad \text{for all } x \in X \text{ and } 0 < \varepsilon < N < \infty.$

Then, for any $x \in X$, there exists Hx. Moreover, H is a continuous linear operator

on X.

Proof. The proof immediately follows from Theorem 3.

Corollary 2. Let X be a Hilbert space and let $\{U_t:t\in\mathbb{R}\}$ be a one parameter group of unitary operators on X (i.e. $U_t^*=U^{-t}$ for all $t\in\mathbb{R}$). Then a Hilbert transfrm H is a continuous linear operator on X.

Proof. A first part of condition (i) in Corollary 1 is satisfied in a Hilbert space from von Neumann's ergodic theorem. And a second part of condition (i) in Corollary 1 is clearly satisfied since $||U_t||=1$ for all $t \in \mathbb{R}$. Therefore it is sufficient to prove that the condition (ii) in Corollary 1 is satisfied in a Hilbert space X. This is assured in the following Lemma.

Lemma 3. X and $\{U_t:t\in\mathbb{R}\}$ are defined as in Corollary 2. Then, it follows that

$$||H_{\varepsilon,N}x|| \le ||x||$$
 for all $x \in X$ and $0 \le x \le N \le \infty$.

Proof. We see, from Stone's Theorem, that

$$\begin{aligned} ||H_{\varepsilon,N}x||^2 &= ||\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{U_t x}{t} dt ||^2 \\ &= ||\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{1}{t} \left(\int_{-\infty}^{\infty} e^{it\lambda} dE(\lambda) x \right) dt ||^2 \\ &= ||\int_{-\infty}^{\infty} g_{\varepsilon,N}(\lambda) dE(\lambda) x ||^2 \\ &= \int_{-\infty}^{\infty} |g_{\varepsilon,N}(\lambda)|^2 d||E(\lambda) x ||^2 \end{aligned}$$

where $\{E(\lambda):\lambda\in\mathbf{R}\}$ is a spectral family of a one parameter group of unitary operators $\{U_t:t\in\mathbf{R}\}$ and $g_{\varepsilon,N}(\lambda)=\frac{1}{\pi}\int_{\varepsilon<|t|< N}\frac{e^{i\lambda t}}{t}dt$.

Since we can easily show that $|g_{\varepsilon,N}(\lambda)| \le 1$ for all $\lambda \in \mathbb{R}$ and $0 < \varepsilon < N < \infty$, we see that

$$||H_{\varepsilon,N}x||^2 \le \int_{-\infty}^{\infty} d||E(\lambda)x||^2$$

$$\leq ||x||^2$$

for all $x \in X$ and $0 < \varepsilon < N < \infty$. Hence this completes the proof.

3. APPLICATION

Let (Ω, B, μ) be a σ -finite measure space and let $L^p(\Omega)$ $(1 \le p < \infty)$ be a set of all p-ordered integrable functions on Ω with norm $\|.\|_p$. We define $\{T_t : t \in \mathbb{R}\}$ as a measure preserving flow on Ω , that is,

- (i) for any $t \in \mathbb{R}$, T_t is a measure preserving transformation on Ω and T_0 is an identity on Ω ,
 - (ii) $T_t T_s = T_{t+s}$ for all $t, s \in \mathbb{R}$,
 - (iii) a mapping $(t,\omega) \in \mathbb{R} \times \Omega \to T_t \omega \in \Omega$ is measurable.

Now we can define a one parameter group of operators $\{U_t:t\in\mathbb{R}\}$ on $L^p(\Omega)$ such that for all $f\in L^p(\Omega)$.

$$(U_t f)(\omega) = f(T_t \omega)$$
 for all $t \in \mathbb{R}$ and $\omega \in \Omega$.

It is well known that $\{U_t:t\in\mathbb{R}\}$ satisfies all conditions in Definition 1 and that $U_t^*=U_{-t}$ for all $t\in\mathbb{R}$ in $L^2(\Omega)$

Under these preparations, we see the following Proposition in [2],

Proposition 1. There exists a constant C>0 (independent of ϵ , N and λ) such that

$$\mu\{\omega \in \Omega: \left| \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{f(T_t \omega)}{t} dt \right| > \lambda\} \le \frac{C}{\lambda} ||f||_1$$

for all $0 < \varepsilon < N < \infty$, $0 < \lambda < \infty$ and all $f \in L^1(\Omega)$.

Proof. See [2].

Now we have the following generalized M.Riesz's theorem which was first proved by M.Cotlar [1]. Our proof is based on Corollary 1.

Theorem 4. Let (Ω, B, μ) be a σ -finite measure space and let $\{T_t : t \in \mathbb{R}\}$ be a measure preserving flow on Ω . Let p be any real such that 1 .

Then, it follows that

- (i) for any $f \in L^p(\Omega)$, there exists $\lim_{\substack{\varepsilon \to 0+\\N \to \infty}} \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{f(T_t \omega)}{t} dt$ (denoted by Hf) in the norm topology of $L^p(\Omega)$,
 - (ii) H is a continuous linear operator on L^p(Ω).

Proof. As the previous arguments, we define a one parameter group of operators $\{U_t; t \in \mathbb{R}\}$ on $L^p(\Omega)$ such that, for any $f \in L^p(\Omega)$,

$$(U_t f)(\omega) = f(T_t \omega)$$
 for all $t \in \mathbb{R}$ and $\omega \in \Omega$.

First we see, from von Neumann's and Yosida's ergodic theorem, that the first part of condition (i) in Corollary 1 is satisfied, that is, there exists $\lim_{T\to\infty}\frac{1}{2T}\int_{-T}^T U_txdt$ exists in X for all $x\in X$. And the second part of condition (i) in Corollary 1 is clearly satisfied since $\|U_tf\|_p=\|f\|_p$ for all $f\in L^p(\Omega)$. Therefore it is sufficient to show that the condition (ii) in Corollary 1 is satisfied.

By Proposition 1 and Lemma 3, there exists a constant C>0 such that, for any $0<\epsilon<N<\infty$,

$$\mu\{\omega\in\Omega; |H_{\varepsilon,N}f| > \lambda\} \le \frac{C}{\lambda} ||f||_1 \quad \text{for all } f\in L^1(\Omega)$$

and

$$||H_{\varepsilon,N}f||_2 \le ||f||_2$$
 for all $f \in L^2(\Omega)$.

This implies, from Marcinkiewicz's interpolation theorem, that , for any $1 , there exists a constant <math>C_p > 0$ such that

 $\|H_{\varepsilon,N}f\|_p \leq C_p \|f\|_p \qquad \text{for all } 0<\varepsilon< N<\infty \text{ and } f\in L^p(\Omega).$ In the case of $2\leq p<\infty$, put $q=\frac{p}{p-1}$. Then, we see that, for any $0<\varepsilon< N<\infty$, $f\in L^p(\Omega)$ and $g\in L^q(\Omega)$,

$$\int_{\Omega} H_{\varepsilon,N} f \cdot g d\mu = \int_{\Omega} \left(\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{U_t f}{t} dt \right) g d\mu$$

$$\begin{split} &= \int_{\Omega} \left(\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{f\left(T_{t} \omega\right)}{t} dt \right) \cdot g\left(\omega\right) d\mu \\ &= \int_{\varepsilon < |t| < N} \frac{1}{\pi t} \left(\int_{\Omega} f\left(T_{t} \omega\right) g\left(\omega\right) d\mu \right) dt \\ &= \int_{\varepsilon < |t| < N} \frac{1}{\pi t} \left(\int_{\Omega} f\left(\omega\right) g\left(T_{-t} \omega\right) d\mu \right) dt \\ &= -\int_{\Omega} f\left(\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{U_{t} g}{t} dt \right) d\mu \\ &= -\int_{\Omega} f \cdot H_{\varepsilon, N} g d\mu \end{split}$$

which implies, by Hörder's inequality and (*), that

$$\begin{split} \|H_{\varepsilon,N}f\|_p &= \sup\{|\int_{\Omega} H_{\varepsilon,N}f \cdot g d\mu| : \ \|g\|_q \leq 1 \ \} \\ &= \sup\{|\int_{\Omega} f \cdot H_{\varepsilon,N}g d\mu| : \ \|g\|_q \leq 1 \ \} \\ &\leq \sup\{\|f\|_p \|H_{\varepsilon,N}g\|_q : \ \|g\|_q \leq 1 \ \} \\ &\leq C_q \|f\|_p = C_{p/(p-1)} \|f\|_p. \end{split}$$

It follows, from this and (*), that, for any p such that $1 , there exists <math>C_p' > 0$ such that

$$||H_{\varepsilon,N}f||_p \le C_p'||f||_p$$
 for all $0 < \varepsilon < N < \infty$ and $f \in L^p(\Omega)$

This shows that the condition (ii) in Corollary 1 is satisfied. Therefore, by Corollary 1, the proof is completed.

The author wishes to express his sincere thanks to Professor S. Koizumi.

References

[1] Cotlar, M. A unified theory of Hilbert transforms and ergodic theorems. Rev. Mat. Cuyama 1 (1955), 105-167

- [2] Petersen, K. Ergodic theory. Cambridge University Press. 1983.
- [3] Petersen, K. Another proof of the existence of the ergodic Hilbert transform.

 Proc. Amer. Math. Soc. 88 No. 1 (1983), 39-43.
- [4] Yosida,K. Functional analysis. Springer Verlag (1971). Vol. 123.