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1. Introduction and a result

Let {X(t) = (Xl(t)’ Xz(t), RN Xp(t))', t iZO} be a measurable
separable p-dimensional stationary Gaussian process, where x' 1dis the
transposed vector of x. This paper deals with the limiting distribution
of sojourn time by X(t) in the fixed sphere, under some assumptions
on the dependence among the components of p-dimensional process X(t).

In [4], the author studied the case of p = 2 and Berman[1l] treated the
p-dimensional stationary Gaussian process with independent components

in the case of the expanding or shrinking spheres. The result in this
paper is the direct extension of Theorem 1 (II) in [4] to the case of
general dimension and the idea of the proof is the same.

Assumptions and notation are the following. Suppose that

EX(0) = 0,

R(t) = EX(0)X(t)' = (Rij(t))lgi,jéP’

R,.(t) =

r(t), if i= 3,
1]

p(t), if 1i+# 73,

r(t) and p(t) are continuous,

r(0) =1, p(0)=p,y (0 <pq< n,
(1.1) r(e) v £ L(t) as t -+ o,
(1.2) p(t) v ot PL(t) as t >,

where 0 <a<1l , 0<p <1 and L is a slowly varying function
at infinity. In [4], we assumed P, = 0. However, it is not necessary
to assume it by the same reasoning as in [7]. We shall also treat the

functional limit theorem .

Define
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t
M(t) =/ I[ X(s) e D ]ds, t >0,
0

where I[*] is the indicator function and

P
(1-3) D= { (xl: cec, XP)' l E X. ;1 }-
Our result is the following.

Theorem 1. Let 2z(T), T € [0, ©), be the Rosenblatt process with the

representation

2(1) = /(T2 -2 r & r &S 1™

(o]

uy T
/ dB(ul) s dB(uz) fo {(s—ul)(s—uz)

Q0 -0

}‘(C!'l'l) /2
I[u1 < s] I[u2 <s] ds ,

B(*) being a standard Brownian motion, and let Zj(T), T & [0, ©) ,

j =1, **+, p are independent copies of Z(T), T € [0, ©) . Then,

under the above conditioms, as t >

-1/2

At(T) = {var M(t)} { M(tT) - EM(tT) }

converges weakly in the space C[0, ©) to

l+(p Dp, 2 P 2 1-p_ 2 -1/2

(1.4) A(T) = ‘[c mp—(—)-) + JEZ cj (1'_0—0)
+(p-Dp, P 1-p ;.
{c l(mp—o')z (1) + JZZ (:J )Z (D
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where {cj, j =1, ***, p} are non-zero constants determined later in
the proof.

2. Proof

Define by jF the class of real-valued functions of p variables square-
integrable with respect to Hj£l¢(xj), ¢(x) being the standard normal
density, and let Hn(x)’ n=20,1, 2, *** denote the n-th normalized
Hermite polynomial defined by Hn(x) = (-l)n¢(x)'1(dn/dxn)¢(x). Then
f ¢ F has the expansion

® P

(2.1) f(x,, *°°, x )= L z c(n,, ***, n ) T H (x,)
1 P n=0 Z.E n.=n L Poy=1 nj J
j=17]

in the mean square sense, where

P , -1
c see, ={1 1} s £ , **
(ngs np) i oy & (%, , xp)
Il; {H (x.)¢(x.)dx. }
H X, X, X. T,
j=1 nj J J J
P
n, >0, I n, =n.
k| j=1 3

The validity of (2.1) is well-known for p =1, 2 (cf. [3]) and it can
be shown for gemeral p by the same reasoning as for p =1, if we

use the following lemma, (a special case of Lemma 3.2 in 5.

Lemma 1. Let (gl’ cen, EZp) be 2p dimensional Gaussian random

variables satisfying

BE, = 0, EEj2=1, 1< <2,
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EE.E. = . 1<j3X< )
£J£J+p Ty 23iZlp
Eijik =0, if (§,k) & {(§,3), G+p,i+p), (G,i+p)s L <3 < pl.
Then
& 1- T E
ElLT H () H (€, )1 =T 38 n! r, ",
j=1 nj i mj jtp j=1 njmj J
where dnm =1 or O accordingas n=m or n # m
Let
(2.2) = (e g
where
tlj =_“_‘:‘L—_, 1<j<p,
/BT (-Dpy)
1 .
£, =—————, 2<igp, 12jc<i,
7 /AGEG-D Ty
tii=-——_i:l—_’ Z;i;p,
vi(i-1) (1-p4)
=O’ Zéi;p—l, i<j;P9

L.
1]

and define Y(t) = (Yl(t), cee, Yp(t))' by Y(t) = TX(t). Then

]

R() = EXOY(®)" = R () 5o

where
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r(t) + (p-1)p(t) i = i =
1+ G(-Dp, > F rT3ich
P _ r(t) - p(r) ; s s o v
(2.3) Rij(t) = 1-0, ° if i=3=2,3, s P»s

Therefore, {Yj(t)}, 1<j <p, are independent Gaussian processes.

We then have

t t
M(t) =S I[X(s)eD]lds=/ I[Y(s)e D] ds,
0 0

where

B= { (yl, ey, yp)' l T-l(yl, *ccy yp)' €D }’

and by (2.1)

© t p
M(t) = I z c(n,, ***,n) S I H_ (Y,(s)) ds,
n=0 .E n.=n 1 P 0 j=1 nj J
=17
where
2.4 (a1 R }
. y °°%, = ! . J)dx_ .
(2.4) C(n1 np) i1 ny - i1 Hnj(x3)¢(x3) %y

For proving the theorem, the following proposition is essential.
For an f & £, define m by
m = min{ n > 1 | there exists c(nl, e, np) # 0 with
= n in the expansion (2.1)}.

Z.p n,
j=173
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We call this m the Hermite rank of f & £, follwing the definition due

to Taqqu[6]

Proposition 1. Suppose that the Hermite rank of £ is m and

r(t) v £ OL(t), p(t) v p t CL(t) for some a with 0 < a < 1/m

Write
tT

Kt(T) = fo f(Yl(s),"-,Yp(s)) ds

and
tT p

It(T) = nglzj=m c(ml, see, mp) IO jgl Hmj(Yj(S)) ds.

Then as t >
-1/2

{Var Kt(l)} { K (1) - EKt(T) }

is asmptotically equal to

}‘1/2

{var It(l) It(T)

in the sense of the finite dimensional distributions.

Proof. If we could show that for any aj € R, Tj e [0, ©), j =1,*,h,

h
lim E| z

o ]

-1/2
aj[{Vath(l)} {Kt(rj) - EKt(rj)}

1

~-1/2

2
- {VarIt(l)} It(Tj)]| =0,

then the proposition follows. For that, it is enough to show that
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(2.5) lim EI{Vath(l)} {Kt(T) - EKt(T)} - {VarIt(l)}-l/ZIt(T)lz = 0.

t—)oo
Note that

EK (1) = c(0, -+, O)tT,

and

Kt(T) - EK (1) = I (1) + Rt(r),
where

© tT p
R (1) = = 5 c(n,, **+, n) /S T H (Y.(s)) ds.
t nemtl 2P n,=n T PP o =1 %y d
=173

We have

E{Kt(T) - EKt(T)}Z = EIt(T)Z + ERt(r)2 + ZEIt(T)Rt(T),

however by Lemma 1

EI ()R (1) = I T T e(m,, **+, m Ye(n,, ***, n_)
t t p=m+l Z.P m.=m Z.P n,=n L P L P
=1 j=17]
tT tT P
J S E[{I H (Y.(u) H (Y.(v))] dudv
00 3=1 % J %
= 0.
Hence
(2.6) Var Kt(T) = Var It(T) + Var Rt(T).

We have, by Lemma 1, (2.3), (1.1) and (1.2),
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Var I (1) = z z c(m
t 2P m.=m Z.E k.=m
=173 "i=17]

1? Y mp)c(kl’ s kp)

tT tT P

fo fO E{jgl Hmj (Yj (u)) ij (YJ. (v))} dudv
T SR A
T2 v )

@ + Eg:i;géu-v))ml JEZ ! (r(u—v; - S(()u—v))mj

dudv
2 tT

=2 : 1i;m.‘C(ml, , mp) fo (t-r—s)ml!

EE) + (b)) ™ o ) - 0™y 4

1+ (p-Dpoy j=2 1 1 -9,
5. T
N2 z c(m,, **=, m ) S (tt-s)m,!
Z.E m,=m 1 P 0 1
=17
sL(s) + (p-1)ps  L(s) my
¢ =
1+ (p-D)p,
P sT'L(s) - p s "L(s) m,
T m! ¢ T ) 3 ds
j=2 0
~ v » 1+ (p-Dp, my
=2 b clm,, ***, m )" m! G—FF—)
2P m.=m 1 P 1" "1+ (p 1)90

P l-p, m, tT _
I m! (—) 3 [ (tt-s)s ™L(s)"ds

T e A

where
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2 1

¢ = T (Z=am

m,=m

P
RS

J

On the other hand,

o 2 tT
Var Rt(T) =2 I T c(nl, ceee,n ) S (tT-s)
n=mt+l ijlnj=n P 0

at ES * (-Dos)\ "1 f

r(s) - p(s) e
1 T+ (p—l)po ; nj! ( 1= % ) ds.

2

For any nl, e, np with ijlnj 2 mtl, there exist ql, tee, q

p
1 es e < z P = .
depending on nl, N np such that qj < nj, j=lqj mt+1l Then
= 2 tT
Var Rt(‘r) <2z z c(nl, cee.n ) f (tt-s)
n=m+1 ijlnj=n P 0

r(s) + (p-Lo(e)y 1 || x(e) - 0(e), Yy o
!

n,! (

1 1+ (p-1)p, i=2 1= 0,

o 2 1+ (p-Lp, q;
N2 z z c(n,, ***, n_) n N G )

n=mt+l Z,p n.=n 1 P 11+ 0 l)DO
=17

P 1-p_q. tT -

T oot G 31 (e1-s)s” @D )™ 4

j=2 3 o 0

Note that the Parseval identity gives us

©

z z c(n,, ***, n)
n=0 Z_E n.=n 1 P 3
=173

P
=/  f(x;, ***, x) I
&P 1 L
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Hence for large t,

(2.7) Var Rt(T) = o(Var It(T)),

which together with (2.6) gives us

Var Kt(T) n Var It(T).
Thus the left hand side of (2.5) turns out to be

lim {Var It(l)}-l E[Kt(T) - K (D) - It(T)I2

troo

= 1im {Var It(l)}_l ERC(T)Z =0

£

by (2.7). The proof of the proposition is thus complete.

The limiting distribution in the theorem is determined by the

following lemma.

Lemma g. Suppose that (1.1) and (1.2) are satisfied with O<o<1/2

tT P
J (t) =S Y ¢, H (Y.(s)) ds, Te [0, ).
€ 0 j=1 321

Then as t + =
{var Jt(l)}'1/2 I.(D)

converges weakly in the space C[0, ) to A(t) defined in (1.4).

Proof. Let
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Since {Yj(t)}, j
Var Jt(l)
We have

Var Jt(l)

and for j 2, oo

Var Ji(l)

Hence

j et
RN AACHE

VT e T,

- 11 -

=19 ...’ p’

1, *++, p, are independent, then
P .
T c.2 Var Ji(l).

j=1
t t

fo fo EHZ(Yl(“))HZ(Yl(V)) dudv

2

r(u-v) + (p—l)o(u-V)) 4

1+ (p-l)oo

t t
25 7«
0 0

t 2
_oy(X(s) + (p=1)p(s)
4 fo (t=s) ( T+ (P-l)po ) ds

1+ (p-D)p, 2

4 2-2q.

(1-2a) (2-2a) (l + (P-l)po)

t t
fo fo EHZ(Yj(u))Hz(Yj(y)) dudv

t t (u-v) - -v) 2
27 f (r u: vl =2 u-v ) dudv
0 0 0

£ ( 2
b1 (ems) EELZ R0 g
0
1-p, 2

4 tZ—ZQL(t)Z_

T e [0, =).

udv

L(t)2
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}_1/2 o L+ (p-Dp, 2 p 5 1-0,, 2}-—1/2

{Var I J (1) v {cl (if;ffsjiyag) + I e, ('—";?

1+ (P_l)pw 1
{ey € ) (Var T, (1)}

-1/2 Jl
1+ (P'l)po t

(1)

P 1-p . i
[+ J -1/2 J
+ 52 cj(l_po){Var L} J (0}

J

By the non-central limit theorem ([2], [6]), under our conditioms,

-1/2

{Var J-Z(l)} J‘Z(T) 2 Zj(r), T € [0, )

in the sense of weak convergence in the space C[0, ). Since

{Ji(r), T € [0, ©)} are independent, the proof of the lemma is complete.

Now, to prove the theorem, we have to calculate (2.4) for
b=l vos v)' | Ty, =+, v)' € D}
l’ 3 p 1’ ’ p ’
where T and D are defined in (2.2) and (1.3), respectively. Since

T—l

(Sij)l;i,j;p’

where

1+ (P“l)po
s; ;= ———» 1zt
p
V1 - g
S.., T T_—— » Z;J;P, lél;j’

N AGED
(i_l) vl - po

s,, = , 2<ix<p,
. /(-1

A
o
B
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then

y.2 < 1}.
=21

P
~ 2
= ese ' - -
D= {(v;5 > Y | A+ (-Dpyy;” + 1 oo)jE
Obviously,

c(nl, LN np) =0

1

with respect to each axis. Also,

for any nl, e, np with n, + *** + np =1, since D is symmetric

c(nl, see, np) =0

for any n,, ***, n with n, + *+ + n_ =2 such that n, <1 for
1 P P i=

1
all j.
Note that
a
I H,(3)e(y)dy = - 2ad(a),
-a
and put

2
. 1- (1—p0)zi£2yj 1/2
o= C!(yz’ *ecy }'p) = { 1+ (P‘l)po .

Then the standard calculation gives us

€(2,0,5+,0) = F freef Hy(y)e(y(yy) +0(y )y dy,"=dy,
D
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= - Tl @00, by vy dy, <O,

where

P
A= {(y,, **-, ! z
(v, yp) | E

-1
y.2 < (l-po) 1.
=23 =

Further put

for]
1

=By, Y35 Iy 77 yp)

-1 2 P, 12
= (a7t - are-DeYy, T - Iy,
3=3

then we have

C(O,Z,0,0,"',O) = = f"'f B¢(B)¢(yl)¢(}’3)¢(}74).'.¢(yp)
B

cee <
dyldy3dy4 dyp 0

where

B = {(yl’Y3,Y4s'..’yp)' |

| v
™
o

N
-
-

(-0 7 01 - re-Dpgdy,”1 2

and

C(092909...30) = C(0,0,Z,O,"’,O) = " C(OSO!...’O’Z)'

Therefore the Hermite rank of f(yl, cee, yp) = I[(Yl,“',yP)' ¢ D] is

If we determine {cj} in the theorem by Cj = c(nl,"',np), where
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nj = 2, n, = 0 for i # j, then Proposition 1 and Lemma 2 prove the
finite dimensional convergence of At(T) to A(T).

It remains to prove the tightness of {At(T)’ T¢ [0, ®)}. We have,

for 0 < Tl < 12

2
(2.8) E[a (ty) = b (1]

-1 th 2
= {VarM(t)} ~ E|S (I[X(s) € D] - EI[X(s) € D]) ds]| .

tTl

Since the Hermite rank of f(xl,°~-,xp) = I[(xl,--'xp)' ¢ D] is 2 in

our case, as in the proof of Proposition 1, we have

(2.9)  VarM(t) ~ ceZ 2% ()2
and
th 2
(2.10) E|S (1[X(s) € D] - EI[X(s) ¢ D]) ds|
tT
1
t(t,~1,)
<const.xf 2 Y (e(t,m1y) - 9)sTM(s) ds
0

2-2 2
const. X{t(TZ—Tl)} 0"L(t('cz—‘rl)) .
It follows from (2.8)-(2.10) that
2 1+y
E[a (1) = A (1|7 < const. x (Ty-T )7,

where y =1 - 20 > 0, and hence the tightness of {At(T)} follows from

the well-known criterion.
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