Research Report

KSTS/RR-85/003
9 Feb., 1985

Novel Parallel Implementation of
(condition)/(while do loop)
Expressions using Petri Net
Models
by
Jayantha Herath, Hideo Mizuba, Nobuo Saito,
Kenji Toda, Yoshinori Yamaguchi, Toshitsugu Yuba

J. Herath, H. Mizuba, and N. Saito
Department of Mathematics, Keio University
K. Toda, Y. Yamaguchi, and T. Yuba

Electrotechnical Laboratory

Department of Mathematics
Faculty of Science and Technology

Keio University

©1985 KSTS
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan

KSTS/RR-85/003
Februrary 9, 1985

NOVEL PARALLEL IMPLEMENTATION OF
(CONDITION)/(WHILE DO LOOP)

EXPRESSIONS USING PETRI NET
MODELS

Jayantha HERATH?*, Hideo MIZUBA*, Nobuo SAITO*,
Kenji TODA, Yoshinori YAMAGUCHI, Toshitsugu YUBA

Department of Mathematics, Keio University, Yokohama, JAPAN
Electrotechnical Laboratory, 1-1-4, Umesono, Sakuramua,
Niiharigun, Ibaraki, 305, Japan.

ABSTRACT

This paper first describes Petri nets and their application in distributed and
parallel processes. The modelling of computer programs using Petri nets is
then discussed. The implementation of conditional operations and while-do
loop operations using Petri nets and the shortcomings of the implementation
are discussed in detail. A mew simple and powerful parallel implementation
for conditional operations and while- do loop operations is introduced, and
its effectiveness is evaluated. The applications of this new interpretation are

described.

1 Introduction

The Petri net, a parallel low graph, was introduced in (1]. It is a simple,
natural and powerful method of describing the information flow control of asyn-
chronous parallel or distributed systems. This makes the Petri net an excellent
working tool for such systems. A Petri net graph models the static properties
of a system, and the dynamic properties result by executing the graph. It can
be considered as a collection of transitions, places and arcs. Arcs connect the
transitions and places, and are used as paths to transfer information between
places and transitions. Places can be regarded as the temporary storages to
store the tokens which are processed by transitions.

When all the input tokens of a transition are available, the transition is
fired. Firable transitions are selected non-deterministically and are fired asyn-
chronously. The Petri net execution is controlled by token distribution (called
marking). A fired transition generates new output tokens and transfers them
to the output places.

Petri nets are powered by handling constraints, exclusive OR transitions,
switches, inhibitor arcs and time. Petri nets have been extensively used because
of their capability of clearly describing concurrency, conflicts and synchroniza-
tion of processes. The Petri net has been widely used to model various general

KSTS/RR-85/003
Februrary 9, 1985

properties of concurrent, distributed and asynchronous processes. Concurrent
or distributed processing system specifications can be described clearly by us-
ing Petri nets. Petri net is used to model various kinds of asynchronous parallel
or distributed system models such as concurrent computing systems. Original
Petri nets were used to represent the logical behaviour of systems and were often
used to model von Neumann computing systems. One of the major recent appli-
cations of the Petri net concept is modeling new generation computing systems
such as dataflow and demandflow computers.

This paper considers modelling computer programs using Petri nets. Se-
quential and parallel computer programs can be modelled using Petri nets. This
paper first briefly describes existing conditional and while-do loop expressions
using Petri nets, and the necessity to introduce new Petri net mechanisms to
represent conditional and while-do loop expressions. This paper describes a new
parallel implementation of condition and while-do loop operations using Petri
nets. Finally the effectiveness is evaluated.

2 Modelling computer programs using Petri nets

We can model computer programs, sequential and parallel programs with
Petri nets. A statements in a computer program is an action to be performed.
Actions can be represented using transitions in a Petri net. The result of a state-
ment execution is the intermediate state between statements. This intermediate
state can be represented by places in the Petri net. The results of statement
execution can be stored temporarily in places. These results control the follow-
ing transitions to be executed. Any computer program can be represented by a
combination of

1. structured sequence of sequential statements
2. structured parallel statements

3. structured conditional statements

4. structured loop statements

A sequential program can be represented using 1, 3 and 4 above. Parallel pro-
grams use any combination of the above four types of statements to represent the
parallel model of the computer program. A concurrent program is a collection of
expressions constructed from assignments and quantifier free formulas by means
of program connections. Composition or sequence of sequential statements, is
represented by begin ... end program connective. Branching,is obtained by
means of IF ... THEN ... ELSE ... conditional expressions program connective
or WHILE ... DO iterative program connective. Parallel execution is obtained
by means of Cobegin ... Coend connective.

KSTS/RR-85/003
Februrary 9, 1985

Bipartite graph representation can be used to show the possible flow of
control. The nodes of the graph are partitioned onto two sets. The set of places,
circles in figures, and the set of transitions, boxes infigures. The edges of the
graph connect nodes of two different kinds never of the same one. Each diagram
has an input and an output. Boxes may contain assignment instructions or open

formulas.
S1 S1
S2 S2
[l 1
1 1
I 1
Sn Sn
Fig. 1 (a) Flowgraph Fig. 1(b) Petrinet
Fig. 1 Sequential statements
) o Q)
0 o
Fig. 2(a) Flowchart Fig. 2(b) Petrinet

Fig. 2 Concurrent statements

Fig. 1(a) shows the flowchart of the execution of ordered sequential state-
ments S1, S2, ... Sn. The Petri net representation is shown in Fig. 1(b).

KSTS/RR-85/003
Februrary 9, 1985

Fig. 2(a) and Fig. 2(b) show the flowchart and Petrinet representations of the
execution of concurrent statements S1, S2, ... Sn.

2.1 Conditional Operations
General conditional expression in computer programming can be written as:

IF (condition) THEN statement‘A’, statement‘B’, ... ELSE statement‘a’,

statement‘b’, ...

l

!

A
,—/// \‘\\2’

T 3 Cc.T C.F
S1 S2 St S2
Fig. 3(a) Flowchart Fig.3(b) Petrinet

Fig. 3 Conditional operation representation

Fig. 3(a) shows conditional expression representations using flowchart. In
conditional statement implementation, input consists of a single control arc with
a single data token conneted to the statement. The branching of the statements
to be executed starts here. There are two labelled output arcs, one going to
the then statement and one going to the else statement. The evaluation of the
boolean condition forces the correct set of statements to execute.

In Fig. 3(b) the Petri net configuration of conditional expression represen-
tation, a place node is used to represent a conditional expression. Basically,
the conditional expression is an action to be performed, and therefore a condi-
tional operation must be represented as a transition in a Petri net. The existing
conditional expression is a sequential interpretation of two OR PARALLEL
concurrent actions. Therefore, in concurrent systems we can use the concurrent
interpretation. This can be expressed simply as

CONDITION = (POSITIVE CONDITION) OR (NEGATIVE CONDITION)

KSTS/RR-85/003
Februrary 9, 1985

One statement gives the positive state of the condition expression and the
other statement gives the negative state of the condition operation. This clearly
distinguishes the statements to be executed after satisfying the condition. The
new interpretation can be used to interpret conditional expressions in parallel
programming as

IF (Condition operation) THEN statement‘A’, statement‘B’,

IF (NOT Condition operation) THEN statement‘a’, statement‘b’,

We can rewrite the flowchart representation and Petri net representation
according to the new definition as shown in Fig. 4. It can be seen that no join

or merge operation is performed at the end of conditional expression execution.

/0

Positive Operation Negative operation

0 L

Fig. 4 Novel implementation of condition operations

Execution of a condition operation now needs two input tokens for both
positive and negative operations. The input data token will only satisfy either of
the operations. If the data satisfies the positive condition, the set of statements
satisfied by this positive condition are executed. If the data satisfies the negative
condition, the batch of statements to be executed thereafter will be executed.
The conditional expression is represented as actions or transitions in the Petri
net scheme. Here the execution of both OR combined operations gives TRUE
boolean value output when the operation is TRUE. No False output is given.
The parallel execution of two operations increase the speed of parallel programs
and expresses the programs clearly. An advanced version of this combined
operation is applied in dataflow computing medels. Here no boolean output is
given as the result of an operation execution. If the condition is satisfied the
input data is given as the result of execution, and no output is given if it does
not satisfy the condition.

KSTS/RR-85/003
Februrary 9, 1985

2.2 While Do Loop expressions

General WHILE DO LOOP expression in computer programming can be
written as

WHILE(expression)

LOOP (DO statement‘A’, statement‘B’, ...)

In while-do loop implementation, the control arc to the while statement gives

_l

the boolean value output.

C,
v C.T
]
&
e
Fig. 5(a) Flowchart Fig. 5(b) Petrinet

Fig. 5 Loop While do -iteration representation

Execution of the while expression can also be divided into two OR parallel,
concurrent actions as in the case of condition expressions.

WHILE (EXPRESSION) = (WHILE POSITIVE EXPRESSION) OR (WHILE
NEGATIVE EXPRESSION)

Fig. 6 shows the new interpretation of flowcharts and Petri net models
shown in Fig. 5. WHILE (Condition operation) LOOP (DO statement‘A’,

statement‘B’,) .
WHILE (NOT Condition operation)LOOP (DO statement‘a’, statement‘b’,
e Q—
- =
r Positive Operation } | Negative operation [
1 Y i :
i %)
S1 S2
t

Fig. 6 Novel implementation of While Loop operations

KSTS/RR-85/003
Februrary 9, 1985

3 Evaluation of NOT(OPERATION)

L
S1 S1; q:= 0 r:= x;
false
C1i C1; while =r>=y;
TUe

s2 \'/ S$2; loop q:= q+l; r:=r-y;

Fig. 7(a) Flowchart

Positive C1| | Negative C1
i

[

52
 SS——
Fig. 7(b) Novel Petrinet representation
Fig. 7 Division by subtraction

—_——

The NOT(OPERATION) described above is simple. This results in a new,
powerful Petri net representation for computer program modelling. The new im-
plementation gives either of the boolean value results if the condition is satisfied,
and this result is used to execute the statements in the corresponding branch
of the computer program. Fig. 7 shows division by repeater subtraction.

An advanced version which gives the input value of the condition operation
if the condition is satisfied as the result of an execution is used in dataflow
models. The results obtained are briefly described in the following subsection.

3.1 Applications

We have implemented this control mechanism in dataflow computing system
simulating models to represent condition operations with NOT(O PERATIONS).
Results showed that this implementation helped to double the speed of dataflow

KSTS/RR-85/003
Februrary 9, 1985

computing and reduce garbage collected. This new interpretation resulted in
a very simple, high speed unification control mechanism to implement logic
programming such as Prolog in dataflow schemes.

4 Conclusions

Computer program modelling using Petri nets was discussed, and novel
mechanism of representing conditional and while do operation in modelling us-
ing Petri nets was presented. The new interpretation clearly distinguishes the
transitions from places in Petri net models. This increased the parallelism in
concurrent systems. An advanced version of the interpretation which gives data
value output as the result of a conditional operation instead of boolean value out-
put was introduced. The results obtained by applying this new interpretation
in dataflow computing environment was briefly described. This implementa-
tion increased the efficiency of dataflow parallel computing environments. The
implementation increased the efficiency of parallel computing.

References

1. C. Petri; Fundamentals of a Theory of Asynchronous information flow, In-
formation Processing 62, Proceeedings of the 1962 IFIP COngress, North
Holland, 386-390, August 1962.

2. George W. Cherry; Parallel Programming in ANSI Standard Ada Reston
Publishing Company, 1984

3. Jayantha Herath; Performance evaluation of a data-driven machine using
a software simulator, Masters Thesis, Univ. of Electrocommunications,
Tokyo, Japan, (March 1984).

4. Jayantha Herath, Hideyo Mizuba, Saito Nobuo, Kenji Toda, Yoshinori
Yamaguchi, Toshitsugu Yuba; Not(operation): An efficient unification
control mechanism to implement prolog languages in dataflow computing
systems, to be published.

5. Jayantha Herath, Saito Nobuo, Kenji Toda, Yoshinori Yamaguchi, Toshit-
sugu Yuba; Not(operation): To reduce remaining packet garbage collected
in dataflow computing systems, to be published.

6. Jayantha Herath, Saito Nobuo, Kenji Toda, Yoshinari Yamaguchi, Toshit-
sugi Yuba, Not(operation): A solution to matching bottleneck problem in
dataflow machines, to be published.

