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é‘ Introduction

Let {Xi}i:O be a sequence of independent and identically distributed

(i.i.d.) random variables with common distribution function F(x) belonging

to the domain of attraction of a stable law with index a, 0 < a 2.

lin

Let {ci(k)}i:O, A > 0, be a set of nonnegative numbers. In this paper,
We shall study functional limit theorems for weighted sums Zi:O ci(A)Xi,
especially, for {ci(k)}, the weights concernig the classical summability
methods such as Cesiro, Abel, Borel and Euler (for which see, for example,
Hardy({71).

The Cesiro sum of {Xi} is, of course, one of the main topics in
probability theory and the Abel sum, which is often called the discounted

2 .
] < ©». In comparison

sum, has also been well studied at least when E[Xl
to them, the Borel and Euler sums are less studied, but there are some
references in several situations, (for example, the almost sure comnvergence
is investigated in [3], [4]; {10], and the central limit problem in [6]).
Shukri[13] studied the general weights {ci(k)} and gave conditions
on {ci(l)} for the validity of the stable limit theorem and its local
version. Embrechts and Maejima({6] considered the rate of convergence in
the central limit theorem under higher moment conditions. Furthermore
Omey{1l] proved the stable limit theorem for the Abel sum. As far as
the authors know, functional limit theorems have been studied only for
the Cesiro sum (the ordinary partial sum), and our main concern in this
paper is for other weighted sums.
Recently, the idea of using the convergence of point processes to
prove functional limit theorems has successfully been developed by Durrett
and Resnick[5] and Kasahara and Watanabe[9]. The validity of our main

theorems is based on some recent results by Kasahara and Watanabe[9].
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In section 2, we give some preliminary results, and in sections 3 and
4, we study the general weighted sums. Functional limit theorems for the
Abel sum are given in section 5, and the Borel and Euler sums are considered
in section 6. Some additional comments are given in section 7.
We finally remark that although we treat only independent random
variables in this paper, the same idea allows us to study some cases of

dependent random variables.
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In this section, we shall give some preliminary results on random
variables belonging to the domain of attraction of a stable law. What we
are going to mention in this section should be well known, but we believe
it worthwhile to restate them for understanding the following sectioms.

In order that F(x) belongs to the domain of attraction of a stable
law with index @, 0 < a <2, it is necessary and sufficient that there
exists a regularly varying function Y(A) of degree 1/a such that as

A+ o when o # 2,

ML - F(POO®} »cx %, x>0,

(2.1) @) ~C x| ™%, x <0,

c,>20, ¢ 20, "c_+cC_>0,

and when a = 2,

M1 - F(P(x)}+0, x>0,

(2.2) AF(P(V)x) + 0, x <0,

M X2FPOOR - 0 xdF@OxN 2} o (> 0).

Il <t [l

In what follows, we set

aC+I(x>0)x-a-ldx + aC_I(x<0)lx|_a—ldx, if o # 2,

v(dx) =
0, if a= 2,

where I(+) is an indicator function, and let N(dudx) be a Poisson
random measure on (0, ©)xX(R\ {0}) with intensity measure duv(dx) when

o # 2. In case a = 2, we consider a standard Brownian motion B(t) with
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B(0) = 0 a.s. instead of N(dudx).

We note that if we let

v, (dx) = MF(f(N)x),

then (2.1) is written as

\)A(dx) -+ v(dx)
in the vague topology on [~», «]\{0}, and

s xz\)}\(dx) - % 4 xv)\(dx))z + 1 x%u(ax)
lxl;a |xl<a x|za

for any a > 0. (2.2) is also written as
\;v)‘(dx) + 0 vaguely on [-», «]\{0}
2

2 1 2
) x v, (dx) - 7 (S xv,(dx))" »~ 0o,
x|t Pkl ?

It is easily seen that if 0 < a < B,

s !xIB\))\(dx) > [ [x{s\)(dx)

|x|<a x|<a

for any a >0, and if 0 < B < a,

i) leB\))\(dx) - [ |x|B\)(dx)

|x|2a |x]22

for any a > O.

Let
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sS(ey = 5,00 - Bl ay (o),

where [u] denotes the integral part of u and

(2.3) ak(G) = A xdF(f(M)x), § >0,

|x|<8
and let

t+ t+ -

s I I xN(dudx) + S S xN(dudx) ,
z%t) = { 0 |[x|>8 0 |x|z8

UB(t), if o= 2,

where

§(dudx) = N(dudx) - N(dudx),

f(dudx) being EN(dudx) = duv(dx) .

The following is the well-known result by Skorohod(14].

Proposition 2.1 ([14D). As A ~>=,

8,9 .8
S)\(t) j>1 z7(t),

B )
where fl denotes the weak convergence 33_J1-togologz.

The convergence of Sk(t) itself is reduced to that of

0<a<1l, we always have ~

(2.4) a)\(cS) =/ xv(dx) .
|x|28

if a # 2,

aX(G). When
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When 1 < a <2, if we assume ff;de(x) = 0, then

(2.5) ax(d) = =Af xdF(P(M)x) + =S xv(dx).
. |x]>8 |x|>8

When o = 1, we cannot get anything automatically. In what follows,

we sometime assume the following.

Assumption (A). When 1 <a <2, f:sxdF(x) =0. When a=1, C, =¢C

and ak(l) +0 as A=+ =,

Throughout this paper, we define Z(t) by

t+
S [xN(dudx), if 0 <a <1,
0
t+ t+ .
(2.6) S I xN(dudx) + S [ xN(dudx), if a =1,
0 |x|>8 0 |[x|<s
t+ t . t+ .
2.7) S J xN(dudx) - f [ xN(dudx) + S S xN(dudx),
0 |x|>§ 0 |x|>8 0 [x|<s

Cif 1l <a <2
and

oB(t), if a= 2.
Remark. In (2.7), the integral does not depend on choosing § > 0, and
it can be expressed as

t+ -
lim S S xN(dudx).
a» 0 le:g

If we assume assumption (A), the same is true for the case o = 1.
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We then have from Proposition 2.1, (2.4) and (2.5) the following.

Proposition gg Under assumption (A), as A+

2
Sk(t) ‘?1 Z(t).
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3. Partial sums with general weights

In this section, we shall study the limit behaviour of the partial
sums with general weights as an application of a recent result by Kasahara
and Watanabe[9].

Let {fx(u)} and f(u) be measurable functions defined on (0, «),

A>0

and assume that

(B) £,(u) is uniformly bounded on any finite intervals

and

) fk(u) converges continuously to f£(u) on (0, ©) almost surely,

namely, it holds for almost all u that for any {uk} tending to u,

fk(uk) converges to f(u).

Denote

= ——-—l i
5 = om ié:)\tf)\()\)xi’
§, . 1 i

i<t
where ax(d) is the one defined in (2.3), and set
8 8
Xl(t) = Xk(t) - Ak(t)'

The following is a weighted version of Proposition 2.1.

Theorem 3.1. Suppose that assumptions (B) and (C) are satisfied. For

any § >0, if a # 2,

5 9 o+ .
Xk(t) T ) f(u)xN(dudx) + S [ f (u)xN(dudx),
1 0 |x|>6 0 |x|z8
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and if o = 2,

s, D _F
Xx(t) j*l cfof(u)dB(u).

This theorem can be proved by the same idea as in Durrett and Resnick[5],
and also it is a special case of a result in a forthcoming paper of Kasahara
and Watanabe{9], which, for the reference, we state below in the context of

independent random variables.

@

Lee &1

A > 0, be a collection of random variables which are
independent for each A > 0, and let v(dx) be a Borel measure such that
v((~», -e]U [, ®)) < » for any € > 0. Also let {g)\(“’x)}x>0" g(u,x),

and f(u,x) be measurable functions defined on (0, «)xR

{fA(u,X)}»o

such that fx(u,O) = 0. Suppose the following conditions (i)-(v) to be

satisfied:
(1) I P(E,. > x) + tv((x, )
iit Al

at continuity points x >0 of Vv and

L P(E,. < x) + tv((—=», x))
e M

at continuity points x < 0 of V.
(ii) (u,x) and f,(u,x) converges continuously to g(u,x) and £(u,x)
&\ A

almost surely with respect to duv(dx), respectively.

(iii) ln 1im I Eflg, G, & )ITUE |<e)]1 =0
10 Ao ihe MM M M

for any t > 0.
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P— i 2
(iv) lim Tim| £ {E[£,(5,E,.) “T(|&,, |<e)]
40 Mow gAr M AL Bl

- e, &, g, )1(E <0117} - he)| = 0

for some continuous function h(t).

(v) For any T > O,

T
Ir {lgCu,x)| + If(u,x)|2}duv(c1x) < o,
0 R\{0}

sup lfx(u,x)l <
0<u<T
xeR

and

lim 1lim  sup Ifk(u,x)| = 0.
€¥0 Are 0<u<T
0<x|<e

Proposition 3.2 ({9]). Under the assumptions stated above,

i i i

i<it i<ht
9 t+ .
(S 7 g(u,x)N(dudx), [ [ £ (u,x)N(dudx) + M(t) )
0 ®r\{0} 0 R~{0}

as A+® in Jl—toEology in D([0, =) -+ R? ), where N(dudx) is the

Poisson random measure with intensity measure duv(dx) and M(t) is

a continuous martingale independent of N(dudx) such that <M>(t) = h(t).

Proof of Theorem 3.1. To apply Proposition 3.2, put

gx(u,x) = fA(u)xI(|x|>6),
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g(u,x) = f(u)xI(lx|>6),
£, (u,x) = £, (WxI(|x]296),

£(u,x) = £(u)xI(]|x|<8)

and

1

ST oVt

Then we can rewrite

8 é
Xo(t) = X, (£) = AJ()

X
L (G i -7 xdF(P(\)x) }
i<t AR ?(A) | x| <6 d

z £ G 1(lg,, >
i<At AN AL Xll

+ I £ (DLE, (g, O - ELE, ()01}
i<At

L g 5+ L {f G, & - E(f, &, g 01
lthx S P R Az X oM

to which Proposition 3.2 can be applied. O
Under assumption (A), we obtain the comnvergence of Xk(t) itself as
follows. Define

t
A(e) = S £(u)dZ(u)
0

by
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t+
S [ £(u)xN(dudx), if 0 < a < 1,
0 R
t+ t+ .
S r f(u)xN(dudx) + / [ £ (u)xN(dudx), if a =1,
0 |x|>8 0 |x|<8
t+ t R
IS 7 f(u)xN(dudx) - f [ £ (u) xN(dudx)
0 |x|>68 0 |x{>6
t+ -
+/ J f(u)xN(dudx), if 1 <a < 2,
0 |x|<s8
t
of £(u)dB(u), if a = 2.
0

Theorem 3.3. Under assumptions (A), (B) and (C),

K9
Xk(t) J+ A(e).
1

Proof. Because of Theorem 3.1, it is enough to calculate the limit of
Ag(t). In the form of Ai(t) in (3.1), ak(é) has the limit under
assumptions (A), which is:
S xv(dx), if 0<ac<1l, (by (2.4)),
|x[<6

-f xv(dx), if 1 <a < 2, (by(2.5)),
|x|>8

o, if a=1 or 2.

. . . 1 i .
Hence it remains to calculate the limit of >\Zi;)\':fx()\). However, it
follows from assumptions (B) and (C) that
. ([Ae]+1) /X t
% NG f)\([xxu])du > [ £(u)du
i<it 0 0
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as )\ -+ «. Hence
t ~
I r f (u)xN(dudx), if 0<a <1,
0 |x|<8
1 § _
im Al(t) = t R
Ao -I7J f(u)xN(dudx), if 1< a < 2,
0 |x|>6

0, if a=1 or 2,

and in fact, this convergence is uniform on any bounded interval of t.

This together with Theorem 3.1 implies the theorem.

We conclude this section with mentioning convergence of the joint
distribution of Sg (SA) and Xi (Xk)' Since the statements are similar,
we state only the case of (Sk’ XA).

Theorem 3.4. Under assumptions (A), (B) and (C),

t
(5,(0), X)) "?1 C2(e), J E@dzw ).

Proof. The proof of the finite-dimensional convergence is reduced to
that of Theorem 3.3, by the use of the Cramér-Wold device. The tightness
is also reduced to that of the process considered inATheorem 3.3, because
the tightness of (Sk(t)’ Xk(t)) is equivalent to that of any linear
combination of components, (see Appendix (A.26) and (A.28) in Holley and

Stroock(8]1). O

The point we want to emphasize in this theorem is that the limit of

X, (t) is a functional of the limit of S, (t).
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4. Infinite sums with general weights

In this section, we shall study the infinite sums with general weights.
In addition to assumptions on {fl(u)}x>0 stated in the previous section,

we further assume that

8

(D) S“PlfA(U)I <
u>l
A>0

and
(E) there exists Y > é -1 when 0 <a<l or Y20 when 1<azg 2
such that
@1 sup £ |5, AL W < -
A1

It is easiliy verified that (4.1) is equivalent to

(4.2) sup —o7

Lemma i.;. Under assumption (E), there exists B, 0 < g8 <a, such that

.3 sw 71e, Al 1Py < e
1

Proof. When 1 < a < 2, (4.3) is true with g =1 < a. When 0<ax<l,
take B in such a way that (*{-i-l).l < B < o, which is possible because
(Y+l)‘l < . Then, for any function g(u) > 0, we have by the Holder

inequality that

I g(u)sdu =/ (g(u)uY)Bu-YBdu
1 1
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f glu)uVau) B o YR/ (178 44y 1B
1 1

hA

const.x(S g(u)quu)B,
1

(I

which concludes the lemma. O

We now define

-]

§ _ .. 8 1 i yAeN)
A = lim XJ(t) = —— T £.() (X, - a, (6))
AT e PO o AL T A
and
8y = lim X,(t) = le)' ; f)\(§)x..
too AT | 1

The existence of almost sure limits of these two random varialbes is

assured by the following lemma.

Lemma 4.2. Under assumptions (a), (D) and (E), Ai and Ak exist almost

Proof. We first show the existence of the limit Ai. Let

A
(4.4) v, = X, 1 x| > Y00
and
A
(4.5) z, = X, 1(|%;| < 8P0)) - E[XI(|X;] < 6900)1.
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hat (¥}, Mo i
Note that Yi 4=1 and {Zi}i___l are sequences of independent and

identically distributed random variables and that
Ay
E[Zi] =0,
Var[z)‘] = E[X 2I(|x | < SP(AN] - {EIX.I(IX,]| < 5;00\)]}2
i i il = i il = :

Then we have

§ 1 i A 1 i, A
X(t) = —— I £, (DY, +=~ I £.(NzT = I () + I,(v),
A f(A i<he AL (D) i AATTL 1 2
say.
As to Iz(t),
Bz £ (2 - E[IZ}‘IZ]X; Xk
L ATATTL 1 VTR ’
i=1 i=1
where E[IZilz] < «, By assumptions (D) and (E) ((4.2)), we see that

Zi:llfk(§)l2 < ® and hence Iz(t) converges as t + @ in the sense of
mean square. Since Iz(t) is the sum of independent random variables,
Iz(t) also converges almost surely.

Next consider Il(t). Suppose 1 < a < 2. We have

(-] o
i A A i
R ENCII A Ellyy1x 2 5,1
i=1 i=1

where E[|YA|] <o since o >1 and I, |£ (i)] < o by (4.2) again.

1 i=1'"A%A
Therefore Il(t) converges almost surely, by the same reasoning as before.
Suppose 0 < a < 1. Take B chosen in (4.3). Since B < a g 1,

then we have
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T NN NBiy = re (iy(B
i i
ELCE |5, YD L BT 2 15,15
i=1 i=1
where E[IYA|B] <o and I.. | £ (-i-)[B < o by Lemma 4.1. Thus 1I,(t)
1 i=1'"AA e 1
again converges almost surely.
The almost sure convergence of A)\ is given by that of Ai shown

above and the absolute convergence of Zi:l]f)‘(i)l . O

We next define the limiting random variables

rr £(u)xN(dudx) + J [ f(u)xN(dudx), if o # 2,
Py 0 |x|>6 0 IXI;‘S
of £(u)dB(u), if o = 2.
0

The last integral is the usual Wiener integral. (Note that, under our
assumptions, £(u) 1is bounded on (0, =) and f]R |f(u)|du < o, so that

IR [f(u)lzdu < ®.) A6 in case of a # 2 1is well-defined as follows.

Lemma 4.3. Under assumptions (C), (D) and (E), for o # 2,

5 t+ t+ .
(4.6) A” = 1lim{S [ f(u)xN(dudx) + S [ f (u)xN(dudx) }
tro 0 |[x|>68 0 |x|<8

exists in probability.

Proof. The proof is carried out in the same manner as in the proof of
the previous lemma.
We first consider the second integral on the right hand side of

(4.6). We have
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. T 2
E(( [ f(u)xN(dudx)) "1 =S £(u) duxf x“v(dx) < =,
1 |x|>8 1 |x|<8
and thus
t+ -
lim S [ f (u)xN(dudx)

o 0 |x[<8

exists in probability.
The first integral on the right hand side of (4.6) is treated as

follows. If 1< a < 2,

ELS S [£(u) | |x[N(dudx)] = S |£(u)|duxf [x[v(dx) < o.
1 |x|>8 1 [x]>

In case 0 <a <1, if we take B in (4.3), then we have

E(|S S f(u)xN(dudx)lB] <ElS S |f(u)|3|x{BN(dudx)]
1 |x|>8 1 |x|>6

= [ if(u)'Bdqu |x|8v(dx) < o,
1 |x]|>8

wheré we have used fi]f(u)lsdu < © by Lemma 4,1. 1In any case,

f;+flx|>6f(u)xN(dudx) converges in probability as t + . O

The proofs of Lemma 4.2 and 4.3 also verify the following.

Lemma i'i' Under assumptions (A)-(E),

® t
A= [ f()dZ(u) = lim S £(u)dZ(u)
0 t>o 0
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exists in probability.

Under the above preliminaries, we easily see the following.

Theozgg 4.1. Under assumptions (B)-(E), as A >

(o8, S, Bwo

in R xp([0, =) - R). If we further assume (A), then

( 855 Sx(t) ) 5‘?( A, zZ(t) )

in RxD([0, ©) + R), namely,

R N | g 7
(2 tedx, o= £ %)% (ff@dzw, 2z ).
O A R T 0

Corollary 4.2. Suppose {fl}t(u)})&O’ {fk(u)}, k=1, 2, -+, d, satisfy

assumptions (B)-(E). Then under assumption (A), as A +» @

o

1 1

11
Cooy 2 H®% 7 ko

o~ 8

d i
lf)\(x)xi )

> ( f £rydz), -, [ £2wdz ).
0 0
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([1%]
3
=
o

In this section, we apply the results given in the previous section

to the Abel sum. Let

(5-1) f)\(u) f)\(u, Y t) u'e ’ Y > 2 t > 0.

The case Y = 0 1is the ordinary Abel weight. Set

- _ 1 T iy -ti/A
(5.2) 4y =4, (r,t) = [7e8) i—EO()‘) e X,

and

<«
§ _ .6 -1 iy -ti/A )
Ay = Ax(y,t) 7oy E ()\)e (Xi X a)\(é)),
i=0
where a)\(é) is the same one as in the previous sections.
In the rest part of this paper, we always assume assumption (A) for
simplicity. However, of course, the problems without this assumption can

be treated in the same manner as we did in the previous sections.

zheorgg 2; Under assumption (A), _:-E A > o

1 c i vy -ti/A ® ¥ ~tu
—— I (P'e X, [ u'e dZ(u)
PO =t 17

in the sense of convergence of joint distributions with respect to any

finite number of Yy > - ]i' and t > 0.

Proof. When Y > 0, since it can be easily checked that f)‘(u) in

(5.1) satisfies assumptions (B)-(E), Corollary 4.2 gives us the
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statement of the theorem. When - % <y < 0, although fk(u) is
unbounded around 0, the assertion is also giver by the standard
argument (cf. Theorem 4.2 in [1]). OO

Remark. If we replace e-l/A by 2z in (5.2), we get the ordinary
expression of the Abel sum and obtain that under assumption (A), as

z + 1-0,

-y 2 i 2y -
Sl—%l— z intIXi + [ ule tudZ(u)
?(E) i=0 0

in the same sense as in Theorem 5.1.

We next fix vy > - % and regard AK(Y,C) and Ai(Y,t) as processes

of t > 0. The following theorem on the weak convergence of

{Ax(y,t), t> O}k>0 is one of our main results in this paper.

Theorem 5.2. Fix vy > - % and € > 0 arbitrarily. Then AA(Y:t) and

8 . . .
AA(Y’t) are tight in C([e, ®)) as processes of t > 0. In particular,

if we assume (A), then as A >

{Ax(y,t), t >0}~ {r uYe-tudZ(u), t > 0}
0

in c([e, =)).

This theorem extremely extends a result of Omey[ll]. For proving
the theorem, we need a lemma. Although we think that this lemma should
be known, we cannot find the explicit proof in the literature. So, we

give its proof below.
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Lemma 5.1. Suppose that {Xn(t), t € [0, l]}n>0 are monotone in ¢,

X(t), te [0, 11} i i .S. h,
{X(t) [ 1} is continuous a.s. and that X (t) converges as

n +o to X(t) in the sense of all finite-dimensional distributions.

Then Xn(t) converges to X(t) weakly in D([0, 1] - R).

Proof. By Theorem 15.5 in Billingsley[1l], it suffices to check that

(i) for any n > 0, there exists a > 0 such that

P(|x_(0)| >a) ¢n, n21,

and
(ii) for any € > 0 and n > 0, there exist § with 0 < § <1 and

n0 such that

P( sup XK (8) -X ()] 2€) <n, =n2m,.
0<s<t<l "
|s-ci<s
Since (i) is obvious, we need only to show (ii). Without loss of
generality, we assume that Xn(t) is nondecreasing in t for each n.

By the pathwise continuity of X(t), for any € >0 and n > 0, there

exists a division of [0, 1]: O = t0 < tl < see < td = 1 such that

[ S]]

(5.3) P( max |X(t,) - X(t, )] > 5 <
¥é¥§9l i i-1 I = 2/ =

Hence it follows from the finite-dimensional convergence of {Xn(t)}

and (5.3) that there exists an n, such that for all =n > ns

€
(5.4) P(lx:.i::dlxn(ti) =X (e, D23 <

i - >
l§i<d(ti ti—l) 0, and take s and t such that
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0<s<t<l and t=-s <d. Then if s¢ [ti, t.. .) for some i,

i+l

then t € [ti, By the assumption that Xn(t) is nondecreasing

ti2) "

in t, we have

(5.5) 02X (t) - X (s) £ X (c,,0) - X ()

A

2 max |X (t)) - X (£, _)].
1<i<d n' i n i-1

Consequently by (5.4) and (5.5), we have

P( sup IXn(t) - Xn(s)l > €)
0gs<t<l
t-s<§

< P( max |X (t,) - X
1<i<d n i n

v

N
A

In
3

G

for any n2>n The proof of the lemma is thus complete. O

0

Proof of Theorem 5.2. It is enough to prove the tightness of Ai. As in

(4.4) and (4.5), we let

A
Y= xil(lxil > §P(N))
and
A _ -
z; = X, I( x| < 8900 E[X,I(|X,| < 8¥ON].

We divide Ai(Y,t) into three parts:
o o zaP o +aP @ + P @,

where
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W, .1 5 Ay ~ti/A A
(2) 0y oL 5 A Y /AN
N 0 150( yle (¥; A0
and
3,0y _ 1 T Ay ~ti/A )
BT =y F R Z;

If we look at the proof of Theorem 5.1, we have

A)El)(t) >/ uYe—tuxN(dudx)
0 x>§

and

Aiz)(t) > fr uye-tuxl‘!(dudx)

0 x<-§
in the sense of convergence of all finite-dimensional diétributions.
Since A;\i)(t), i =1, 2, are monotone in t and the corresponding
limiting proﬁesses are continuous a.s., thén it follows from Lemma 5.1
that Af‘i)(t), i =1, 2, are tight in D([e, «)). Since A)(\i)(t),
i =1, 2, are continuous processes, they are also tight in C([g, «)).
To prove the tightness of A)(\3) (t:‘), let 0<g<s<t<xo We

have

el (0 - 4P n%

1

P02 1=0

r B

SR R TGl R
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Noting that

Ie—ut _ e—us < e-Eu ult—sl,

we have

e o - 4P en?

< 1 > (t—s)2 5 (%)Zy+2 e-Zsi/X E[(Zé)z].
P(\) i=0
Hence as A + =
% 5 (%)Zy+2 e—Zei/k > f u2y+2 e—2€u du <
i=0 0
and
A e@hh s EGMD - AC | sEGO)
P |xl<s |x| <8
S xzv(dx), if o # 2,
] Ixlzs
2

g, if a = 2.

Therefore we have
s 0 - o (N2 ¢ const.x(e-)?,

so that A{B)(t) is tight in C([g, »)) by Theorem 12.3 in [1]. Hence
each summand of Ai(Y,t) in (5.6) is tight in C([g, »©)) and so is

Ag(y,t) by the definition of the tightness in the space C. O

We conclude this section with the following example of fx(u) which
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is related to the Valiron sum (see, for example, [2]).

Let

£y () = £, (u; ©) = et > 0.

Thenwe have, under assumption (A), that

® 2
-1 -t(i/})
A (t) = rTon) iioe X,

converges weakly to as A +® to

(= --]

2
I e ™ xN(dudx), if O0<a <1,

Q -

o 2 © 2
Ir e ™ xN(dudx) + [ f e ™ xN(dudx), if a =1,
0 [x[>8 0 |x|<8
A(e) =
o 2 -
lim [ f ™™ xN(dudx), if l<a <2,
are 0 |x|za

© 2
of e ™ dB(u), if a =2
0

in C([g, «®)) for any € > O.
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[T

ihe Borel and Euler sum

In this section, we study the Borel and Euler sums. We start with
the "random-walk" method, (see [3]). Let '{Ei}i:l be a sequence of
independent, aperiodic, nonnegative integer valued random variables having
identical distribution. We assume throughout that El has moments of any

2
order and U = E[El], T = Var[El]. Set Nn = El + EZ + + En' We

call the weights
ci(n) = P(Nn = 1i)

the random-walk method, which is related to a large class of summability
methods including the Borel and Euler. (See also [2].) Our concern is

the limiting distribution of

A = /n L P(N =1) X,.
n 'f(/r-z) i=0 n 1

To state the theorem, we denote

I fr(u)xN(dudx), if 0<a <1,
0 -~
I fr(u)kN(dudx) +/f ft(u)xﬁ(dudx), if a =1,
0 |x|>6 0 |x|<8
A =
T 0
lim [ f fT(u)xFI(dudx), if 1<ac<2,
a+e 0 |x|§9

\cf £ (uwdB(uw), if a =2,
0 T

where
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2 2
fr(u) = 1 U /(21 )
v2mt

Our first theorem in this section is the following.

Theorem 6.1. Suppose assumption (A) to be satisfied. Under the situation

stated above, as n + »,
A > A_+ A,
n T T

where A% is an independent copy of AT.

Proof. We divide An in the form of

[nu}-1 ®
A = /o z P(Nn=i)Xi+—fL ¥ PN = 1) X
(/o) i=0 p(v/n) i=[ny]

3 ) + I,

say. We first examine Jz(n). Note that

PN =1) X,
i=[nu]

is distributed as

oo

iEOP(Nrl = [nu] + 1) Xi'

Then we have

12 i
T f ()X

Jz(n) = i°
P (v/n) i=0 Yo v/n
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where

f/_(u) = v/n B(N_ = [nu] + [vaul).

n

To apply Theorem 4.1, we have to check that £ (u) satisfies
/a

assumptions (B)-~(E). The local limit theorem for {gi} gives us that

as n *®

[vau] =
£ 2y - /o PN = [op] + {vaul)
/A /a " ’
N 1 -u“/(2t7) _ £ (u)
/2T T

uniformly in u. Hence assumptions (B)-(D) are fulfilled. Assumptiom (E)

((4.2)) can be checked as follows. Let Y > (é - 1)v 0. We have

6D —s= 1 £ D e DY
¢ ixa vava i=< /o /o /2 va
= I P = [my] + D)= <Y
i=—o n nT
N - [nu] vy
= TY E[‘._n_—.—- ]
/ot
1 -x2/2
>l — s [x[Y e * dx

on -

as n -+ o, provided that E{|El|Y] < o, (See, for example, Petrov[10],
P.103.) Therefore assumption (E) is also satisfied. It thus follows
from Theorem 4.1 that Jz(n) converges weakly to AT as n > ®,

Jl(n) can be handled similarly. In fact, it is easily verified that
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L [ou]-1 _ L © :
Iy —— "1 f bxr—L- 1 F Dx,,
P(v/n) i=0 n /o P(/n) i=0 va va
where
£ (w) = v P(N_ = [nu] - [Vaul).
/a
Since f (u) satisfies assumptions (B)-(E) as f (u), then we see
/n A
that Jl(n) also converges weakly to AT. The independence of Jl(n)
and Jz(n) concludes our statement. OJ

Stable limit theorems
n ,n, i n—-i
and Z.20 (D (1-p)" X,
Theorem 6.1. (The central

discussed in [6].)

for the Borel and Euler sums (e—AZiZO(ll/i!)Xi
respectively) are given as corollaries of

limit theorem and its rates of convergence are

Theorem 6.2. Let 0 < p < «. Then we have
: i
aloy = A e g Go) X, > A+
P ¢(/X) i=0 *°
as A +®, where T = vp.

The case p =1 1is th

Theorem 6.

3. Let 0<pc<

n
2@ =L 3
P p(/n) i=0

e ordinary Borel sum.

1. Then we have

n, i _ n-i '
({70 (1-p) X, > A+ 40
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as n > ©, where T = /p(l-p).

Theorems 6.2 and 6.3 are given from Theorem 6.1 by taking gl as
Poisson random variable with mean O < p < ® and Bernoulli random
variable with success probability 0 < p < 1, respectively.

Convergence of the joint distribution can be treated similarly.
Let {Ei} and {E;} be two sequences of random variables generating
the random-walk methods and set Nn = zi:lgi, N' = Zi:lai'

n

Theorem §.4.

(i) If E[(§,) = E(§]], thenas n>=

(6.2) (—6—— I P(N_ = 1) X., A I PN = 1) Xi)
pva) i=0 " Y ety 1=0

' '
*(AT"’AT, b 00 ),

vhere T2 = Var(g,] and ()72 = var(g;1.

(ii) If E[El] # E[Ei], -then the limits of components of (6.2) are

independent.

Remark. (1) Let us consider the functional limit of the Borel sum in

form of

w i
_/X_e-kt: ):(——?,)—X., 0 <t <o,
P/ i=0 **

4, (e)

Then, because of the statement (ii) in Theorem 6.4, Ak(t) and AA(S)

have independent limits if t # s.
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1
2) Ap(n) and A(zl(n) in Theorems 6.2 and 6.3 have dependent limits only

when p = q.

Proof of Theorem 6.4. (i) is shown by the same argument as in

the proof of Theorem 6.1, and the staement (ii) is given by noticing

that

o B £ .

z P(Nn = i) Xi N z P(Nn = 1i) Xi
i=0 [i—nu];aﬁ

as a + ® uniformly with respect to n and hence that the main

contribution from {Xi} are independent if u's are different. U

Theorem 6.5. If t # s, then

/o I P(N = i) X, and /a L P(N = i) X,
j"(/r—x) i=0 [nt] i Y(\/;l) 1=0 [ns] i

have independent limits as n > .

The proof can be carried out by the same reasoning as in that of

(ii) of Theorem 6.4.

Remark. Consider the process generated by the Euler sum:

V- Lt B P [nt]-i
r ( i )p (1-p) X;.

A (t) =
n ¢(v/a) i=0

Then An(t) and An(s) have independent limits if ¢t # s. Remark (L)

after Theorem 6.4 is also verified by using Theorem 6.5.
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7 Additional comments

In section 6, if we are interested only in the one-dimensional
stable limit theorem for random-walk ﬁlethods (Theorem 6.1), we may
directly apply a theorem due to Shukri(13], whi;:h is the following with
our notation. The underlying random variables {Xi} are the same as

before.

Proposition 7.1 ([13]). Suppose assumption (A) and ¥(A) in (2.1) has

a form of Y(A) = A]'/O"L(}\), where L(A) is slowly varying at infinity.

Let

a@ = (1 e, e ayl/a

i=0 *

If

w! cl(n) a ci(n) )
(7.1) z I L( +1 as n-~+

120 $(ML@" ) L(n)
and
(7.2) —]-'—su c.(n) + 0 as n > ®

: d(n) ip i — ’
then
1
_—d(n)L(n) Z c, (n)X

converges weakly as n *+ ® to a stable random variable with index oa.

To get our Theorem 6.1 as an application of this proposition, we have
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to check (7.1) and (7.2) for our random-walk method generated by a
sequence of random variables {Ei} as in previous. section.

However (7.1) may not be checked to be verified except the case when
L(*) is constant. In what follows, we assume that L(-) = 1.

This means that we consider the problem for {Xi} belonging to the
domain of normal attraction of a stable law. In this case, (7.1) is

automatically true, and thus it is enough to check (7.2). Note that

(7.3) sup ci(n) ~ const:.xx'l“l/2 as n > ®

1

for any random-walk method, which is given by the local limit theorem

for {Ei}:

. 2 2
(7.4)  c.(a) = PN = i) o —L— o (1mm)7/(2nT)
i n —
v2mnt
. . _ 2 _ _ ..
uniformly in i, where u = E[gl], T = Var[£1] and Nn = gl + + gn.
Hence the essential point to be checked is to estimate Z;:

Oci(n)a, and
the proof for that is implicitly included in the arguments in the previous
sections. However, as we think that this estimate may be of independent
interest and élso useful for other problems such as the convergence rates
problem, we give its proof below. For getting (7.2), it is sufficient to

1/2

show d(n)-l = o(n~'°) because of (7.3), but we can get the following

exact estimate.

Theorem l.g. Let r >0 and {ci(n)} be a random-walk method. We

assume E[]gllz] < © and further E[lEllp] < < for some p > % -1
when r > %‘ Then

o]
(7.5) z ci(n)r N const.xn(l—r)/2

i=0
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[--]

Proof. We divide I,
—_— i=0

r .
ci(n) into four parts:

izoci(n)r =3 () + Iy() + I (@) + I, (),

where for large M > 0,

[op]-{M/n]-1
z

r
Jl(n) = A ci(n) s
[ou]-1 -
Jz(n) = z c; (@7,
i={nu]-[Mva]
[au]+{M/n] .
J3(n) = z c.(n)
. 1
i={nu]
and
3, = I e (7.
i=[nul]+(M/a]+l

Jz(n) and J3(n) give main contributions and thus we first estimate

them. We have

[Mva] .
J3(n) = .Z P(Nn = {nu] + 1)
i=0
[M/al+1 .
= [ P(N_ = [op] + [u]) du
0 n

M+ 1/vn  N_ - [nu] T
0 Yat /T

dv.

It follows from the local limit theorem (7.4) that
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M 2 2
J3(n) "N n(l—r)/Z f __1__ e"V /(21' ) dv = const_Xn(l-r)/Z.
0 v2mt
Similarly,
(wv/a] ;
Jz(n) = ‘Z P(Nn = [nu] - 1)
i=1
M N - [nu] - . T
=/as p(-= =_[/nv]) dv
0 T /ot
~ const.Xn(l_r)/z.

As to Jl(n) and Ja(n), we consider two cases separately; r < 1

or r > 1. If r>1, by (7.3),

ooy [oul-M/al-1
J (@) + 3, £ {sup c; (@} ™ ( z
i i=0
+ T ) c.(m)
i={nu]+[M/n]+1
< const:.Xn(l—r)/2 P(|Nn - [oul| > (MvVal)
_ N - [nu] 2
< const.xn(l /2 (II'I)Z E[| 22— 1
/ot
N <:onst:.xn(l—r)/2 1‘
M

by the same reasoning as in (6.1). For large M, the contribution of
Jl(n) + J4(n) is smaller than Jz(n) + J3(n), and so we get (7.5).
When r <1, take § such as 0<%—l<5<p, where p = 2

We have

Wi

. 1 . . .
if r > 3 and p is the one assumed in the theorem if r <
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[ou] ;
Jym= I PO = (o] -1
i={Mva]+l o
-[M/n]-1
= I PN = [mu] +DF
i=-[nu] n
-[Mv/n]-1
< I {P@_ = [mu] +9) 11837 1778
i=—c0
_[M/E]-l r _[M&]_l l-r
<O orra =l +o 1% O3 1|78/ -0
i=—m - i=—

by the Holder inequality. Therefore we have

-[M/a]-1 N_ - [nu] . . T
Jl(n) < const.x{ z P( 22— =) |—]'—{6 (T/ﬁ)s}
i=—0 /ot Yat YAt -
% n(—1‘6+l—1:) /2
~-[WAal-1 N - [nu] . . P p-8
< con-.=n:.><n(l—r)/2 z P( 2= =) |—LI (bl;)
i=—o vaT /ot Yot

_ - N - [ou] p
< const.Xn(l r)/2 (h-],i)[J 6 £ |

" const.Xn (1-r)/2 (h—]i) p-$

Ja(n) can be handled similarly, and hence, for large M > 0, the
contributions of Ji(n) .and Ja(n) are again smaller than J2(n) + J3(n).

The proof of the theorem is thus complete. O



KSTS/RR-85/002
January 26, 1985

- 38 -

Eszsgéggsg

1. Billingsley, P. : Convergence of Probability Measures. Wiley 1968

2. Bingham, N.H. : On Valiron and circle convergence. Math. Z. égg,
273-286 (1984)

3. Bingham, N.H. and Maejima M. : Summability methods and almost sure
convergence. To appear in Z. Wahrscheinlichkeitstheorie (1985)

4, Chow, Y.S. : Delayed sums and Borel summability of independent
identically distributed random variables. Bull. Imnst. Math. Acad.
Sinica 1, 207-220 (1973)

5. Durrett, R. and Resnmick, S.I. : Functional limit theorems for dependent
random variables. Ann. Probability 8, 829-846 (1978)

6. Embrechts, P. and Maejima, M. : The central limit theorem for
summability methods of i.i.d. random variables. Z. Wahrscheinlichkeits—-
theorie 68, 191-204 (1984)

7. Hardy, G.H. Divergent Series. Oxford University Press 1967

8. Holley, R. and Stroock, D.W. : Central limit phencmena of various
interacting systems. Ann. Math. 110, 333-393 (1979)

9. Kasahara, Y. and Watanabe, S. : in preperation.

10. Lai, T.L. : Summability methods for independent identically distributed
random variables. Proc. Amer. Math. Soc. 43, 253-261 (1974)

11. Omey, E. : A limit theorem for discounted sums. Z. Wahrscheinlichkeits-
theorie 68, 49-51 (1984)

12. Petrov, V.V. : Sums of Independent Random Variables. Springer 1975

13. Shukri, E.M. : Local limit theorems for sums of weighted independent
random variables. Theory Prob. Appl. 21, 137-144 (1976)

14. Skorohod, A.V. : Limit theorems for stochastic processes with

independent increments. Theory Prob. Appl. 2, 138-171 (1957)



KSTS/RR-85/002
January 26, 1985



