Research Report

KSTS/RR-85/001
8 Jan., 1985

On the one-dimensional motion of the polytropic ideal gas
Non-fixed on the boundary
by

Takeyuki Nagasawa

Takeyuki Nagasawa

Department of Mathematics, Keio University

Department of Mathematics
Faculty of Science and Technology

Keio University

©1985 KSTS
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan



KSTS/RR-85/001

January 8, 1985

On the one-dimensional motion of the polytropic ideal gas

non-fixed on the boundary

Takeyuki NAGASAWA

Department of Mathematics, Faculty of Science and Technology,

Keio University, Yokohama 223, Japan

1. Imtroduction.

Recently, Greenberg and Li have shown the existence of the temporally global solution

of the initial-boundary value problem with boundary damping for the quasi-linear wave equa-

tion in [1]. Stimulated by their work, the author attempts to discuss some types of the

initial-boundary value problems, including boundary damping, for the equations describing

the one-dimensional motion of the polytropic ideal gas. Itis described by the following three

equations in the Lagrangian coordinate corresponding to the conservation law of mass,

momentum and energy:

eJ
cl, = ov, + k|—|,
u ),
where u is the specific volume, v is the velocity, 8 is the absolute temperature,

stress which is the function of «, 8 and v, as follows:

v
G=—R—e—+u—i,
u u

(1.1.1)
(1.1.2)

(1.1.3)

o is the

(1.2)
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R is the gas constant,  is the coefficient of viscosity, ¢ is the heat capacity at constant
volume and « is the coefficient of heat conduction. The suffix denotes the partial differen-
tiation with respect to the variable ¢ or x. In the present paper, it is assumed that
R, m,c and k are positive constants.
We shall consider the system (1.1) in the region { (x,7) € [0,1] X [0,+2) } under the
initial conditions:
u(x,0) = ug(x), v(x,0) = vo(x), 0(x,0) = 8,(x), (1.3)
and the some types of the boundary conditions. In [5] and [7], Kazhikhov and Shelukhin suc-

ceeded in solving the system (1.1) - (1.2) globally in time under the following boundary con-

ditions:
8,(0,r) = 8,(1,1) = 0, (1.4)
v(0,8) = v(1,5) = 0, - (15.0)
or (1.4) and
a(0,0) = o(1,r) = 0. (1.5.1)

The condition (1.4) implies that the gas has the adiabatic ends. (1.5.0) implies that the ends
are fixed, while (1.5.1) implies that the gas is put in a vacuum. In this paper, we shall dis-

cuss the system (1.1) - (1.3) under the boundary conditions (1.4) and (1.5.1) or

v(0,1) = o(0.1), v(1,1) = —o(1,1), (1.5.2)

or
v(0,1) = o(0.1), v(1,1) = 0, (1.5.3)

or
v(0,1) = 0(0.1), o(1,1) = 0, (1.5.4)

or
o(0,r) = 0, v(,r) = 0. (1.5.5)

The condition (1.5.2), boundary damping. implies that the ends are connected to some sort of

dash pot, and (1.5.i) (i = 3,4,5) is the combination of the conditions (1.5.7) ¢ = 0,1,2).
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From now on, the abbreviation "the problem (i)" stands for "the initial-boundary value prob-
lem for (1.1) - (1.4) and (1.5.0)" (i = 0,1, -+ - .5).

Firstly we prove the temporally global existence of a solution for the problems (2) - (5)
(Theorem 1) under suitable assumptions by the improved argument of [7] established by
Kazhikhov and Shelukhin.

Kazhikhov also showed the uniform boundedness and the stability of a solution for the
problem (0), i.e., any nonstationary solution converges to the stationary solution in some
Sobolev norm as ¢ increases with exponential rate, see [6]. For the problems (1) - (5), how-
ever, this result does not hold. We can easily construct the examples of the solution that are

not uniformly bounded with respect to ¢ . For instance,

u(x,g) =1+ % t, vix,t) = i:— x, 6(x,1) =1, (1.6)

is the solution for the problem (1) with the initial data

Uy ()= 1, vo(x) = %x, 8,(x) = 1, .7
and the specific volume u grows infinity as r increases.

From a physical point of view, it is possible that the gas is rarefied under the conditions
(1.5 (=1.2,---,5,50 u or j;l u(x,t)dx may grow infinity (the amount .{;l u(x,1)dx
means the volume of the region occupied by the gas). We will find this conjecture valid for
any solution of the problems (1) - (5) under some assumptions (Theorem 2). In the isother-

1
mal case we will get the more exact growth rate of « or _[; u(x,t)dx.

2. Notation and results

We assume that all functions considered in this paper should be defined in [0,1] or
[0,1] X [0,T7] (0 < T < +=) and continuously differentiable as many as necessary. For
non-negative integers r and s, we define

DIDS = 3775 /31 ax°,

{n = (0,1), & = [0,1],

0, =0 x (07,0 = Ax [07). 2.1)
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For a non-negative integer n and a € (0,1),

P,

lu[® = suplu(x)],
x¢ll

’u'(u) su ulx) — uix
X €, xwx’ ',X - x'|"

n
Bt = 3 |Diu|®,
im0

Hull* e = {1yl + |Druf®.

bl = sup_ju(x,0l;
(x.0)€Qr
'

ul®) = su w(x,t) — u(x',t
! LJ) (,t,l),(x',t)(pQ‘T,léx' k= x’l“ ’

. ,
wuler2) = su u(x,t) — ulx,t
bl (x,,),(x,:')epﬂ,:n' e ~ ']

el =l + fuliy™.

Hultf) = 3 D:Dsu|®,

2r+s=0
n
Hull*e) = i + 3 IDiDiul(y + > Diu Y,
2r+s=n 2r+s=max(n-1,0)
n
il = S DDl + 3 Dl
r+s=0 r+smn

Hre = {u(x) | Hul+e) < 4o},

Hrve = {ux,t) | Hullfpre) <+ },
Brre = {u(x,r) | s =) < +oo ]

Other notations, not described above, will be explained where they appear.

From now on, we always assume that for some « € (0,1) the initial data satisfy

ug € H1*®, vy € H¥*o, 8, € H**°,

min uy(x) < uy = ug = |ug|®,

O0<u, =
£ x€8}
0<&= ntlfr)l 8y(x) = 6 = 8, = 18,],

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7

(2.8)

and that the compatibility conditions hold for (1.3) - (1.5). We can establish the following

theorem:

Theorem 1. If the initial-boundary conditions satisfy the assumptions mentioned above,
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then there exists a temporally global unique solution (u,v.8) for each problem (2) - (5), which

belongs to BY*® X HZ"® X H?™® forany T € (0,+22) .

The same results for the problems (0) and (1) were established in [5] and [7].

Here we introduce the useful abbreviations as follows:

m, (1) = mél‘_l;l u(x,t), M, (t) = m(aﬁx u(x,t),
x X

my(r) = min 8(x,1), My(r) = max 6(x,1). 2.9
x€0) x€0

1
Our result concerning the growth of u or fu u(x,t)dx is:
Theorem 2. Under the same assumptions as in Theorem 1, there exists a positive constant

1
K (> 1) depending on R, ., ¢, x and initial data, such that u or j; u(x,t)dx of the solutions

for the problems (1) - (5) grows to infinity as t increases with the following rate:

(1) Non-isothermal case.

(i) The problems (2) and (3).

Lo-ip

K—1t4 . k1 < 2:
K-'(og(1 + 0)* [ = [ u(xr,)dx = K(1 + 1) for 1k =2, (2.10)
K-! k1 > 2.
— 1
xl_i{nmt-’fo u(x,ydx = += for s < Pl (2.11)
(ii) The problem (4).
k-uh J_l {ki <1,
ax = [ u@,dr =K1 +1) for 2.12
K~ (log(1l + 1)) (142) 0 (1) ky=1 (2.12)
—— B 1
'l-l{Iif _fo u(x,t)ydx = += for s < e (2.13)
K-'(log(1 + )™ < m, (1) = KA+ 1), (2.14)

(iii) The problems (1) and (5).

ks [ u(ende s K(1+ 0. (2.15)
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K-1log(1 + )™ = m (1) = K1 + 1). (2.16)
Here
k, = 3;- >0, (2.17)
: R 4c 2 ¢t 1 Ak
ky = mln{-—@u—, ?} exp [—:{_}; vodx + U; (v + ZCGU)dA] H (2.18)
(II) Isothermal case.
(vi) The problems (2) and (3).
K s [ u(a)de = K(1+ 69). (2.19)
(v) The problems (1), (4) and (5).
K %=u@t)<K(1+1). (2.20)

See also Remark at the hindmost part of Section 4.

In the following sections, C,, C,(r) and C,(g;,f) denote positive constants depending on
their arguments and possibly R, u, ¢, k and initial data, and monotonically increasing with
respect to . For convenience we sometimes denote different constants by the same symbol

C instead of C,.

3. The proof of Theorem 1.

The proof of Theorem 1 is based on the local (in time) and unique existence theorem
and on the a priori estimates. The local and unique existence theorem has been established
by Nash [8], Ttaya [2], [3] and Tani [9]. So it is enough to establish the a priori estimates in

order to complete the proof of Theorem 1.

Proposition 3.1. The following estimates on (u,v,8) for the problems (2) - (5) hold.

min{m, (r),m,(1)} = C~ (1), (3.1)
Mt + Hyl@*e) + 1812 < C(T). (3.2)
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We will proceed the argument under the assumption « > 0. 1t follows 6 > 0 from

(1.1.3) by use of maximum principle.

Before proceeding the proof of Proposition 3.1, we study several properties of («,v,8)

for the problems (1) - (5). They are also usefu! for the proof of Theorem 2. The proof of

them is essentially the same as the case of the problem (0) established in [7], so we omit.

Lemma 3.1. (i) We have the energy identities as follows:

b

v+ ceu]dx

_f;l [-;— v+ ce]dx + _[:(1-2(0,7) + v2(1,7))dr for the problem (2),

1 1
fo [—21— v+ ce]dx + _f; v2(0,7)dw  for the problems (3) and (4),

1
J; [% 2 4 ce]dx for the problems (1) and (5).

(ii) We have the following estimates:

@) + [, v(ndr = C@),
My(r) = C(A + M (V).

my(t) = Cl{l + fo'md(:)]_ ,

where

1
U = _]; {-;— v2+ R(u —logu — 1)+ c(6 — log 6 — 1)}dx =0,

1 .2 92
V(r)zj;[p,%-é-x ’]d_xZO

u9?

C, = min{L , iﬂ'—c—}

6 R?

(iii) We have useful expressions of u as follows:

u(x,t)

{uo(x) + fo' i:— G(X,T)B(X,T)Y(T)dT},

for the problems (2) and (3),

—1
B(x,0)Y(r)

(3.3)

(3.4)
(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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=1 L "R g(x,7)D(x,7)d7
o) = gy + ) & oernte }
for the problem (4),
u(x,t) = _B?(%,tj_{uo(x) + f‘; —E— G(X,T)B(X,T)d'.},

for the problems (1) and (5),

B(x,) = exp{% S Gol®) - v(g,r))dg},
D(xvt) = exp{i‘_‘;l("(g!t) - "'U(E))dg}:

Y(r) = exp{— -&j: v(O,T)dT}.

Now we proceed the proof of (3.1).

Proof of (3.1). Properties mentioned above yield

C'=B(x,t),D(x,t) = C,
C-l=Y() =C@),

and therefore we have (3.1) by use of expressions of « and (3.6).

Moreover, Lemma 3.1, (3.16) and (3.17) yield

Applying Gronwall’s inequality, by use of (3.4) we get the following estimate.

M, = co 1+ [ M@vEar).

Lemma 3.2. We have

M, (1) = C(0).

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Q.E.D.

(3.18)

(3.19)

Next we show (3.2) only for the problem (2). For the problems (3) - (5), we can lead

it in a quite similar way. In proving it we need several lemmas concerning the estimates of
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derivatives of the solution.

Lemma 3.3. We have

j;l(v" + 02 + u)dx + _f;’j:}‘(ef + v¥)dxdt
+ [I(Mo(7) + M3() + v4(0,7) + ¥4(1,7)
+ v3(0,7)6(0,7) + v*(1,7)0(1,7))d7 =< C(1). (3.20)

Proof. We can obtain the lemma in the same manner as [7].
Q.E.D.

Lemma 3.4. We have
1 N 1.1 2
_I; vidx + _f;_f; vidxdT
% %
t 1
= C(1) {1 + {fovf(o,T)dT} + {fo v,z(l,'r)d'r} ] (3.21)

Proof. We multiply (1.1.2) by v,, and integrate in x over {, then using Schwarz’ ine-

quality with appropriate weights, we have

1 1
= C(t){fo 82dx + (mg(r) + max ‘,-3()(,:)] X u}dx}

= v, (0,0)v,(0,0) + v,(1,0)v,(1,1).

Integrating both sides over [0,7] and using (3.1), (3.20) and Schwarz’ inequality, we get
1 1.1 1
J.o vidx + 2_};_]; v2dx < C,(r) [1 + _f; max v2(x,7)dT

% %
+ {fo vf(O,-r)d-r-_]:J \’f(O,T)dT} + {f; v,z(l,'r)dT‘j; \’3(1,7)!2"7} } (3.22)
Let us evaluate the right-hand side. Firstly for any e > 0, we can obtain the following esti-

mate by Schwarz’ inequality with e and (3.20):

fo' max vi(x,7)d7 =< _[0'{]0‘ vidx + f‘: 2]vxvu|dx}d7
x€EQ



KSTS/RR-85/0
January 8, 1985

01

.10 -

.1
= ej;_f; v2dxds + C(e,1). (3.23)

Secondly we evaluate the integration of the boundary value. From (1.2), we can rewrite the

former relation of (1.5.2) as follows:

- — 9(0! VX(O,[)
v0.0 = ~Ryon T U0

Therefore (3.3), (3.19) and (3.20) yield

Jvmar=c {ussug M) [ VA (0,7)dr + J M2 (T)dT} = c(). (3.24)

In the same manner we get

S, v2,md = Co). (3.25)

Substituting (3.23) with e = C; (1), (3.24) and (3.25) into (3.22), we obtain the assertion.

Q.E.D.

Lemma 3.5. For any € > 0, we have
1 2 1 : 1 2 2
J, 82dx + [ [ 6Ldxdr < f (:3(0,7) + v}(1,7))d7 + C(e,0). (3.26)

Proof. Multiplying (1.1.3) by 8_,, in a similar manner to the previous lemma we have

Ve, 1 8%
Lo2gxt + Ko
{J;) 26" }, 02 wu &
C H (67 + v2)dx 02(x,0) [ " u2dx
=< P ,v . v+ P N a9
Q) rln(%x \,(x,t)_f;)( vl) max 2x0)),
and then by (3.19) and (3.20),
[ erdx + 2f [ 02,dxdr
o = odo TETHY
H 1
= Cy(n|1+ _]'0 max v(x,7) [1 + f v}dx] + max 02(x,7) pd7|. (3.27)
€ o x€0
Recalling (3.21) and (3.23), by Schwarz’ inequality with an appropriate weight we have for

any €, > 0,

j: max v(x,m)dT = elj:(\'f(O,-r) + v3(1,7))d7 + Cley,t), (3.28)
x€
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and for any €, > 0,

1
f' max v2(x,7)- [ v2(x,7)dxd7
0 xeq 0

t 2 1 2
= j;) IF:}IX \‘I(X,—.)dT-Or;lfi_ﬂ) vi(x,7)dx

A

{ez_f:j;’l v2dxdT + C(ez,t)}
X C (1) [1 + {fo v}(o,f)dT} + {fo' \-3(1,7)47} }

& o (72(0,7) + v2(1,m)dT + Cleayt), (3.29)

A

where
€, = €,C1(r) + any positive number.
Moreover for any €, > 0 by (1.4), (3.20), we get in a similar way to the one deriving

(3.23)

t ) t 1
I max 02(x,7)d7 =< J [ 28,8, ldxdT

1
e f [ 0%dxdr + Clept). (3.30)

A

We set €,'s such that

€= (e + €)C5(1), €, = C71(1),

then we obtain (3.26) by substituting (3.28), (3.29) and (3.30) into (3.27).

Q.E.D.

Lemma 3.6. For any € > 0, we have
1 1
L[ eidxdr = e, (v3(0,7) + v2(1,7)d7 + C(e,0). (3.31)
Proof. From (1.1.3), (1.2) and (3.19), we get
1 1 1
_f;j; 02dxdr = C(t)_];{(Mg(ﬂ + I}l(é:_lx \'f(x,f))j; vidx
1 1
+ max 62(x,7) [ uldr + fue},dx}df.
xef}

It yields the assertion by use of (3.20), (3.26), (3.29) and (3.30).
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Q.E.D.
Lemma 3.7. The function v(x,t) possesses a generalized derivative v, € L*(Q,) for any
t € [0,+%), and we have
[ viax+ f] [} v2dxds + [/(2(0,7) + 22(10)dr = €. (3.32)
Proof. For a positive number At and a function f(x,r), we denote a symbol Af by

Af = f(x,t+A1) — f(x.0).

After employing differences of (1.1.2) with respect to f, we multiply both sides by % .

Integrating them over Q,, we get by the integration by parts with the boundary condition

(1.5.2):

I N AR () av),
[71;) ['A—t] d.X]T-O + J;{['E‘] (0,-) + E (1,») dT
M1 Ae A AAwTY Ay
_LL%u@HAOAtAr+M&J BN,

}dxd?.

Av, )P Alu~Y) Av
1 ( x ] - (ll v, (A‘,T) :
Letting At go to zero, we recognize that the generalized derivative v,, exists in L*(Q,), and by

TR UG A (A At A

(1.1.1), (3.1) and Schwarz’ inequality with appropriate weights

1 ¢t PR \’3 f
—2—J; vidx + j;_f; 121’— -7' dxd7 + fo(v,z((),'r) + v¥(1,7))ds

1
= %J‘; vidx

1 1
+ C(l)fo'{_f; 02dx + max \‘}(X,T)j;] (87 + V})dx}d-..
-0 x€Q
We interpret the first term of the right-hand side as follows:
! .2de _ ! 6o 1, vo' )\
_‘:) vedx| = j; -R 70' + B -l—‘-o— dx.
With the help of (3.19), (3.20), (3.28), (3.29) and (3.31), for any ¢ > 0, we have

S vidx + [f vidvde + 2f (2(0) + w217
= E.f:("f(oﬁ) + v3(1,7))d7 + C(e,).
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Q.E.D.
Lemma 3.8. We have
L 2 el 2 2 2
L2+ 8Dax + L 02 + 6L + 8])dxdr = C(). (3.33)
Proof. It is easily derived from Lemmas 3.4 - 3.7.
Q.E.D.

Proof of (3.2). Lemmas 3.3 and 3.8 yield (3.2) by the standard argument (see [4]).

Q.E.D.

The proof of Proposition 3.1 is now completed.

4. The proof of Theorem 2.
Firstly we show the following estimates which play an important role in the proof of

Theorem 2.

Lemma 5.1. We have

1 1 1 n
fufu (v* + 8)dxdr = C {1 + [J; u dr] } 4.1)
where
12 for the problems (2) and (3),
"= 1 for the problems (1), (4) and (5).

Proof. Firstly we establish the assertion for the problem (2). Integrating (1.1.2) over

[0,x] (0 = x = 1) with the help of (1.1.1), (1.2) and (1.5.2), we have

{fo’ v(g,r)dg} 1) RCAC L R Y

u(x.t) u(x,t)



KSTS/RR-85/001
January 8, 1985

.14 -
Multiplying both sides by u(x,r), and integrating over 0, we get
01 1 ' 1
j;)-[o RO(x,7)dxd7 = }LJ;J (u(x,0) = uy(x))dx — _I;’ \’(O,T)j;] w(x,7)dxdr
t L1 X
- j;j; u(x,'.){j:] r(é,?)d&}xdxd'.. (4.2)

Integrating (1.1.1) and (1.1.2) over Q, we obtain from (1.5.2),

(v

v(1,0) = v(0,n),

. 4.3)
{j; v dx} = o(1,t) — o(0,8) = — v(1,1) — v(0.1).
Therefore we can turn the second term of the right-hand side of (4.2) as follows:
i 1 1 ¢! 1 1
—fo v(O,’.)_f'U u(x,7)dxd7 = EJ;J j; (u + v)dx xf" u dxdv
RN 2 1 1 T
—5[3(";’ udx] +j:) vdxfo udx]v
1 ¢ 1
- Ej;(v(l;) - V(O,T))j;) v dxdT. (4.4)

Here we use (1.1.1). In the same way, the third term becomes

—_f:j: u(x,T){j: v(g,'r)dg} dxd+
- [fol u(x,'r)fox v(%,T)d&dx}:; + j:j: v"_f: v(&,7)dEdxdT

- [j: u(x,—.)j: v(g,'r)dgdx]:_;
+ f(; \)(1,7)_];1 v dxdt — j:j:)l vidxd=. (4.5)

It follows from (4.2), (4.4) and (4.5) that

fo'ful(\,-? + RO)dxdr = pfol(u — )

+ [%—U: u d.x]2+ %j:vdx_ﬂ)l udx — j;l uj:v dgdx]

=1
=0

+ —%—_{:(V(l,’r) + (O, v dxdr. (4.6)

After some calculation by use of (4.3.2), we get

%_f:(v(l,f) + \'(0,7))'[;1 v dxd7 = -‘%[UUI v d.\')z]:o‘ 4.7
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We substitute (4.7) into (4.6), and if we note that « > 0, we obtain the assertion from (4.6)
by Schwarz’ inequality and (3.3.1).
For the problem (3), the proof is derived quite similarly.
Next we concern the problem (1). We have by integration (1.1.2) over Q, with (1.5.1),
1 1
j; vdx = j; Vvodx.
1
Therefore (if necessary we take ¥ = v — _]; vodx as an unknown function instead of v), we
may assume
1
[ vdx=0.
[

Hence in the same way as the problem (2), we can derive

T=1
T

-0

r .1 1 1 x
_f;_[; (v + R8)dxdT = p.fo (u = uy)dx — [j; uj; v d&dx]
which yields the assertion.
For the problem (4), by means of the same procedure,
1.1
[ J, 6 + R8)dxdr
1 1 1 T=1 [ 1
= p_’; (u — ug)dx + {fu u_f; v dgdx]v_o + _f;, 1’(0,‘7)1; v dxdT. (4.8)
The last term is evaluated by Schwarz’ inequality and (3.3.2) as follows:
H 1 1 p' 1 2
-fo v(O,T)fO vdxdr = C + E-_I;J; vidxdT. (4.9)
Substituting (4.9) into (4.8), we establish the assertion by Schwarz' inequality and (3.3.2).
In the same way as the problem (1), we find the assertion is also valid for the problem
(5)-

Q.E.D.

Lemma 4.2. We have
1 1 -~k
J’()edxzc(J;udx] L (4.10)

Proof. After dividing both sides of (1.1.3) by 8, integrating by parts them over Q by



KSTS/RR-85/001
January 8, 1985

216 -

use of (1.2) and (1.4), we get

{j:(c]og 6 + Rlog u)d.x}, = V(@)= 0.
Integrating them over [0,t] and applying Jensen's inequality, we have
j;l(clog 8, + Rlog uy)dx = j:)l(clog 6 + Rlog u)dx
= clog{_[;1 6 dx} + Rlog{j:)1 u d.r}.
We can derive (4.10) from the above estimate.

Q.E.D.

Now we proceed to prove Theorem 2.

(I) Non-isothermal case.
(i) The problems (2) and (3).

Here we prove (2.10) and (2.11) for the problem (2) oniy; the proof for the problem
(3) is quite similar.

Integrating (1.1.1) over 0, and applying Schwarz’ inequality and (3.3.1), we have

' wde s C(1+ %), (4.11)
o

The above estimate and the estimate derived from (4.1) and (4.10) yield

{1 + (f dx)z} = cf ([ war) g

3!

- —=

ci 2 for k <2,
= Cfo(l + ) Mdr = | Clog(1 + 1) for k =2, (4.12)
Citr>1 for k, > 2.

(2.10) is obtained from (3.1), (4.11) and (4.12).
We prove (2.11) in the following way. If we assume that for some s > 0, there exists

C(s) € [0,+2) such that

J— 1
limt"j; udx = C(s),

tat o
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then we can establish in the same manner as the one mentioned above,

1
C-lf—z—(l—kls) s < kl.l,
1
C-(log(1l + £)* sfu ude < C(1+ 1) for {s= k!,
c! s> kit
But this can not be true when s < 1 .
k, +2

(ii) The problem (4).

Integrating (3.11) over 0, we have by the virtue of (3.3.2) and (3.16),

1
_{;udst(1+1),

and then we can obtain in a similar way to (i),

c-itTh k, <1,
1

C-log(l+ 0)[ = fﬂ ude = C( + 1) for {k =1,

c! k> 1,

and (2.13).

From (3.6), (3.11) and (3.16), we get

(Nl -1
= + | —dv = .
my(r) 01[1 fuﬂd] z T
Using this estimate, (3.11) and (3.16) again, we obtain

dT
1+

m,(1) = C (1 +f ] > Clog(l + 1).

On the other hand, (3.6), (3.11), (3.16) and the estimate

RD(x.1) - k_z
pD(x,0) €

give us

k 1
m© = C + 2l mor

Q.E.D.

(4.14)

(4.15)

(4.16)
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kym, (7)d~
m, () [l + j;; m"dgs) ]

zc+f’;

Applying Gronwall’s inequality, and using (4.14) for the estimate of m,(7),

kydT
.

cliepedr Vs lis fd )"
vm,(7) o C(1+7)

Cexp j;;

v

m, (1)

C(log(1 + 0)*2.

v

We correct (4.15) for k; = 1 by (4.16) and (4.17) as follows:

-1 mlx(l,kz) 1 i §
C-l(log(1 + 1)) = fo udr = C(1+71) for k, = 1.

The assertions (2.12) - (2.14) are derived from (4.14) - (4.18).

(iii) The problems (1) and (5).

In the same manner as (ii), we have from (3.3.3), (3.12) and (3.16),

1
j; udr < C(1+1).

And we can establish the following estimate from (3.3.3) and (4.1),

fol wdx = cfu'ful(vu 8)dxdr — 1 = Cr —1.

These estimates and (3.1) yield (2.15). (2.16) is obtained in a similar way to (ii).

(II) Isothermal case.
(iv) The problem (2) and (3).

1
j;udeC(l-%t*)

(4.17)

(4.18)

Q.E.D.

Q.E.D.
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is established in the same manner as (i). The estimate from below is obtained from (4.1)
with 6 = const., i.e.:
1 1 1
1+(LuﬂY2CLL8ﬂh=CL
Q.E.D.
(v) The problems (1), (4) and (5).
We get (2.20) by using (3.11)‘ or (3.12) with @ = const. and (3.16).

Q.E.D.
Now we complete the proof of Theorem 2.

Remark. In cases (ii) and (iii), we can show slightly shaper (but more intricate) esti-

mates than (2.14) and (2.16). Namely, these estimates and (3.6) yield

-1

dT
(log(1 + 7))

Substituting into (3.11) or (3.12), we get desired estimates about m,(r). Yet the order func-

mux(l,kz)

mmzck+ﬂ

tion can not be described by an elementary function. Iterating the same procedure, we can

also get more shaper (but much more intricate) estimates.
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