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Abstract

This paper first describes the importance of the dataflow computing machine architecture for new
generation computing machines. The matching bottleneck problem of dataflow computing machine models
will be introduced by giving actual experimental results obtained by simulation. The reasons for this situation
are discussed, and an effective solution using a novel NOT(OPERATION) control mechanism is introduced.
A new low level instruction set is defined from this. The effectiveness of the control mechnism is first evaluated
at the definition level, then at the dataflow computing graph level, the very first stage of application. Here,
the critical path length of the dataflow computing graph and number of arcs in a dataflow computing graph
are used to show the effectiveness of the mechanism. Finally, the effectiveness is evaluated at the dataflow
computing machine level by implementing the mechanism in the EM-3’s virtual machine, a parallel, pipelined,
Tataflow computing scheme. Here, the performance characteristics measurements are obtained by executing
_enchmark programs using the software simulator. The results obtained are presented and discussed.

1. Introduction

Until now, computing has been dominated by von Neumann, or sequential mono processing. The existing von
Neumann computing environment was introduced over 30 years ago. Hardware development alone resulted
in four computing machine generations with this architecture. Although there are electronic computers
operating with a cycle time of 10 ns, there have been many attempts to develop circuit and processor
components which will operate still faster. Although the conventional processors can be speeded up just
by increasing the speed of circuit components, there is a physical limitation to the speed, such as the
propagation speed of signals in a physical media, that can be achieved using technology. Further, existing
computing processors do not fully exploit existing technology. Technology is not the only way to achieve
high performance computing environments. Parallel processing in computing systems offers an alternative
to sequential processing. Parallel processing organizes problems quite differently from sequential processing.
In principle, further parallel processing has no limitation on concurrent actions, hence it gives the maximum
speed that can be obtained by parallel processing a given algorithm using a high speed computing system.
von Neumann architecture uses the basic concept ot control logic which results mn a global memory cell
for storing sequentially executable instructions written in procedural languages such as Basic or Fortran,
data, and a CPU to execute the instructions one by one. The one by one approach is the limiting factor of
" *he machine performance. This is the von Neumann bottleneck that caused the software crisis which created
che necessity for a new generation of computing machine environments.

1.1 Dataflow computing machine architecture

More radical departure from the von Neumann system is the dataflow system. In dataflow, an instruction
is executed when and only when all the input operands are available, and this execution is performed
immediately after the arrival of operands. The datflow concept abolishes central control in computing
machines. Dataflow models execute instructions written in single assignment languages such as ID and
EMLISP. Here, the variables are assigned only one value during a program’s evaluation. The computations
are free of side effects, and independent computations may proceed naturally in parallel. The dataflow
concept exploits all the parallelism available in the algorithm, or exploits the parallelism inherent in the
program at the architecture level. This is the most attractive feature of dataflow concept.
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The dataflow approach has the potential of efficient large-scle exploitation of concurrency, maximum utiliza-
tion of VLSI in computer design, compatibility with distributed networks, and compatibility with functional
high-level programming. It is highly likely that dataflow computing machine architecture will be the next
architecture generation of computing machines. Many research institutions in Japan, USA and Europe are
making an effort to realize the practical dataflow machine. A variety of datflow architectures has been
proposed, and hardware prototypes have been constructed from some of these proposals. Hardware proto-
types must execute larger benchmark programs which can not be executed in a software simulator. This a
necessary condition to be satisfied when constructing hardware prototype models. The performance charac-
teristics measurements of some of these proposals have been evaluated by executing small scale dataflow flow
programs using software simulators or hardware prototypes. It is necessary to prototype numerous ideas in
various machine models, as this will help decide the most succesful dataflow architectural model, and will
help solve problems related to the datflow computing system environment. The power of dataflow concept
is better suited to special purpose applications than general purpose applications. The dataflow concept can
be easily implemented either in numerical computations such as scientific and technological computations,
or in non numerical computations such as symbolic manipulation in knowledge based information processing
systems, because the machines can be designed and tuned for a specific purpose to gain speed and efficiency.

1.2 Outline

‘ pplication of the dataflow concept gives a powerful architectural model for computing. In the following
sections, languages for dataflow computing models are first described. The matching section bottleneck iden-
tified in the dataflow architectural model and reasons for this problem, i.e. conditional operation implemen-
tation in dataflow computing graphs, are then described. An example illustrates the problem and its cause
by giving experimental results. A solution to the problem is introduced using 2 new NOT(OPERATION)
control mechanism. An example shows how to implement the control mechanism. The effectiveness of this
mechanism is evaluated at the definition level, then at the very first stage of application, i.e., the level of
dataflow computing graphs, and finally at the dataflow computing machine level by implementing the mech-
anism in the EM-3, a dataflow computing machine’s architectural model. Finally, using the virtual virtual
machine that we have constructed, the performance characteristics of the machine are measured, compared
and discussed. Appendix shows the EM-3 dataflow architectural model.

2. Languages for datafiow computing machines

The medium of communicating with the computer system, the language, is very important in writing pro-
grams to implement parallel algorithms in the real dataflow computing machine. It is very easy to program in
high level languages with any computer model. High level programming languages for dataflow machines is
also a very interesting and important research field in which no positive research results have yet appeared.
Functional programming languages do not reflect the properties of the von Neumann computing model.
Side effect free functional languages such as Pure Lisp, based on Church’s lambda calculus, and Backus’s Fb
rased on Curry’s combinatory logic can be used effectively to execute programs in datflow machines. Single
assignment languages can be considered as functional languages. There is a lot more work to be done in
this field to implement these languages. Functional semantics simplify the translation process. In functional
programming, programs are put together with some operation to construct a new program which can be
used to construct larger programs. However, it is necessary to design dataflow languages for dataflow com-
puting machines with the dataflow concept in mind. In designing dataflow languages, programmers should
not consider the explicit control of memory allocations, but should deal only with data values. The LISP
programming language group developed over the last 25 years seems to be the most powerful language group
for symbolic manipulations. The PROLOG language group developed over the last 13 years in Europe also
has the power to implement logic programming in dataflow machines.
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Low level languages for dataflow computing machines should describe dataflow graphs efficiently.

Y
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Fig. 1(a). Dataflow computing graph AxB - B/C + C/D
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Fig. 1(b). Dataflow computing graph CONS(CAR(x!,x2,x3..),CDR(x1,x2,x3..)).

Fig. 1 Dataflow graphs - numerical and non numerical

Fig. 1(a) shows the dataflow graph for the numerical computation

A*B-B/C+C/D

Fig. 1(b) shows the dataflow graph for computing the non numerical computation

CONS(CAR(x1,x2,....}, CDR(xl,xZ )

The high level programs in this paper are described in EMLISP, a single assignment language specially
designed for dataflow computing. EMLISP semantics support functional programming. In EMLISP all
iteration calculations are supported by recursion, but no global variables are supported.

EMIL is the low level language used to describe the dataflow computing graphs. Representation of
dataflow graphs using the EMIL low level language will be illustrated in the following sections.
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3. Matching bottleneck problem

COMMUNIQéEi?N NETWORK
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Fig. 2 Basic dataflow computing machine organization

Fig. 2 shows a very basic dataflow computer organization. Processing elements are connected via a
communication network. A processing element basically consists of a matching unit, execution and structure
handling unit, and a memory unit. The communication network is used to interconnect the processing
elements. The execution and structure handling unit performs the execution and structure handling in
dataflow computing.

Operations can have either one or two operands. If there is only one operand needed to execute an
operation it is easy to execute that operation immediately. When the operation is a two operand operation,
the operation has to wait until both the operands are available, and the operation must receive the exact
two operands whose origins are different. There must be an operand matching section in every dataflow
machine model. The matching section is used to match the plural operands directed to the same operation.
Operands wait in the matching section until their partners arrive. The matching section sequentially matches
and synchronizes the operands. Matched partners are sent to be executed. The larger the number of two
operand operations to be executed in a program, the more time spent in the maiching section. This delays
the execution of the whole program. Therefore, this is the most critical unit. This condition is called the
matching bottleneck in dataflow computing machine architecture. This is very similar to the von Neumann
bottleneck in conventional computers.

NFU OTHER
MATCHING UNIT

[UNIT

UNITS

Fig. 3 Matching bottleneck
One of the problems to be solved in dataflow architectural models, is to eliminate this very narrow
matching bottleneck, shown in Fig. 3, in the input to the matching section where the matching of the two
operand operations were performed. This seems to be one of the important dataflow computing machine
architectural problems to be solved, since this matching bottleneck is the limiting factor of the performance of
all types of dataflow models. This problem is unavoidable in every dataflow machine using a matching section
to match operand partners of an operation. Possible causes of this situation were carefully investigated, and
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it was observed that the conditional operation implementation in dataflow graphs creates the matching
bottleneck. This is described in the following section.

4. Conditional operation implementation in dataflow machines

Conditional expressions are the most important expressions in progranuning, and are used to compute a value
based on some conditional predicate. The conditional operation interpretation used in parallel computing
systems is the same as conventional computing systems, particularly in dataflow computing systems. First,
we will consider the conditional operation implementation in dataflow computing. Consider the following
conditional expression.

IF C(x) = TRUE

THEN B1(x), B2(x), ....

ELSE A1(x), A2(x),.... .

This is the basic conditional operation definition used for von Neumann computing. There is no basic
change in implementing conditional operations in parallel systems except that the number of executions, for
Ex. here B1(x), B2(x),... or A1(x), A2(x),.... , are allowed to process in parallel. The implementation in
dataflow computing uses special SWITCH operations. Fig. 4 shows how the above conditional expression is
implemented in dataflow computing. '

N

‘ ’ BL(x) B2(x)

Fig. 4a. Conditional expression IF C(x) THEN Bl(x), B2(x)... Implementation

Eal\
sw gCH—F SWITC

X

Bl B2 Al A2

J/ Al(x) A2(x)

Fig. 4a. Conditional expression ELSE Al(x), A2(x)... Implemencation

Fig. 4 Conditional expression IF THEN ELSE implementation

Fig. 4(a) ‘C’ is any condition operation. If ‘x’, the data value input to the condition operation, satisfies
the condition ‘C’, the output of the operation is the TRUE boolean value. Otherwise, the FALSE boolean
value is the output. Boolean values are carried by control arcs. The values of the type integer, real, or string
are carried by the data arcs. Either of these output boolean values controls the number of SWITCH-T and
SWITCH-F operations in the following step. If the control input to the SWITCH operations, the output of
the condition operation, is TRUE | only SWITCH-T operations switch the ‘x’ data value to the following
step. SWITCH-F operations do not give any output. This is illustrated in Fig. 4(a). Here, IF C(x}) = TRUE

5
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THEN B1(x), B2(x), ..... is executed. C(x) is TRUE and therefore the SWITCH-T operations switch the
data value ‘x’ to the operations B1, B2, .... to execute, and these operations give B1(x), B2(x),... data value
outputs.

If the control input of SWITCH operations is FALSE, only SWITCH-F operations switch the data
value input to the output. No SWITCH-T operation give an output. Fig. 4(b) shows the execution of ELSE
Al(x), A2(x) .... . Here, C(x) is FALSE, and therefore the SWITCH-F operations switch the data value ‘x’
to the operations Al, A2 .... to execute and these give the output Al(x), A2(x) ...... .

All SWITCH operations used are two operand operations. The purpose of using these operations is to
copy the data value from the top input arc to output arcs. The selection is determined by the boolean output
the of condition operation. This results in two operand operations for every single conditional operation,
which may be a one operand or two operand operation. Therefore, conditional operation interpretations
used in dataflow computing models contribute greatly in increasing the number of two operand operations
to be execute, and hence to be matched. This increase in two operand operations is made artificially, and is
the main reason for the matching bottleneck, and consequently high execution times for program execution
in dataflow computing.

The conditional operation implementation described above always gives a boolean output which is not
always necessary in dataflow computing. If the data value satisfies a particular condition, then that data
will undergo a defined operation. Boolean values do not have to be generated. The implementation increases
parallelism in the computation, increases the number of matching operations to be performed, and increases
the number of operations to be executed unnecessarily. All these contribute to weaken the effectiveness of

ae dataflow computing concept. Unnecessarily large two operand operations cause the bottleneck in the
matching section which limits the performance of the dataflow processor.

Switch operations are used for sequencing the flow of data in condition operations by using a boolean
control. This adds the control driven property to dataflow computing. The computing must not generate
unnecessary data values. The SWITCH operations degrade the higher performance obtainable by imple-
menting dataflow computing. When more switch operations are involved in execution, the effectiveness of
parallel processing in the dataflow scheme is diminished drastically. The number of switch operations to
be performed in a practical program will be very high, and the resulting matching bottleneck will create
very serious problems in realizing practical dataflow computing machines. It is necessary to build dataflow
computing machines which have a much higher speed than conventional machines.

The example in the following section shows the real situation in implementing SWITCH operatons. The
primitive operations used in the EM-3 dataflow computing machine, a sample program written in high level
dataflow language, and its dataflow computing graph will be shown. The primitive operation’s execution
frequency when a program is executed will also be presented.

Example 1

Appendix 1 describes the EM-3 dataflow computing maching model under construction in the Electrotechni-
cal Laboratory, Japan. We have constructed a virtual machine, a software simulator, to verify the datafow
.omputing principle and identify implementation problems at the software level. Small size benchmark pro-
grams are executed in this virtual machine to evaluate the performance of the EM-3 engineering prototype.
The stream data structure concept, sequences of values with operations car, cdr, cons and null are used.
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EMULISP is our high level dataflow computing programming language. EMLISP can be considered as a single
assignment language, i.e. an object or a variable, designed with a value for it, may be assigned a value at most
once during the program execution, implying the maximum inherent parallelism in a program. EMLISP is a
member of the powerful LISP language group. PROG feature is a side effect facility used in LISP to increase
the efficiency of sequential execution of programs in a von Neumann computing environment. Such features
are removed from LISP to obtain side effect free, pure functional list processing in a highly parallel dataflow
computing environment. EMLISP does not include relatives of PROG such as PROG, PROG2, PROGn,
operations to control the flow such as GO and DO, modifying lists such as RPLCA, RPLCD, NCONC

operations, or relatives of array such as ARRAY, STORE of the conventional LISP, but consists of
special features such as parallel COND, parallel OR, parallel AND, and BLOCK for blocking. Block adds
procedural programniing style to EMLISP. Bound variables are defined inside the block, and S-expressions
can be arraged in any order. Variable dependencies define the S-expression linkages in a block. PCOND
adds the guarded command feature. Here, the propositional expressions are evaluated concurrently, and then
if conditional are true the corresponding forms are evaluated. The programs were written in the dataflow
language EMLISP. EMLISP design strategies are summerized below. Here global and free variables, loops and
functions replacing the existing list structures are inhibited. Single assignment rule and pure functionality
are adopted.

The low level dataflow LISP language used in EM-3 to construct dataflow graphs is EMIL. The format
~f EMIL operations is shown in Table 1.

(OPCODE CONSTANT DEST-LIST)
(CALL FUNCTION-NAME NO-OF-ARC NO-OF-RET DEST-LIST)
(PROC FUNCTION-NAME NO-OF-ARG DEST-LIST)

where CONSTANT ::= (C-0 n) | (C-1 n)
DEST-LIST ::= (DESTINATION)
DESTINATION ::= (LABEL { NIL | PORT-NO | {CONTROL | DATA} | (ARG u v)
|RETURN NO-OF RET) } )

LABEL ::= string
n ::= integer
u = integer

= integer

PORT~-NO ::= inceger
NO-OF-RET ::= integer

Table 1 Format of emil operations
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A node in the dataflow graph is represented by either an operation (opcode) or a function name. Destinations
of the result of an operation are described by dest-list and corresponds to the number of output arcs of a
node in a dataflow computing graph. Constant type operands of an operation are placed in the constant
datum field of the operation. A destination field consists of a label field and an attribute field. The label field
represents the destination node. The attribute field represents the node attribute. Here, port-no represents
the port number of the operation where the operand is destined, and argument ‘u’ in total ‘v’ arguments of
the function called is represented by {arg u v). ‘proc’ specifies the function name, total number of arguments,

and destination list of each argument.

Fib a = 1; if asd or 1
= Fib n=l + Fib n-2

(defun fibonacci (n)
(cond (( zerop a) 1)
(Cean ) 1)
(t (plus (fibonacci (difference n 1))
(Eibonacci (difference n 2))))))

Fig. 5(a). Fibonacei funccion and its EMLISP Program

{PROCEDURE 7FIB l. (C0002 0N0-0) ) -

C00G2 (*OISTRIBUTE (GUOO3 MONO-) (CO006 DATA) (GOOL4 DATA) )

€0003 (*£Q (C-1 L.) (GO0O4 MONO-CONTROL) (GOOQ7 MONO-CONTROL) )

€0004 (*SWITCH-T (C-J (.) (COOI8 (RETLRN 1.)) )

C0006 (*SWITCH~-F (CO00S 0.) )

€0007 (*SWITCH-F (C-0 2.) (GCOOS 0.} )

GC00S5 (*E0 (GO008 “ONQ-CONTROL) (CO0!0 CONTROL) (COOLL MONO-CONTROL)
(CC0l4 CONTROL) (GOOtS MONO-CONTROL) )

GO008 (*SWITCH-T (C-0 l.) (GS018 (REIVRN l.)) )

GOOL0 (*SVITCH-F (GT009 0.) )

CUOLL (*SWITCH-F (C-0 1.) (GC009 L.)) )

C0009 (*DIFFERENCE (COQ12 (ARG l. 1.)) )

GOOLZ (*CALL FIB t.l. (G307 0.) )

GOQl4 (*SWITCH~-F (CO0L3 0.) )

COO15 (*SWITCH-F (C-0 2.) (CCOt3 L.) )

GOO1] (*DLFFERENCE (GOOL6 (ARG L. 1.)) )

CO016 (*CALL ¥13 L.l. (COOI7 Ll.) )

COOL7 (*PLUS (GOOL8 (RETURN 1.)) )

GCC18 (*RETWRN 1.3

Fig. 5(b). EMIL code =~ Fibonacci
PROCEDURE FIB 1

DISTRI:

1 | 2
DIFFERENCE OLFFERENCE
CALL 718 /cm. ns

RETURN

rig. S(c) Dacaflow graph - Fibonacci

Fig. 5 Emil code and dataflow graph fibonacci
Fig. 5(a) shows an example of this high level programing language to compute the Fibonacci numbers.
The Fibonacci function has binary tree parallelism and contains only numerical computations.
The functionality of the primitive, EMLISP operations may be summarized as:
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List operations

car(()) = error
car(x1,x2,...) = x1
cdr(()) = error
cdr(x1,x2,x3...} = x2,x3,...
cons(x1 (x2,x3,....) = x1,x2,x3,....
equal((x x}) = true
equal{(x y)) = false

Attribute checking

null(()) = true

null(x1...) = false

atom((a)) = true

atom(x1,x2..) = false

numberp((1...)) = false

. numberp((1)) = true

IFx;y

ssthan(x y) = false

lessthan(y x) = true
greaterthan(x y) = true
greaterthan(y x) = false

Numerical operations

plus (x,(y)) = x+y
difference(x,(y)) = x-y
times(x,(y)) = xy
quotient(x,(y)) = x/y
remainder(x,(y)) = rem x/y

Dataflow graph application codes

distribute

switch-t

switch-f

procedure

call

return

The EMIL code of the Fibonacci function is shown in Fig. 5(b), and the dataflow graph is given in Fig.
5(c).
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2(b) Operation set with NOT(OPERATION)

Table 2 Basic definitions of EMIL operations
The EMIL code has the basic definitions shown in Table 2(a). NULL, ATOM, NUMBERP, EQUAL,
GREATERTHAN and LESSTHAN are conditional operations and always give the boolean value output.
NULL, NUMBERP, ATOM are single operand operations, and the other operations are double operand
primitive condition operations. To sequence the flow of data in dataflow computing graphs, double operand
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SWITCH-T and SWITCH-F operations are introduced and used after the primitive condition operations.
This causes all condition operations to relate to double operand switch operations independent of the number
of input operands in the condition operation. There are several versions of switch operations in use. In
general, all these switches have the property of switching the input data to the output, depending on the
boolean value output of the conditional operation which controls the switching operation. The number of
switch operations to be added to sequence the flow of data is always greater than or equal to two. This
makes the number of double operand operations to be matched in the matching section very high, making
the matching section very busy, and creating a bottleneck there.

The bottleneck explained above is practically proved by our experimental dataflow computing system.
We measured the performance characteristics of our system by executing several small scale benchmark
programs. The n queen problem, quicksort algorithm, Fibonacci function, and some other non numerical
and numerical problems are among the benchmark programs to be solved using the EM-3 dataflow system.

EST PROGRAM
2 9) 4

OPERATION

CALL 229 101 241 464 522 798 127 71
DISTRIBUTE 460 366 875 465 1383 1469 128 382 72
CONSTANT 0 3 3 0 0 0 0 0 0
SWLTICH-F 1060 958 2488 2434 2246 2330 255 763 108
SWITCH-T 820 383 900 84l 2115 1052 127 381 36
CAR 0 124 296 0 671 702 63 189 35
CDR 0 44 1046 ] 482 702 63 189 35
CONS 0 24 48 0 482 640 63 189 35
ATOM 0 0 0 [} Q 126 127 8L 0
NULL 0 39 90 0 483 0 0 0 36
EQL 350 162 390 84l 0 736 0 0 0
PLUS 110 125 308 232 0 0 0 0 0
DIFFERENCE 229 44 100 464 0 0 0 0 o0
TIMES 0 0 0 0 0 ] 0 0 o0
DIVIDE 0 0 0 0 0 0 0 [
PRINT 0 1 2 1} 1] 0 0 0 0
GREATERP "] 0 Q 0 0 0 0 0 0
LESSP 0 0 0 [} 189 0 0 0 0

Table 3 Execution frequency of operations
Table 3 shows the name of the operation, name of the benchmark program, and the corresponding
frequency of primitive operation executed during the execution. These resuits show that the SWITCH
sxnd DISTRIBUTE operations comprise about 50This practical situation proves that the number of switch
operations executed to sequence the flow of data when there is a condition is very high.
in the following section of this paper, a control mechanism to replace all the switch operations in dataflow

computing graphs is presented and discussed.
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5. Control mechanism to implement condition operations in parallel computing systems

A method to reduce the number of switch operations in the dataflow computing graph to minimise or elim-
inate entire switch operations and control arcs from dataflow computing is essential. A control mechanism
with the ability to eliminate the incorrectly interpreted control driven feature in dataflow conceptual models
is presented here and discussed in detail.

In all languages, it is necessry to delay the computation of either branch of a condition expression until
the boolean value of condition operation is known. This boolean value gates the data values necessary for
the execution of required operations.

A condition operation always consists of both positive and negative information about the operation.
This can be viewed as the natural interpretation of condition operations. The mechanism introduced uncovers
the fact that a condition operation always consists of a fundamental combination of positive and negative
operations. This is used in this paper to eliminate the matching bottleneck. Here, any condition operation
is represented as a combination of two basic operations. A condition ‘C’ is represented below by an ‘OR’
combinated ‘C operation’ and ‘NOT C Operation’.

Condition ‘C’ = (‘C’ operation} OR (‘NOT C operation’)

DEFINITION A condition operation can be divided into two OR combinated positive and negative
operations. '

Since OR combinated operations can be executed concurrently in concurrent excution systems, both ‘C’
and ‘NOT C’ operations are executed concurrently to implement condition operations in a parallel dataflow
computing environment. The particular significance of the NOT{OPERATION) in parallel systems, espe-

ially in dataflow computing systems, is that these two joined operations can execute entirely independently,
which increases the parallelism inherent in the program. This definition can be applied effectively to any
parallel computing system. So far, a condition has been represented in a dataflow graph by adding switch
operations, which resulted in two operand operations for any condition operation, and two sequential exe-
cution steps for the execution of conditional operations. The overall effect of the two operations which will
replace any condition operation and produce a data value, is a more advanced , natural output than the
boolean value output obtained from existing condition operations.

6. Control mechanism to implement condition operations in dataflow computing systems

NOT(OPERATION) with data value output

An extension of the NOT(OPERATION) introduced above will replace the control mechanism of condi-
tion operations efficiently, and will give completely new definitions to the condition operations in datafiow
computing systems. This extension is described below.

In the basic definition of the conditional operation, two new, parallel operations can be used to
generate boolean value outputs to control the concurrent switch operation set. The basic mechanism,
NOT(OPERATION), uses negation successfully in condition operation execution. The extension gener-

_ates data values instead of generating boolean values. The new operation can be considered as a successful
.pplication of the negation technique in dataflow computing. The generation of boolean value output for
every condition operation execution is abandoned. Boolean values can be obtained by executing some other
operation when it is necessary. Either of the two operations which replace the condition operation produces
a data output value and while the other produces no output value in the execution. This increases the
real parallelism in the program execution, and simultaneously removes completely the unwanted pseudo
parallelism inserted in the program to implement condition operations by introducing switch operations.
This actually decreases the parallelism. Generally, the mechanism introduced here facilitates implementing
condition operations in dataflow computing graphs by OR type parallelism.
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Thus, the NOT(OPERATION) provides no delay in producing data values to be processed in the stage
following a conditional operation. In the switch operation implementation, executing the condition operation
results in a boolean value output. This initiates the execution of set of switch operations and this finally
allows the execution of operations in the following stage.

The condition expression can be rewritten as the parallel execution of the following two expressions.
Here, the IFNOT is used to replace the ELSE in defining conventional condition operations.

IF C(x) THEN B1(x), B2(x), .....

IF NOT C(x) THEN A1(x}, A2(x), .....

The above definition is equivalent to the conditional expression used in section 4. This definition can
be used in any BNF specification of syntax of a language. For example,

exp = .....JF expression THEN expression ELSE expression

recursion ::= IF expression THEN recursion ELSE recursion

can be rewritten as

exp = .....IF expression THEN expression

IF NOT expression THEN expression

recursion = IF expression THEN recursion

IF NOT expression THEN recursion

Fig. 6 illustrates the implementation of the above condition operation representation. The parallel
representation of ‘C’ OPERATION and NOT‘C’ OPERATION replaces the whole configuration of Fig.4.

/ )
'C" OPERATION }E' OPERATION

Bl(x) |B2(x) .......

Fig. 6(a). Conditional expression IF C(x) THEN Bl(x), B2(x)
Implementacion
!

X,

¢ opmno/ NOT "C' OPERATION
x x

Bl B2 ..... A A2 .....
Al(x) \A2(x) .......
Fig. 6(a). Conditional expression IF NOT C(x) THEN Al(x), A2(x).....
Implemencation

Fig. 6 Conditional expression implementation with NOTOPERATI
Fig. 6(a) shows the execution of IF C(x) THEN B1(x), B2(x), .... . Here, the data value ‘¢’ flows to both
operations. If function C(x) is TRUE, then ‘C’ OPERATION will be executed, and the ‘x’ data value will
be given as the output value and sent to the defined destinations. The execution of NOT‘C’ OPERATION
will not give any output value in this instance. Fig. 6(b) shows the execution of the remaining part of the
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conditional expression, i.e. [F NOT C(x) THEN Al(x), A2(x), ... . Here the function C(x) is NOT TRUE,
therefore the NOT‘C’ OPERATION will be executed, and the ‘x’ data value will be given as the output
value to sent to the defined destinations. Here, the execution of ‘C’ OPERATION will not generate a output
value. The interpretation clearly divides the operations to be performed after the condition ‘C’.

7. Performance evaluation of NOT(OPERATION) method 1.

Definition level

The existing implementation of condition operations in dataflow computing machines always needs the help
of more than two double operations in addition to the execution of condition operation to sequence the
data. The execution takes place in two sequential steps. The new condition operation definition executes a
conditional operation in a single step by using two operations. The parallelism in executing switch operation
starts from 3/2, and increases according to the number of switch operations. This can be considered as
unnecessary parallelism. The parallelism in new definition. is always 2, can be considered as useful parallelism.
Unless the condition operation to be executed is a double operand, no double operand operations are created
to implement condition operations. The only operation created is another single operand operation which
will execute simultaneously. If the condition operation is a double operand operation, one and only one extra
double operation is created to implement the condition operations. Arcs drawn between operation nodes in
a dataflow computing graph indicate sequencing the operations. Data in the form of communication packets
are sent along the arcs to the instruction nodes. An instruction is executed only when all necessary data

re present. The minimum number of arcs necessary to iinplement the single operand condition operation is
seven in the existing implementation, and the minimum number of arcs necessary to implement the single
operand condition operation with the new definition is four. The minimum number of arcs necessary to
implement a double operand conditional operation with switches is eight, and the minimum number of
operations is three. In new definition, the number of arcs is six, and number of operations is two. These
are concurrent. The NOT(OPERATION) will give the low level dataflow machine languages the ability to
express the conditional operations without using any form of SWITCH operations to sequence the flow of
data.

Example 2 describes the implementation of this control mechanism. A new operation set is defined to
substitute the operation set defined in Example 1. This will result in new dataflow computing graphs. The
operation set is implemented in the dataflow computing model. The performance characteristics obtained
are presented and compared with the performance characteristics obtained in Example 1, and discussed.

Example 2

To implement this control mechanism, it is necessary to redefine all the primitive operations used in low level

dataflow computing languages. For example, if a machine uses LISP primitives to represent the low level

language which describes the dataflow computing graph, it is necessary to redefine the primitive operations.

A sequence of values with operations car, cdr, null, notnull, atom and not atom, is used in EM-3. The
- functionality of the operations may be summarized as

List operations

car(()) = error
car(x1,x2,x3....) = x1
cdr(()) = error
cdr(x1,x2,x3,....) = x2,x3,....
cons (x1 (x2,x3,x4,....)) = x1,x2,x3,....
equal(x x) = data output ”(x)”
notequal(x x) = no data output
equal(x y) = no data output IF x =—=y
notequal(x y) = data output " (x)” IF x =—=y
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Attribute checking

null ((}) = data output ”()”
null(x1..) = no data output
notnull({)) = no data output
notnull(x1,...) = data output ”(x1,...)”
atom ((x}) = data output ”(x)”
atom ((x1,x2,...)) = no data output
notatom((x1,x2,....)) = data output ”(x1,x2,...)
notatom(x) = no data output
numberp(1,...) = no data output
numberp(1} = data output ”(1)”
notnumberp(1) = no data output
notnumberp(1,....) = data output ”(1,....)"
greaterr(x, y) = data output "y” if y;x
greaterr(x, y) = no data output if xjy
notgreaterr(x, y) = no data output if y;x
notgreaterr(x, y) = y if xjy

»

Numerical operations

T x and y are integers
plus(x,y} =x+y
difference = x -y

quotient(x y) = x/y
remainder(x y) = rem of x/y

.Dataflow graph application codes

distribute

procedure

call

return

The definitions used to implement the proposed mechanism are shown in Table 2(b).

ATOM and NOTATOM in the proposed mechanism have the ability to replace the ATOM operation
and all the connected switch operations in the existing implementation.

EQUAL and NOTEQUAL replace the EQUAL operation and all connected switch operations involved
in the operations followed by mentioned operations in the existing implementation.

The proposed NULL and NOTNULL operations replace the NULL and switch operations in the dataflow
computing graphs.

The proposed NUMBERP and NOTNUMBERP operations replace NUMBERP and all related switch
sperations in the first version of dataflow computing graphs.

The proposed GREATERR and NOTGREATERR will replace GREATER THAN, LESS THAN and
all other switch operations followed by these operations in dataflow computing.

We can implement GREATERL and NOT GREATERL operations which consider the left operands
instead of considering the right side operands, in the proposed GREATERR and NOTGREATERR opera-
tions.

SELECT operations can be used to select the required input operand when necessary. This operation
with constant, TRUE or FALSE boolean values attached to the input constant operand datum can be used
to obtain the necessary value.

The proposed set of operations will give a complete operation set for the low level dataflow language
based on LISP. It is possible to interpret the new feature added as the use of hierarchical modelling, to mean
that the property of switch added basic condition operation . Up till now, conditional operation interpre-
tations in realizing dataflow models were incorrect. The proposed control mechanism allows real dataflow
in interpreting the dataflow concept when implementing practical dataflow machines. By correcting the
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interpretation, we obtained a reduced instruction set. Every conditional expression is given a new definition.
In Example 1, a minimum of three operations, the condition operation, SWITCH-T and SWITCH-F oper-
ations, have to be executed to allow the data to flow in the graph when executing conditional operations.
This is done in two sequential steps. After implementing the NOT(OPERATION), the number of operations
necessary to sequence the flow of data when executing conditional operations is two. Both these operations

can be performed in parallel.

8. Performance evaluation of NOT(OPERATION) method 2.

dataflow graph application level

(PROCEDURE FIB l. (G0O002 MONO-Q) )

G0002 (*DISTRIBUTE (G0003 MONO-0) (GOOO4 MONO-0) )
GOO003 (*€EQ (C~1 l.) (GOOl4 (RETURN 1.)) )

G0004 (*NEQ (C-1 1.) (GOOQ6 MONO-0) (GOOO78 MONO-0) )
GO006 (*£Q (C-1 2.) (GOOO8 MONG-Q)) ) :
GO007 (*NEQ (C-1 2.) (GOO09 MONO-0) (GOOlO0 MONO-0) )
GOOO08 (*CONSTANT (C-1 1.) (GOOi4& (RETURN 1.)) )
GOOC9 (*DIFFERENCE (C-1 1.) (GOOLl (ARG 1. 1.)) )
GO01Q (*DIFFERENCE (C~1 2.) (G0012 (ARG 1. 1.)) )
GOOLl (*CALL FIB l.l. (GOOI3 0.) )

GOO12 (*CALL FIB I.l. (GOOL3 I.) )

GO013 (*PLUS (GOOl4 (RETURN 1.)) )

GOOl4 (*RETURN 1.)

END

Fig. 7(a). EMIL code with NOT(OPERATION) - Fibonacci

PROCEDURE FIB 1

DISTRIBUTE
1
EQ_U/AL‘/ \Equ
N?z x-( :
EqliaL EQUAL
CONSTANT-1 nrsruz@nsme

CALL FIB CALL FIB

A

Fig. 7(b) Dataflow computing graph - NOT(OPERATION) Fibonacci

Fig. 7 EMIL code and dataflow computing graph with NOTOP-Fi

Fig. 7 shows the new version of the Fibonacci function dataflow computing graph. All the SWITCH-T
and SWITCH-F operations are eliminated, and a parailel NOT EQUAL and EQUAL satisfies the necessary
conditions. To calculate the critical path length of a dataflow computing graph distance betwen two sequen-
tial steps is counted as one unit. The critical path length measurement is taken to show the strength of
the mechanism introduced, in the level of dataflow graph illustrations. The critical paths are shown in dark
lines. The critical path length of the Fibonacci dataflow computing graph with switch operations is nine,
and the critical path length of the NOT(OPERATION) Fibonacci dataflow computing graph is seven.
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The arcs connecting the operations in a dataflow graph are related to the number of communication
packets necessary to be generated. The total number of arcs is measured to show the strength of the
mechanism in the early stage of application level.The total number of arcs in new version Fibonacci is ten,
and in the old version it was fifteen. The reduction will result in lesser communication overhead. The number
of communication packets used will be measured quantitatively in the execution of dataflow computing graph
in the dataflow computing model, and is described in the following section.

9. Performance evaluation of NOT(OPERATION) Method 3.

Using EM-3 dataflow virtual machine.

The object of this simulation study is to observe the effect of the NOT(OPERATION) control mechanism
in the dataflow computing environment. This can be done by constructing a software simulator, a virtual
machine, of dataflow computer, and executing small benchmark programs on it. The software simulator used
for this simulation study, simulation results, and the evaluation of the simulation results will be described

in the following sections.

9.1 Software simulator

The software simulator describes the EM-3 dataflow computing machine and simulates the program behaviour

faithfully. The simulator is written in SIMULA, therefore the parallel execution can be easily simulated using
Ye "process” class object and timing parameters. The data structures, communication packets, processing

clements of EM-3, each functional unit of a PE, and each store are expressed as class objects. Each functional

unit has a packet queue in the input, and processes packet by packet, by taking the first element of the queue

and despatching it to the output queue.
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Table 4 Timing parameters - software simulation
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The simulation parameters used for operation execution are shown in Table 4. Compared to the
earlier conditional operations, the value of the timing parameters used to measure the performance of
NOT(OPERATION) has increased. Output packets directed to the same PE enter the input section with
zero stage delay. The EMIL coded dataflow graph, i.e., the compiler output of the program written in
EMLISP high level language, is the input to the simulator. The simulator interprets and executes a program
written in EMIL code, the dataflow computing graph, and gives the performance characteristics of the EM-3.
A binary router is used in simulating packet comumnunication between PEs. The performance of the EM-3 is
evaluated using this simulator [].

The effect of the NOT(OPERATION) introduced above is observed by rewriting the benchmark pro-
grams and executing them using the software simulator. The software simulator is constructed to give the
effect of the new control mechanism. This is done by defining a new operation set. The performance charac-
teristics of the machine are measured by executing these dataflow graphs in the simulator. The concurrency
in Fibonacci(13) is shown in Fig. 8.

wullolivavd Usajap-01u]

0aeee

10100 booe o84

Ti==

Fig. 8 Ideal datafow parallelism with switch operations
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9.2 Evaluation of simulation results

" Pivmmacet (133

verazen

' L . 1

2 \+ 3 3 32

gk Of Fra

Fig. 9 Execution time with number of pe
The execution time of the benchmark program is measured by varying the number of processing elements.
The results obtained for processing time with switch operations are plotted in graph (b) of Fig. 9. The
results obtained for processing time with NOT(OPERATION) are plotted in graph (a) of Fig. 9. The shape
of the graph does not change, but the execution speed approximately doubles.

Pinmeeet (133

Fig. 10 Waiting time in matching section with pe
Fig. 10 shows the average waiting time variation in the matching section with a varied number of
processing elements for programs written with switch operations and NOT(OPERATION). The waiting
time is reduced to a comparably lower value when the NOT(OPERATION) is used. The packet waiting
time in the matching section is reduced to one tenth of the earlier time.
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Fig. 11 shows the maximum number of packets waiting in the queue to the matching section for a varied
number of processing elements. The time is very low for the NOT(OPERATION).

[ : ’ "37_

Fig. 11 Maximum number of packets in matching queune

Communication packets transfer the information between processing elements and sections inside a
processing element. The packets travel to a defined destination node input, execute the operation with
some other packets, and create another kind of communication packet. A communication packet created
in a sub processing unit of a processing element carries the information necessary to be processed by some
other sub-processing unit. The number of communication packets used in the program execution contributes
directly to the communication overhead.

Result packets are used as external packets. One-operand packets are used to communicate with one-
operand operations, and two-operand packets are used to communicate with two-operand operations which
require matching to perform the function.

'

nocoperation with switch
One operand packets 4148 8673
Two operand (Match) packets 464 4756

Table 5 Number of packets generated
Table 5 compares the one-operand packets and two-operand p ackets generated in the execution of
Fibonacci(13). For example, the number of result packets generated to calculate Fibonacci(13) decreases
from 8673 to 4148. The number of result packets entering matching section which were directly related to
the two operand operations for Fibonacci(13) decreased from 4756 to 464.
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OQoeracion name

distribute
coastant
switch-t
switch-£
notequal
equal

plus

difference

Table

Table 6 compares the number of
operations executed.

aotoverati Wi wi

465 465
144 -

- 841

- 2434
841 -
841 841
232 232
464 464

6 Number of operations executed
operations executed. This shows the reduction in the number of

sec:tion not ooeration ith switch
Input ’ ‘ 1 o D S—
match 1 55
ifezss . 3 4
preexec ° 2 2

exec 218 19

inveo 1 1

exit 1 1

init 1 1
search 1 1
schedule 73 19

output €

Table 7 Maximum’ number of packets in the queue with 1 PE

Table 7 shows the reduction in the

maximum number of packets waiting in the matching section queue

measured when the number of processing elements is one. Decrement of packets to be communicated implies

the reduction of communication cost.
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10. Conclusions

The candidates for the new generation computing machines will be

1. Highly advanced, parallel version of von Neumann computer architecture.

2. Non von Neumann computers with the ability to surpass the performance of conventional computing
machines.

3. Combinations of von Neumann and non von Neumann machines.

This paper discussed the importance of dataflow computing concept which has the ability to challenge
the conventional computing machines, and seems to be the most effective, promising computer machine
architecture for new generation machines. The features of the engineering prototype of ETL dataflow com-
puting machine, EM-3, now under construction, were discussed briefly, and some performance characteristic
measurements were presented. The performance limiting factor of dataflow, the matching bottleneck, was
introduced with practical measurements. The cause for this bottleneck is taken as the number of switch
operations involved in executing dataflow programs.

The inefficiency of switch operations used in dataflow computing models was discussed, and an effec-
tive control mechanism was introduced to eliminate all the switch operations and which eliminated the
matching bottleneck. A new instruction set must be defined to apply this control mechanism. This paper
presented a new interpretation for condition operations by introducing a novel NOT(OPERATION). The
new interpretation can be summarized as

condition ‘C’ = ( C operation) OR (not C operation}

This interpretation can be considered as the very basic interpretation of condition operations. Negation
is used successfully in conditional operation implementation in parallel computing systems. The idea is
extended to support dataflow computing scheme by giving the data value output as the output of condition
operation instead of giving the boolean value output.

The performance of the new mechanism was evaluated at the definition level. It was proved that any
condition operation can be implemented in dataflow computing systems with the minimum of two parallel
operations instead of implementing more than three operations executing in two sequential steps.

The performance of the mechanism was then evaluated at the level of application. The critical path
length of a dataflow computing graphs were measured and compared, and the number of arcs in a dataflow
computing graphs were counted and compared. This also proved that the new mechanism is effective.

Computing is performed in the dataflow environment thereafter to evaluate the performance of the
mechanism. The proposed NOT(OPERATION) was implemented in the EM-3 software simulator and
executed benchmark programs. The measured performance characteristics of the EM-3 were compared with
switch operation implemented EM-3 dataflow model. The measurement comparisons included the execution
times of benchmark programs, waiting times of two operand operations in matching section in the execution,
frequency of operations executed in the execution, and the number of communication packets generated in the
execution. The implementation of NOT{OPERATION) alone doubled the speed of the dataflow computing,
the waiting time of the double operand operations in the matching section decreased to one tenth, and the
:ommunication overhead decreased. The new mechanism eliminated the switch operations completely, and
reduced the number of sequential steps and number of operations to be executed. These factors contributed
to eliminating the matching bottleneck and hence increased the speed of the machine. The mechanism will
improve the efficiency of executing non deterministic programs in any dataflow computing machine model

- which currently employ switch operations. This mechanism automatically reduces remaining packet garbage
collected in matching store and this is discussed in {]. The application of NOT(OPERATION) to simplify
logic program execution in the dataflow computing environment will be discussed in |].

Appendix
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EM-3

The processing of the symbols standing for mental concepts, as opposed to numerical processing, is necessary
in knowledge processing systems. The Electrotechnical Laboratory (ETL) of MITI, Japan, has been con-
structing a Lisp based dataflow machine for non numerical computations such as symbolic manipulations.
This is the third generation of Lisp machines in ETL. The primary goal of the EM-3 project is to study
the feasibility of the practical dataflow computing machine model for symbol manipulations. The EM-3,
a superpersonal dataflow Lisp machine, aims at bringing out the intrinsic parallelism inherent in ordinary

programs.

HOST COMPUTER
(PDP 11/44)

4%4 ROUTER COMMUNICATION NETWORK

CONTROL PROﬁESSOR————K/}ZI ............... PE7

TERMINAL , L

Fig. 1 Block diagram EM 3 prototype

The hardware prototype of EM-3 which we are constructing now, shown in Fig. 1. consists of eight
identical processing elements connected via a 4 x 4 router network, which is a specially developed LSI chip.

In the EM-3 design, we are implementing new parallel processing control mechanisms such as pseudo-
result, semi-result and partial-result in the dataflow computing environment. It has been proved that these
notions revealed a new class of parallelism which was hidden in the execution in LISP group language
instructions, and accelerated program execution in a parallel computing environment. A PE is a special
hardware added MCG68000 microprocessor. All the PEs in the EM-3 process communication packets in

parallel.

o
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Fig. 2 Punctional oraganization of a pe

The functional organization of a PE is shown in Fig. 2, and functions of each unit are described in
[]. The processing in each section is pipeline in theoritically but practically functions sequentially since the
prototype is constructed using microprocessors. Each section of a PE takes in the first member of its input
queue, processes it, and sends it to the output queue. Each section acts independently and asynchronously. A
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detailed description of the prototype, functions of each section of a2 PE and the advanced control mechanism
added to the dataflow computing are given in [],[] and {|. The machine will be in full operation by the end
of this year, and we are planning to construct the more advanced version of the EM-3, the EM-4, in which
the reduced instruction set concept (RISC) is added to dataflow computing.
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