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Abstract

We generalize the notion of "ground states" in the Pirogov-Sinai theory
of first order phase transitions at low temperatures, applicable to lattice
systems with a finite number of periodic ground states to that of "restricted
ensembles" with equal free energies. A restricted ensemble is a Gibbs
ensemble, i.e. equilibrium probability measure, on a restricted set of
configurations in the phase space of the system. When a restricted ensemble
contains only one configuration it‘coincides with a ground state. In the more .
general case the entropy is ;lso important.

An example of a system we can treat b} our methods is the g-state Potts
model where we prove that for q sufficiently large there exists a
temperature at which the system coexists in q + 1 phases; g-ordered phases
are small modifications of the q perfectly ordered ground states and one
disordered phase which is a modification of the restricted ensemble
consisting of all "perfectly disordered” (neighboring sites must have
different spins) configurations. Thz free energy thus consists entirely of
energy in the first g-restricted ensembles and of entropy in the last one.

Our main motivation for this work is to develop a rigorous theory for
phase transitions in continuum fluids in which there is no symmetry between
the phases, e.g. the liquid-vapour phase transition. The present work goes a

certain way in that direction.
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1. Introduction

In 1936, Peierls [1] fnvented-an argument to show that the Ising model on
a d-dimensional lattice, d » 2, with nearest neighbor ferromagnetic
interactions has spontaneous magnetization at Tow enough temperatures. The
system can exist in either a + or a - phase: the signature of a first
order phase transition. Dobrushin [2] and Griffiths (3] later made the
argument mathematically precise to “convince even an unreasonable person”.
This arqument has been extended and new methods have been invented, to prove
phase coexistnece, i.e. first order phase transitions, in a great variety of
systems.

These methods fall into various categories. Most require however that,
1ike in the original Ising model, the different phases be related by a
symmetry of the Hamiltonian. This includes Ruelle's [4] extension of the
Peierls' argument to the symmetric continuum Widom-Rowiinson model. An
outstanding exception, is the Pirogov-Sinai theory [5] and its extensions
[6-15]. This theary applies to general lattice models of the following type:
The system is described by occupation (or spin) variables which can take on a
finite number of values at each site of a d-dimensional regu1ar_1attice,
d > 2. The particles interact with arbitrary finite range periodic
potentials, e.g. an Ising system with one, two and three spin interactions.
The Hamiltonian of the system H0 has n periodic ground states, n finite,
and there is a non-zero minimum energy per unit interface, or "contour”,
separating two ground states: the Peierls' condition.

Pirogov and Sinai study the structure of the phase diagram of the

Hamiltonian Hu’
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H = Hg + ) u.H,
13 j=p V1

in the n-l-dimensional parameter space of "chemical potentials" wuj,...up-1.
The Hj are perturbations which 1ift the degeneracy of H, and produce, in
u-space, the following topological structure of the ground states of Hu:

There are n-lines emanating from the origin on which Hu has n-1 periodic

ground states, two dimensional surfaces bounded by paiE; of these lines on
which there are n-2 ground states, etc.

The theorem then stétes‘that, at sufficiently low temperatures, the phase
diagram perfectly mimics the above structuée. There is a point E(O) at
which there are n periodic phases etc.

This paper as well as our previous work [12] is an extension of
Pirogov-Sinai theory having as its primary goal the understanding of phase
transitions in continuum fluids in which there is no symmetry between the
phases, e.g. the liquid-vapour phase transition. While we have not yet
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succeeded in doing this we te
that direction; see discussion at end. Other generalizations, some of them
closely related to our work, have been carried out recently by various authors
f11, 13, 14, 15].

Example. A simple example illustrates the kind of extensions of the
Pirogov-Sinai theory we make here. Consider a lattice (or continuum) gas with

3 species of particles: A, B and C. The interaction consists simply of a
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hard-core of radius R between an A particle and a B or C particle.
There are no other interactions between the particles. There is thus a
trivial B-C symmetry. The species-have an activity zA, zB and zc. From
the point of view of the Pirogov-Sinai theory the limit zA =z =2 +=

8 C
leads to an infinity of ground states given by either the configuration

"
by
<<
x

wx
or by the set of configuratipns where
wy & {B, C} Vv x.

Since there is an infinite number of "ground states" the standard theory
does not apply. It is intuitively clear however that for large activities,
there will be a separation.between an A-dominated phase and a B-C dominated
phase but no separatioh jnside the B-C mixture, since there is no interaction
to induce it. This suggests that it may be possible to group an infinity of
degenerate ground states into a finite set of classes with each class giving
rise to one equilibrium state (phase) at low temperatures.

In fact our extension of the Pirogov-Sinai theory consists in the
replacement of the notion of ground states by measures over suitable subsets
of phase space called "restricted ensembles”: In the above example these are
the single configuration wy = A V x e ZF (which is a ground state in the
usual sense) and the Gins measure (with no interactions) over the set of

configurations

. d
{w | wy e {B,C} vV xelZ}
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For large zB )

zC and suitable zA we shall have two phases whose
typical configurations will belong to one of these two subsets with small
jslands of the opposite set (and of empty regions).

Moreover, the value of zA where this occurs is asymptotically
(zB J zC + =) close to the place where the free energies of the restricﬁed
ensembles are equals

z = zB+z
Thus we have the same picture as in the usual Pirogov-Sinai theory:
restricted ensemble —> pure phases. The correspondence is as follows: in
the Pirogov-Sinai theory all ground states have the same energy per unit
volume, here the requirement is that the different restricted ensembles have
the same free energy per unit volume. Then, for nearby values of the
parameters specifying the Hamiltonian Hu we'find a nuhber of phases

corresponding to the number of restricted ensembles. One then also obtains a

complete phase diagram in the vicinity of this point.

General Framework

Let us now describe the general framework in which this example fits.
First of all, it is not necessary that all configurations of BfC mixtures have
the same energy. There can be interactions between the B-C partiéles
themselves. What we require about their restricted ensembles is a diluteness
property. By this we mean that if we look at the system restricted to such an
ensemble it has to be in a single phase and satisfy (very) strong clustering

properties. Such properties usda]]y follow from existence of convergent
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expansions in a small parameter characterizing the "dilute" concentration of
defects; hence the name .

In the case of a restricted ensemble being a single configuration (i.e. a
ground state) these properties are trivial so our restricted ensembles
properly generalize the notion of ground state. The B-C mixture in the
example above is also dilute, since the B and C particles are independent,
but there could be some weak interactions between them without destroying the
diluteness property. We prove this for our example as well as for other
models that we treat by means of some convergent expansion (Mayer,
high-temperature etc.). However, one can formulate the general theory by
assuming clustering properties in the restricted ensembles that, although they
are hard to check, should hold béyond the radius of convergence of these
expansions. They are probably true generally for systems in the one-phase
region away from critical points.

In addition to the diluteness hypothesis, we have.to assume a suitable

peierls' condition: consider a set of configurations such that in one region

Al the system is in one restricted ensemble and in a different region A2 is
in a different restricted ensemble. Then we assume that Ay and A2 have to
be separated by a region, called contour, where the system is in none of the
restricted ensembles. Moreover, the free energy of the system, given this
specification, is higher than the one of the system which is in the same
restricted ensemble everywhere by an amount equal to the size of the contour
times a large constant.

Finally, we assume Fhat one can find a point in parameter space where the
free energies per unit volume of the different restricted ensembles coincide.

Then we also want a set of perturbations that completely "1ifts the degeneracy
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8
of the restricted ensembles". Free energy degeneracy of restricted ensemble
is thus similar.to ground state degeneracy in the Pirogov-Sinai theory.

An interesting example that we can analyze, where the entropy is
essential, is the g-state Potts model (on Zﬁ, d > 2) studied by Kotecky and
Shlosman [16] using reflection positivity methods. Here for g large we have
g+l restricted ensembles; ¢ of them are "ordered", each corresponding to a
single configuration with all spins equal and the (q+1)th ("disordered")
consists of all configurations where all pairs of adjacent spins are unequal.
A1l these restricted ensembles have the same free energy for 8 approximately
equal to %-Tog q. For the ordered ensemble this free energy is just their
enerqy (one configuration = no entropy) while for the disordered one it is a
pure entropy factor. Moreover, for q large, all these ensembles are dilute
and Pejerls' Condition holds: that is, all intermediate situations between
total order and total disorder have a higher free energy.

Technically the main idea of the Pirogov-Sinai theory is to realize the
distribution of "outer contours" with the help of a suitable "contour model”.
In the original theory the contours in this model are characterized by one
body potentials and interact only by hard core exclusion, i.e. they cannot

—~ ogverlap. In our case however we have (alas) to consider contour models with

interactions and we use the diluteness hypothesis to prove that these models

enjoy all the usual properties of contour models.

Outline. In Section II we state the theorems that we can prove. We consider
first particular models (Widom-Rowlinson models, Potts model) and then the
general framework outlined above. Next, we prove our results, starting with

the general formulation and then showing that the models are special cases of
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it. In the last section we discuss an alternative approach to our general

results and indicate some extensions.

11. Models and Main Results.

We start by listing several models for which we shall prove the
coexistence of phases. These include both continuum and lattice models. We
then develop a general framework which extends the Pirogov-Sinai theory and in

which all previous models fit. We always assume that the space dimension

R

d > 2.

A. Models

(1) A-B-C model on a lattice

As described in the Introduction, we associate to each site x e Zd a
“spin" variable wy taking four values, A, B, C and 0, where wx =0
means there is no particle at site x € Zd. |

The interaction consists of two parts: 1) a hard-core interaction with
radius R between an A-particle and a B or C particle.

2) a finite range interaction between B and C particles given by

M) =L, 90w, x> 2 (2.1)

d
where (JX(-)},Xt:Z , is a family of interactions which satifies,
i) {JX} is periodic,
1,

ii) {JX} is finite range, i.e. JX = 0 if diam(X) > R,

i) J (w ) =0 unless w e {B,C} for all x e X.
X X X
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We denote the fugacity of A-particles by zA and the fugacity of

B and C particles,taken equal for simplicity, by z,. We prove the phase
coexistence of an A-phase and a B-C mixture phase when 8 s sufficiently

A
small and 2z , z, are large. The "restricted partition functions" Z (n),

8,C . . . . .
z (A), corresponding to Gibbs states in the restricted ensembles, are given
by
Y
ZR(A) z
Z:’C(A) = Z&Al < 7 exp{-BH (w)} .
wep
‘-NXG{B gc}

for all xeA

The restricted free energies fA and fB c are given by

3

We now note that, by employing the high temperature expansion (see

App.l), we have, for sufficiently small 8,

In ZS’C(A) = [A] (Tn 2, + h(8)) + a(8,A) (2.2)
with

[a(B,AY] < g(B) |an[, g(g) >0 as 8 >0,
and h(g) = 1n2 + 0(R).
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Hence fA = fB,C if z;, =z, exp(h(8)). Our results about phase
coexistence can now be stated as follows:
Theorem 1 There exists 8 and EB such that, for each 8, Zy, g <8,
2, > 2, and for some ZA(B,ZO), close to z, exp(h(g) , two extremal Gibbs'

A BC , A BC
states P (-) and P (+) coexist. The support of P (resp. P ) is a
small perturbation of {wA} (resp. the set of B-C configurations) and
consists of a sea of A particles (resp. B or C particles) with small

islands of B or C particles (resp. A particles).

2) A-B-C model in the continuum

1°) In this version of the A-B-C model, there are A, B and C particles

with fugacities zA, zB and zC in the continuum. There is a hard core

interaction with radius R0 between an A and @ B or a C particle. In

addition we have four types of pair interactions ¢ , ¢ s and ¢B

AA" "8,B° C,C ,C

all of which satify the following condition:

Condition A. ¢ S(r) has finite range R and either ¢ 8(r) ==
a

a
for r<r and is bounded for r > r or ¢ (r) =0.
af a8 aB

Notice that in both cases ¢ B(r) satisfies the following strong stability

a
condition: there exists 0 < B < = such that for any admissible
configuration {xj}g=1 j.e. compatible with the hard core condition, and any

ie{1,2,...,n} we have
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Theorem 2. Assume that the ¢'s satisfy condition A. Then there exists
¢ < = such thai for each zA > ¢ there exists 30 and T with the

property that, if 0 B8 < B, and r 5 < rg, We can find values 1z (8)

a
A 8,C
and zC(B) for which two extremal Gibbs states P (-) and P = ()
coexist.
Remark.

Contrary to the situation in Theorem 1, 8

0

and T here depend on z .
A

The larger zA the smaller B8 , r This is necessary in order to satisfy

0° '0°

our diluteness hypothesis in the restricted ensemble.

2°) We may consider another version of this model, in which there is
coexistence between an A-rich phase and a B3-rich phase each of which contains
a small number of C-particles. There is a hard-core interaction between A
and B particles and pair interactions between all other pairs of particles
and ¢ all of which satisfy condition A.

’ ¢ 3 ’
8,8 C,C ¢A,C B,C
Under the above assumptions on interactions we have the following result.

¢A,A’ ¢

Theorem 3. There exists c¢ < = such that, for z > c, there exist so, r

A
and  z, with the property that, if 0 < 8 < Bo» 0z &z and r & rg,
c afB
we can find a value ZB(B, ZA, ZC) for which two extremal Gibbs measures

A B
P (¢) and P (-) coexist.

3) r-state Continuum Widom-Rowlinson Model with Interactions

Here we consider the same framework as in [12] but now allow some
interactions among particles of the same type. There are r species of
particles with fugacities z , a &S = {0,1,...,r-1}. The interaction

a

between o and 8 particles is via a hard-core
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« if [r|] <R
r) = G,B
¢ B( )

0- otherwise .

The pair interaction ¢ among particles of type a satisfies condition A
a,a
for each a € S.

Let us fix the fugacity =z, sufficiently large, put

0

- r-1
z = (zl,...,z } &R

&
and consider the parameter space:
- r-1 . -
U(zo,e) ={zeR ; |z-2(0)] < ezo} ,

where Z(0) = (z,,...,2,) and fz] = Max lz |.
1<igcr-1 1
The following result is the extension of the main theorem of [12].

Theorem 4. Under the above hypotheses, there exists an € >0 anda ¢c <=

such that, for Z, 2 G, there exist 8o Mo with the property that, if

0<Bs Byo and r < o for a = 0,...,r=-1, the phase diagram in U(zo,s)
ac

is as follows:

1) There exists a point io € U(:,zo) for which r extremal Gibbs states

coexist.
2) There exist r 1lines Y, @ =0,...,r=1, starting from io’ for which
a
r-1 extremal Gibbs states {P.}, ie S \ (e}, coexist.
i

3) In general, there exist k-dimensional open subspaces YAC U(e,zo),
1 ]

AN {a}’
extremal Gibbs states {P}, i e S \A coexist on T,
i

A <S, #A =k, the boundary of YA consists of a € A, and r-k
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(4) g-State Potts Model

: d
This model is defined as follows: at each site x eZ, d2> 2, there

is a variable Sy e {1,2,...,q} and the Hamiltonian is given by
Hp(S) = -<x§y>c1\ GSX,SY’
where <x,y> 1is a nearest neighbor pair of sites in Zd.
By using reflection positivity Kotecky and Shlosman [16] proved the
phase coexistence between "ordered phases" and the "disordered phase". Here

. . .
ordered phases correspond to the configurations wl,j=1,---9, given by
X . d
wi(t) =1 for all te?,

D
and the disordered phase corresponds to the subset @ of @ given by
D .
Q@ = {w:w(t) # w(s) for all nearest neighbor sites (t,s)}.
Let us note agaiﬁ that the energy plays the central role in the ordered phase

while the entropy is all important in the disordered phase.

correlation functions by employing the Pirogovfsinai method and then prove
phase coexistence between them. The advantage of our method is that it
doesn't require reflection positivity and that we can obtain information about
contour correlation functions and estimates on the transition temperature.

One could also consider more general interactions and more general phase

diagrams, including several perturbations, see also (14, 153.

Theorem 5. There exists a q, such that for all gq > q, We can find a value
g8(q) with [B (q) - %'ln q| < 0(%0 at which g+l extremal translation

1 D i
invariant Gibbs states P (-),.,.,Pq(-) and P (-) coexist. P (+), ie&S§S,

D
and P (-) satisfy the estimates
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Pl (u(ty) = 1) > %

Pla(to) = 5) = a7, all g, and  Pla(ty) # wlt) > g

where (to,tl) is any pair of nearest neighbor sites.

B. General Framework

(1) Description of the System

We consider a system coﬁsisting of s species of particles. We discuss
it in the continuum but this covers implicitely the lattice case too. We have
pair interactions ¢a satisfying condition A. More general many-body
interactions, for whiéh (2.6) below is finite, can be included as well.

The grand canonical partition function in a volume A< Rd is given by

o 701 Ng
3P A

) = = .

] ]
npt ... ngt
- S S s
[ expl-8A(x! , vovy X2 )T (XL, eeey x0) dx! ... dx .
A B s N g TN g
where 5; = (x{, cees x; ) is the configuration of the ith type of
i i

particles and
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ol S § 2 a 8
H{x veey X2 ) = o (x: = X%) * ees
=y’ g Eel i,y BT
The ... stands for the other many-body interactions and
I(x!, oues x> ) is the restriction coming from the hard-core interactions:
- s .
D . i j . i _.J
el ) = {O if there exists x  and xJZ with Ix]k SRR
- s 1 otherwise '
. . = 1 S .
We abbreviate & (-5n1’ .oy 5{15) and define,
- s
H(g) = BH(E) + | hon, (2.4)
(1=1 a a
h =1log z ,and we write
a a )
N
dv {g) = I(g) dv (§ 2.5
A( ) (g) A( ) (2.5)
~ . S Ny
where v (£) is the natural measure on U 1T A given by
A {n_} e=1
[o 1
s L.a
_ -
) i (na.) dx_

{na} a=1 a
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The partition function can now be written as
Z(n) = | dv (&) exp(-H(g)).

Let the set of locally finite configurations compatible with the hard-
core conditions be denoted by Q. We write &A to denote the restriction of
weQ to A and Q@ = {mA | w e @} for the configuration space in A.

We can introduce boundary conditions by fixing w & QK” A= Rd \ Al
This defines H(Z | w), I(&] w), and VA(E | w),

We introduce a norm on H:

- H(E) |
1HI = sup n(e) (2.6)
s
where n(g) = J ng(g) 1is the total number of particles in §. The sup fis
a=1 ’

taken over all configurations with a finite number of particles that are
compatible with the hard-core conditions. V

In the sequel we shall assume that ®HI s finite.

(2) Restricted ensembles

d d
We cover R with a grid Z of lattice spacing 1 (i.e. we choose this
d
spacing as a unit of length) and we denote by Cj, i e Z the unit cell of
the dual lattice centered at i. These cells will be called "elementary

cubes”. We assume that QC can be partitioned as follows

and we define Q?, 3} as the set of configurations obtained by transiating
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a§, @,. The configurations in a9, q =1,...,r will be our generalized

1!
ground states, while the configurations in Q; will enter implicitely into
the definition of contours.

We define the sets of configurations in our restricted ensembles

% = (wea |l we € ﬂ? Vie )
i

and
ni = {u, | we !
By a misuse of language we often refer to Qq as the qth restricted
ensemble.

Now we illustrate this notion with a few examples:

1°) Ising model

d
Let C0 consist of one site in 2 . Now we have two restricted

1 -1 . 1 + -1 -
ensembles 2 and Q given by @ = {w} and 2 = {u }, where
d —
w(t) =%l for all teZ. @ is empty.
: J
2°) A-B-C model
For the lattice model let CO be one lattice site.

d
We have two restricted ensembles QA = (wA}, wA(t) = A, ¥ teZ, and

d —
QB ¢ = {weQ; wt) =B or C forall teZ}, and Qc, is the
s i
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configuration with no particle at site 1.
For the continuum model one chooses a box C0 such that if there is one

A-particle in C0 we cannot put a B or C-particle in any box Cj with

[i| < 2. However, an A particle is allowed in each Cj and if there is a B8

or C particle in C a B ora C particle is allowed in each Cj. Then

01
the restricted ensembles are given by

QA = {w; there is at least one A-particle in each (j}

QB c = {w; there is at least one B or C-particle in each (i},
and

RS

;. = {w e c,; there is no particle in Cil.
i i

(3) Diluteness of the restricted ensembles

First of all, we define the restricted partition function for the qth

ensemble, ZR(A | wq) with boundary conditions wl g %%

Zo(a | W) = dvA(gimq) exp(-H(E | w%)) xﬁ(a)

where xi is the indicator function of Qi. One can define similarly
restricted correlation functions.

Let R be the maximal range of all the interactions in H and-all
the hard-cores in I. Two elementary cubes Ci’cj are R-close if d(Ci,Cj) < R where
d(Ci, Cj) = inf{d(t, s): t e Cj, s € Cj} and d is the Euclidean distance.
A set of cubes is R-connected if any two cubes of that set can be joined by a

sequence of R-close cubes of that set.
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Now we state our diluteness hypothesis:

(Al) We assume that, for all A's that are union of elementary cubes and
all e Q%—,a real valued function <¢c(+ | A, wq) is defined on the set of
R-connected sets of elementary cubes in A, and satisfies the following
properties:
; q .9
1)z (0| w) = exp(-kla] - DK(i, w))

i

*

)

{G ,...,Gp} 1
1 n

JONWS u) (2.7)

W =2
—

-«
<

where § runs over i's such that d(Cj, A) <R, and §* runs over sets

i
such that all Gj are R-connected and d(Gj, Gj) >R, 1# j.
ii) z(G | A, wq) =1 if G consists of only one elementary cube.

. q q . q

iii) (G | A, w') depends on w’ only via “r(6,R) where

A{G, R) = {elementary cubes C in 7 such that d(C, G) < R}. In particular
a —

¢(G | A, w ) = ¢(G) does not depend on uq, A if d{G, 4 > R. However

¢(G) may depend on gq. Moreover, g(G) is translation invariant (or

- d
periodic) under Z .

q
iv) sup l z(6 g’ w’) l < 1 for some €g that will be chosen to be
w3, A,G €y
R R |

small later. |G| is the number of elementary cubes in G.

v) K is independent of A, wq, and K(i, wd) depends only on wﬁ(c R)}
.]1
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they may both depend on q. Moreover, sup [K(i,wq)l <@,
i,wd,A
Remarks
1) Formula (2.7) is the general form of most convergent expansions for the
partition function: Usually € tends to zero when some parameters
(temperature, fugacity) of the system approach their limiting values. Then,
for these limiting cases around which we perturb, K s the bulk free energy
and Z K(i, w) the boundary free energy. We assume in ii) that
c(one1cube) = 1 because we Zan anyway absorb this into K.
2) Once we have an expansion of the form (2.7) for the partition function, we
obtain the expansion of the free energy from standard algebraic techniques.
(See Appendix 1.) As a result, the limit
f(q) = -lim -r}\—‘ 1og Z(A | o%)
[A]>= ,
exists, is independent of mq and the rate of convergence can be studied in

detail.

(4) Peierls' condition

We start with the definition of contours. Given a configuration w, a

; ; q ) q
cube Ci is regular if wci € Qi for some q e {1l,...,r} and mcj € Qj’

with the same gq, for all j such that d(Cj, Cj) < R. A1l other cubes are
irreqular. The set of irregular cubes of w 1is denoted I(w). We consider

only configurations such' that I(w) is finite i.e. w belongs to one of the
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restricted ensembles at infinity. We decompose I(w) into maximal

n
for i # j. A contour (T, wr) is a pair made of such a (2R+l)-connected

(2R+1)-connected components rl, wees, [« By definition, d(Tjy, rj) > 2R+l

component, together with the restriction mr of w , to it. (The somewhat
unusual 2R+l constant will be useful later when we show that different
contours do not interact too much, e.g. in eq. (A.14).) T s called the
support of the contour. .

The complement of T is made of several connected components, one of
which is infinite. The lattgr is denoted Ext ' while Int T is the union
of all the finite ones. On the boundary of each component the configuration
w belongs, by definition, to a definite restricted ensemble. We write o(r)
for the restricted ensemble attached to Ext I, and Int T is decomposed

r

into U Int I according to the corresponding ensemble. We write
m=1 M :

v(r) = jInt T},
8(ry =ty IntT and
e A if d(r, x) > 2R + L,
We define Z(T | A, mq) as the partition function obtained by

integrating over all configurations in QA having only one contour (T, mr),
whose support is T and having specified restricted ensembles outside of T.
M)

Q(r |4, ul) 2L LA 0)
Zp(n | w9)
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peierls' Condition:

(A;g) We assume that
(1) QT | A, @) < exp(-p|T)

for all A orT, o6 Q% and all q =1,...,r. p will be assumed later to be
large.
We also assume that

-

(ii) there exist A,> 0 and c <= such that

<exp an(-) > (T | A, wq) < exp(cp|T|)> for 0 <X <Ay,

nr(z) is the total number of particles in I, for the configuration £
he expectation value < >(T |A, wq) is obtained by conditioning on
configurations having only one contour, whose support is T (as in the

definition of Z{r | A, mq)).
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Remark
This is soﬁewhat different from Peierls' condition in the Pirogov-Sinai
theory in two respects: First of all, (A.2)(1) says that a contour has a
higher free energy (not just energy) than the restricted ensembles. Moreover,
we shall assume p to be large. But since B is absorbed here in the
' definition (2.4) of H, our p corresponds to B8p in (5], in cases
where restricted ensembles reduce to  ground state configurations. Part ii)
means that contours do not contain too many particles. It will be used later

when we perturb Ho’ .

(5) Perturbations of the system

We start with a system with a given H having r restricted ensembles

0’
and satisfying (Al) -(A2). Moreover we assume that the free energies of the

restricted ensembles are all equal:
(A3) f (Ho) = f(Ho) q=1,2,000,r .

Now we introduce r-1 perturbations,i.e. Hamiltonians Hl’ cees Hr-l

like (2.4), with the same range as Hj and with norm 1HjI, (2.6), equal to

one.
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We write
C r-1
H(u) = Hy + 1 uiHy
i=1
r- r-1
with u = (¥1,...,0p-1) €R and U(n) = {u eR | ful = max [uj] < b
i

We have to assume some smoothness properties for the perturbations.
(A4) The restricted partition functions, defined for the perturbed
system H(u), have an expangion like (2.7) with coefficients Ku)d,
K(i, w] u) and g(-,u). Moreover, there exists n > 0, and C < =
such that, for all u e U(n), the derivatives with respect to u,
IK*(u)] , |K'(i, o] u)| are bounded by Cp and

g'(G, w | A, o
sup = <C .
NEEE

(e.g. (AL i), |G} » 2 if ¢ # 1).

From (A4) one concludes that the thermodynamic free energies f(q, u)
of the restrictad ensembies exist and depend smoothiy on wu:

d 1 . ;
izﬁ;- f(q, u)l < Clp +1) i=1,...,1-1 (2.8)
i

for all u e U(n) provided € is small enough. (See Appendix 1).
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Qur last assumption expresses the fact that the pe}turbations
Hls oees Hpe-1, .comp1ete1y 1ift the degeneracy of the free energies assumed in
(A3):

For each u & U(n) we define
t(u) = (t(1, W), ..oy t(r, W)

where t(q, u) = f(g, u) - min f(k, u).
1<k<r

r
t(u) e O, the positive octant in R .

>

-1
(A5) t maps U(n) into a neighborhood V of the origin in O and t

is Lipschitz continuous on V with constant L:

- -1
[t "(b)) - ¢ (b))l <L lo, - b2[ b, b eV,

This imples that for each subset A< {1,...,r} there is a k-dimensional
subset of U(n) for which f(q, u) reaches its minimum exactly on those

q's that belong to A, where k =r - #A.

Now we state our main Theorem,

Theorem 6 Assume that we have a system, specified by H, and a set of

0
A5), Fix all constants

perturbations Hi, 1 =1,...,r-1, satisfying (Al) - (
except €;, 9, and n. Assume that e, and n are small enough and ¢
large enough. Then we have a Pirogov-Sinai phase diagram in U(n) Just as in

Theorem 4, i.e. one point with r phases, r lines with r-1 phases etc.
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I1I11. Proofs

The proofs are divided into two parts: In Part A, we prove our main
result, Theorem 6. Then in Part B, we prove Theorems 1-5 simply by checking

that the hypotheses of Theorem 6 are satisfied in each case.

A. Proof of Theorem 6

The proof is similar to the one of Pirogov-Sinai [5]. Therefore, we
freely refer to their results and we indicate only the main modifications.

Moreover, we defer most of the technical parts of the proof to the Appendices.

1. Recursion relations

We start by showing that the physical model satisfies recursion relations

similar to those in Pirogov-Sinai theory. We define the partition function

with q boundary conditions as follows: Let wl e ﬂ% , and
2a | W% ) = S dv (e | %) exp(-H (8 | %)) x5, (8) (3.1)
where
1 if all contours T of £ satisfy d(I, A) > R +1
X3, () =
0 otherwise

To each configuration is associated a family of contours and, in each
such family, we distinguish the outer contours namely those whose support does
not lie in the interior of any other contour of the family. We can evaluate
(A | wq) (Teaving out the index u) by first integrating over all
configurations with a giyen set of outer contours and then over all possible

sets of such contours:
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q

Z(a | W) = a;:f\ [ v ) Zo(ma | &, w) (3.2)

where the sum ZO runs over all sets 3 = (rl,..., r } of outer contoursin
n

A, such that
d(ry, rj) > R + 1, for i # j, and
d(r, A) > R + 1, res.

Zo(w3 | A, mq) is the partition fupction (3.1) but restricted to those
configurations having (3, wa) as outer contours. Finally,
dv¥{w ) = T dv¥(w) (3.3)
3 Ted

and dv*® is the restriction of v to contour configurations, namely those

configurations qr € Qr for which all cubes in T are irregular and which
have an extension outside T for which all cubes Cj, with d(Cj, r) <1
are regular. We notice that the support of dv* does not depend on

w € Q%. because the hard-core has a range at most R and the distance
between T and K'_is greater than R. “For the same reason, dv*(wa)

can be factorized as in (3.3). Also, since the cqntours are "thick", the

components of T decouple if we fix a contour configuration wr. Actually we

can write:

z°(ma | 4, o)

r n (3.4)
= ZR(A‘\e(a) | wd, wg) ol [exp(-H(mr)) mEI Z(Intmr | wr)]

where 8(3) = Lj e(r) .
Ted
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In order to justify (3.4) we observe that, since the contours are thick, the
exterior of the contours, A \ 8(3) interacts only with that partlof the
contours which is in the qth restricted ensemble. We denote this part of the
contour configuration by wg. Therefore we have a restricted partition
function outside 6(3). The same observation applies to Int I': For each
m, we have m boundary conditions on Intgl. (but there the partition
function need not be restricted). Moreover, the contours r' in Inty

satisfy
d(r', Tntyr) > R + 1
- because the distance betwee; contours satisfies such an inequality. This
justifies (3.4).

Now we define interactions between contours, and between a contour and a
configuration w € Q% . We start with the definition of the proper weight
¢(mr) of a contour configuration. (this is similar to v(r) in [5].)

Define Z(wr | A, mq, p) as the partition function restricted to those
configurations whose unique contour is (r, wr). (Notice that this is
different from Zc(wr | A, mq, u) because nere (T, ur) is the unique cutar
contour.)

We shall use later the formula, analogous to (3.4) but for this partition

function (we drop wu here):
Zv(w | A, wq)
r

-
= Zo(a\e(r) | Wl wg) exp(-H{w,)) (mr__xl Zo(Int T | w;‘)) (3.5)
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Let
w(wr | A, o W) (3.5)
q q T
= nZ(e | A, e, w) +InZ (0] w,u)+ [ (fla, u) - f(m, u))|Intyr|
r R m:l

Notice thas the last terms in the right hand side of (3.6) was added to cancel
the volume terms of {Intn} and that they vanish for u = 0.

Peierls' Condition could be stated as follows:
q, _ * q
QT | A, w) = [dv (wr) eXdI-w(wr | A, w, u=0)]< exp(-p|T|) (3.7)

Now ¢ allows us to extend Peierls' Condition to wu # 0 (part c of the

following Lemma).

Lemma 1.
Under the hypotheses of Theorem 6,

a) tim ylw | A, mq, u) = ¢(w | w) exists and is independent of mq.
A r T

b) There exists ¢ < = such that g (v, | A, mq, w)] < n{w.) +co It
dui T T

This bound holds uniformly in u € U(n}), uq, A, wr and ¢ does not depend

on  p. .

&) ¥ ueuln),

2(r, ¥) = [ e ) exp(-vle | 4, ot 1))

n

exp(- £ |r])
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d) There exists A > 0 and ¢ < = independent of p, such that

2(r, 0)7F [ av¥luy) expl A nw)) - wlap | 4, w9, u)]

< exp(ce|T])

Proof: See Appendix 1.

Now we define the interactions between the contours:

First of all, let

q . q
(w A, w,%u) = Y(w A, w , u) - ylw u
érl ,)w(rl )w(rl)
denote the interaction between the contour (I, mr) and the Eonfﬁguration

mq eﬂ%.
Next, define

a 9 q n-l
CZpane(d) | v, w0 )(Zp(a | w )

"
exp(-¥(w, | A, u)) = (3.8)
m Z(a\8(r) | w9, mf})
Ted
where n = number of contours in 3 and let
- Wa | A, 0) =W | A, )+ T Flw | A, ) (3.9)
] 3 res T

& is a one-body interaction for wr (or it can be viewed as a two-body

interaction between w and wq) while W contains many-body interactions

r
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between outer contours (and with wq). Due to assumption (Al), all these
interactions are weak (for € small) and rapidly decaying with the

distance between outer contours. This will imply that the contour models
defined below enjoy all the properties of the one in the Pirogov-Sinai theory.
(See App. 2).

Now we summarize our recursion formulas (3.2) and (3.4):

Define the dilute partition function for W9 € Q% ,

z (| o)) = 21 | wq)/ZR(A | ¥ (3.10)

(Dividing by the restricted partitionAfunction is the analogue of

substracting the ground state energy in [5].) The crystal partition function

for w , where mr is a contour configuration with o(r) = q, is given by

.
= exo(-4(agu)) T L2 (Inerlofn) exp((f(a,) = Flmu)) [Iner D] (3.10)
m=

This can be equivalently defined as

1im z"(mr | A, W, w) / z,( | Wb )

Arem

(uSe (3.4), (3.6) and Lemma l,a for the existence of the limit).

Lemma 2.

q q
Let w' e QK , then

z (Alwq) = ZO [ dv*(w

q
d L a) exp(-w(mall\,m ) n oz (wr[u)

res ¢
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Proof:

Insert (3.4) into (3.2) and use the definitions (3.6), (3.9), (3.10),

3.11) of v, W, Z , Z .
(3.11) of ¥ d ¢

2. Contour models
We define now contour models: they do not necessarily correspond to

physical models but satisfy recursion relations similar to those of Lemma 2.

Fix q¢ {1,...,r} and let C’q be the set of contours with o(T) = q.

A contour functional Fq js™a function defined on the set of contour

configurations in C d satisfying:

q
17 (u)|
sup @ ———— (=
Ty n(mr)+|r|

A contour functional is called a t-functional if it satisfies the two

conditions:
0] @) exp(-Fq(wr)) < exp(-t|T]) (3.12)
for all contours in € q.

ii) <exp t=la(+)>(r, FI) < exp (tzlrl) (3.13)

Here < >(I, F3) 1s the normalized expectation whaose normalization is the
left hand side of (3.12).

Remark
Due to Lemma 1, part ¢ and d, v(up | A, uf, u) is a t-functional with
= p/2, for all u e U(n) and p large enough (p > max (2x'1, 4c) with A, ¢

as in Lemma 1). )
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Now we define the crystal partition function with t-functional Fq:
r
q
2o | F) = exp(-F (0 ) T Z(Intpr | F)
T T m=1
where Z(A | Fq), the dilute partition function, equals:
q, _ v * q
Z(A] F) = 77 dv¥(w Jexp(-W(w YV)on Z{w | F).
3cA 3 3 Tred r
Here 20 = sum over outer contours, and
. q,
Ww ) = Vim W(a | A, w) (3.14)
:3 A+re 3
= 1im ﬁ<ma-| A, w)

Ave

(the existence of the 1limit and its independence upon wq is proven in
Appendix 2).
The contour model is defined as the probability distribution for outer

contours given by

pa | FI) = —E— ] &' (w “W(w n oz £9y.
(a | F7) Z(A]Fq)j (wy) exp(-Wlw;)) T (wp | F)

We also define the dilute partition function Z(A | F, mq) with boundary

conditions W e ol , as

20 fdv*(u) ) exp(-W(w | A, mq)) n Z(w | F).
3 3 3 " res T
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Now, we can prove, for Tt large enough and €, small enough, that these
contour models enjoy all the properties of the Pirogov-Sinai contour models.
The main aifference comes from the-iﬁteraction between contours and moreover,
due to these interactions, the contour models depend on u. As we show in

Appendix 2, one proves that

S(F9, ) = Yim T%T log Z(A | F9, w9, u) (3.15)
A

exists and is independent of wq. The same limit is obtained with

Z{A | Fq, u).

Moreover,

IstFY, )] <o) (3.16)

and the boundary term:
atn | FY, W = an 2 1 FY W ) - s )

satisfies

lata | FY, o, )] < oce™) Janl

One obtains also the existence of the thermodynamic limit for the
correlation functions of the contour model; the latter cluster exponentially
ard satisfy a Peierls' estimate as in Propositions 2.1 and 2.2 of [5]. (See
Appendix 2.)

Finally, S(Fq, u) depends smoothly on u and F: Let Fl, F2 be two

t functionals (with the same q) and ul, M, e U(n): Then,
1]
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-T
1s(F1,_u1) - S(Fz’ "z” < 0(e )(IIIF1 - F2||| + Iul - uzl) (3.17)

where

) exp( - 7 &()[F(up)]
[TIFLT = FSUP n(wr) FTe(T)] (3.18)

)wr

with &(I) = diameter of [. Notice that we have replaced, for convenience,
wa" in the definition of the“similar norm in [5] by +t/2 and that n(wr) has

been added.

3. Proof of Theorem 6.

We start by defining the contour models with a parameter b > 0:

Z(aF,b) = 5% exp(b V(3)) [ dvlw ) exp(-W(w)) T Z(w_|F) (3.19)
ICA 3 3 Ted T
where V(3) = J V(I), and one defines similarly Z(n | F, b, mq).
Ted

The main estimate concerns
alh | F, by oty w) =10 Z(A | F, b, @%, w) - S(F, )AL - blAL (3.20)
Nofe that, by the same proof as the one of eg (2.40) in [5], we have
a(n | F, b, mq, u) < o(e-T) Jan|

Lemma 3.
let F, F' be twc t contour functionals (same q), wu, u' € u(n),

b, b' > 0:
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la(a | Fobyowy w) = ala [P, b, w'y ut)] < 20b = b'] A

+2 exp( = 5+ 5 8(A)) (Al [[IF = F'[1] +0(1) Ju - w'l-]A] (3.21)

Proof: See Appehdix 2.

Given these contour models with parameters, one can set a one to one

correspondence between them and the real model, as in Proposition 2.6 of [5]:

Zo(ap | w) = exp(by V(1)) Zlop | F)

where
q
b = f(q, u) - S(F, u) +a (3.22)
q u
and o is such that inf b = 0.
q .
Fq is given by the equation:
H .
Flop | ) = oy | w) + THop | Fyou, 0) (3.23)
r
wnere THw. | F oy b) = § (alintar)fS, of, w) - aliatgr)F0, 87, ol w0
T m:l r T

From Lemma 1, ¢, d, and the estimate

Tq(wr | F, u, b) > 0(e )]ar]| ,

we know that the right hand side of (3.23) is a t functional with <t =p/4.
On the other hand, one proves that T 1is a contraction in the space of t

functionals equipped with the norm (3.18), just as in [s1.
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Moreover, we want to know that F is Lipschitz continuous in u for the
norm ||IF|l]l. This follows from (3.23) : ¢ 1is Lipschitz continuous by Lemma
1,b, and 'T depends on 1 directiy.and indirectly (via F and b). For the
direct dependence, one uses (3.21) and for the F and b dependence we
follow [5, p. 65]. We know that f(q, u) depends smoothly on u due to

(2.8). One arrives at an estimate
q q ' Zq
1 s Fllll <Cplu-w ‘ (3.24)

for some constant C< =. .

Now we use boundary conditions to construct the Gibbs states
corresponding to the restricted ensembles for which b = 0. -To complete the
proof of the Main Theorem, we sti1l have to show that, for some
neighborhood V of 0 in the positive octant Or’ and for any b e V, one
can find a u e U(n) such that equation (3.22) holds. This is proven almost
as in [5], but we have to take into account the non-linear dependénce of
f(q, u) on u.

If S(F) were zero, then (3.22) would follow from our assumption (A3).

—

So, define

_.-1 q ; q
G(u) =t "[oy - S(F, ) - ITZ;Zr (by - S(FJ, u))]

with t as in (A3).

If, given b eV, we can find uw e U(n) so that w = G(y) then we

obtain a set of equations equivalent to (3.22).
1
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a (u) = bg - S(F9, w) - min (b, - S(FY, u))
q 4 " 1<g<r q s

-1
Then, since t (0) =0, and t is Lipschitz continuous,

1t (a(u))] < Llalw)] < 2Lib| + ZLIS(FS, W)l < 2L]b] + 2L 0(e)

by (3.16). -
This shows that G maps U{n) into itseif if |[b| {is small enough.
To prove that G is a contraction, we write:

1

1t () - t ()] < La(u) - alu')] < 2L max [S(FY, w) = S(FL, )]

q
<o(e ) L (UFY - FL I+ u - w'D
by (3.17)

_ <0(e” ") L(Co*+ V)|u=wn"]

by (3.24). This shows that G is a contraction for p large, since

T = p/b.

39
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As we explained in the beginning of this section, we prove these Theorems

by checking in each case that the assumptions (Al) - (AS) hold and then using

Theorem 6.

Proof of Theorem 1

We have explained in Section II (B, 2, 2°) what the restricted ensembles

are in this case: C0

contains one lattice site and one restricted ensemble

js just the configuration cogtaining an A particle at each site, while the

other ensemble is defined by the condition that each site be occupied by a B

or a C particle. The restricted partition functions are:

. 1Al
ZR(A | A) = 25

BC [A] BC
Z(A]w )=z ) exp(-8 H (0 | w )
R mx=B,C A A

X€A
where uBC € Q%’C and

BC 8C

H (w w )= J (w w
(o | X:E x( X |
X NA#¢

The diluteness of the A restricted ensemble is trivial,

(3.25)

We use the standard high temperature expansion to verify the diluteness

of the B-C mixture: Write

L] BJ

8d
eX:(e

X-1) +1
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and expand the product over XANA #¢, in (3.25).

. BC
It is obvious that ZR(A | w ) can be written in the form (2.7) with

exp(-K) = 2z

BC
K(i, w ) =0,

The G's are ordinary high-temperature graphs i.e. R-connected sets of

lattice sites and

n/ax

a6 | a &6 = G ] )
w_=8,C {Xl,...,X
XxeG

Lexp(8dy fu, | w5€)) = 1]
1

} o=l i

k
(3.26)

where the second sum is over all sets {Xl,...,Xk} of subsets of G such
k

that U Xy = G. .
i=1

A1l other conditions in (Al) are easy to check: 1i) holds since we
assumed in (2.1) that JX =0 if X = one site. iii) is obvious from (3.26),
with ¢(G) having the same period as (JX}; jv) holds because it is easy to

bound (3.26) by

(ca)® < (cay'CI/R

for some suitable constant C. We have k> |G|/R because the interaction

1/R
has a range at most R and {Xl,...,Xk} covers G. Thus, e, = (c8) / .

v) is trivial.
In order to check Peierls' condition, we first choose the values of

zA, Z, and B around which we perturb. Using this high-temperature
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expansion, and the polymer formalism (see Appendix 1) we have, for B8 small,
BC o
1n ZR(A | w ) =]al (On z, * h(g)) + &(8, A) (3.27)

with |a(8, A)| < g(8) [aA], h(8) = 1n 2 + 0(8) and g(B) » 0 as 8 + 0.

If we take

A -
zA = zA Sz, exp h{8) (3.28)

then the free energies of thg restricted ensembles are equal (this verifies

(A3)) and, moreover, Peierls' condition is satisfied: due to the hard-core

condition, any contour contains a number of empty sets proporfional to |r].
Let us check Peieris' condition in the form of inequality (3.7). Inserting

(3.5) into (3.6) (for wu =0) and using the expansion (3.27) for

1n ZR(A | ch) with the explicit form of &(A, B) given in Appendix 1 eq.

(A.7) (with K(i, w) = 0), one obtains a cancellation of volume factors

(outside and inside T) leading to a bound:
BC A . . :
QP | A, w ) < exp[—(zA# {empty sites in T}-2g(8) {T|)] (3.29)

This gives Peierls' Condition with o = EA'

Now, since we have two restricted ensembles we need one perturbation:
take ZA = iA exp u. For all values of wu, the smoothness hypothesis (A4) is
trivial: the B-C restricted partition function does not depend on wu. Now we

check (A5): for u >0

t(A, u) = zA(exp u - 1)

t(BC, u) =0
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and, for w< 0
t(A, u) =0, t(BC, u) = zA(l - exp u) .

, if b=(b , b e 0,
So, i ( ) 2) )

-1
t (b) =In(l +b /z )+ In(l -b_/z ) .
(b) ( | A) ( 2/ A)
- -1 .
The Lipschitz continuity of t follows from this formula.

AN

Proofs of Theorems 2, 3, 4

The proofs of these Theorems are quite similar to each other and to the
one of Theorem 1; We discuss in detail the modifications for the proof of

Th. 4; Th. 2 and 3 are similar. We choose C, small enough so that two

particles of different species cannot be found in tne same or in adjacent

elementary cubes. The restricted ensemble né} consist of all admissible

contiguraticns in CO contzining at least one g-type particle. The diluteness

of the restricted ensembles follows from the convergence of the Mayer
expansion, which holds provided B8 and T (= the maximal hard-core radius
between particles of the same type) are sma11—enough (debending on zq, so that
gz _and z rg are small). Note that we perform a Mayer expansion not only for

q q
the interactions ?qq but also for the constraint, imposed by our definition of
the restricted ensembles, that there is at least one particle in each cube Ci'
However, for zq large, this is easily handled : the weight of an empty cube in the
expansion is exp(-zq) (since lCi[ = 1). The farm (2.7) is unusual for a Mayer

expansion but one can obtain it by inserting

n

1= I r I
ap § Tey )
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into each Mayer graph ( n is the number of particles in the graph, ICi the
characteristic function of Cj), and expanding the product. Then one gets a
Jattice pélymer expansion of the férﬁ (2.7). Alternatively, one can derive
all results using the ordinary form of the expansion and repeating the
arguments of part A of this section.

In any case, the Mayer expansion allows us to'write:
flq, z) =2 +h(8,z), q=0,...,r-1 (3.30)
q q q q
for the free energies of the restricted ensembles, where

Ing (8, 20| < 0(523)

q
with & = max(8, r:)

d
|dzq hg(8s 2g)| < 0(sz) (3.31)

This implies that, for fixed z, and ¢ and for & small enough, one

can find a point (f,, e z L) in U(zo, e) for which all the free
1 r=i

energies are equal:

-~

f(q, zq)=f qQ =0, eaa, -1

Thus, for this value of (z ), (A3) holds and Peierls' Condition also
q SakA
holds because
- due to the hard-core interactions the number of empty cubes in each contour

I is proportional to |T|
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- the empty cubes imply a loss of free energy of order bexp[-ﬁ]empty cubes] ]

- using the Mayér expansion, one can cancel in (3.6) the volume terms exactly,

inside and ouside I, leaving only a boundary term 0($ 23) Iri.
Thus, the Peierls’' constant p = z, since f = z, in (3.22), due to
(3.30).

Now we take as perturbations of our system ul,...,u 1 with
. r-

exp u =2 /;
q q q

If u is not too large, the Mayer expansion still converges, thus
proving (A4).

Note that, with this definition of the perturbations, U(zo,s) in
Theorem & is, for ¢ small enough, included in what we denoted by U(n) in
the general framework. '

Part (ii) of.(ég) is trivial for lattice models but not here. Our
argument is similar to the proof of Lemma 5.2 in [12].

q

r
Write n§J= ) nr(-); it is clearly sufficient to bound each

n=1
Q=<

cexp(rn ())> (T, ¥) Q= 1yeer .
q q
<eXp(an(-))> = f <exp(xnr(-)) | y> P(y)

where in < | y> we condition on the location (y) of all particles of a
species different from gq. But, since the particles of a different species
interact with the qth species only through hard-core exclusion, < ly> fis
equivalent to the expectation value in the qth resfricted ensemble in a region

A (y) where the gth species is allowed, given y,
q .
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<exp(Ang(')) | y> = <exp(kng('))>g (a_(y)) .

Now, since this latter quantity is an expectation value in a restricted
ensemble we can use the Mayer expansion to control it. But then, <exp An>
js just a ratio of partition functions with a;tivity z in the denominator
and exz in the numerator.

Thus we can bound this by
exp(0(X) z_ |a (y)]) < exp(0(x) z_|T])
9 q q

but, since o = 2z, and z_ =z, we have proven (A2)(ii) for. small X .
q YAt
Now we come to (A5). In order to obtain t ~, we have to find

Z 400052 such that, given b e 0
1 r-1 r

for q = 0,...,r-1 {with r identified to Q) . By (3.31)
the right hand side of (3.32) is a contraction for & small enough.

Moreover, the solution is Lipschitz continuous in b.

Proof of Theorem 5.

Qur elementary cube C0 will be an elementary cube of the lattice (or a

square here since we shall work in d =2 for simplicity).

. m .
Qur restricted ensembles are: @, m = 1l,...,q9, corresponding to a
L]

2
configuration Sy equal to m,¥ x € Z. These are the ordered ensembles.

9? : all bonds <xy> on the boundary of Ci are broken i.e. Sx # Sy. This
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is our disordered ensemble. The diluteness of the ordered ensembles fis
trivial. For the disordered ensemble, we use a large q expansion, similar
to high-temperature expansions. (q-1 replacing 8.) The restricted
partition function, ZR(A | mD) js just equal to the number of configurations
in A such that Sy # Sy, ¥ <xy> NA # g (where Sy, y e A s given by
w ). Indeed, for all the disordered configurations, the energy is zero. We

write

D
Z (A, w) = § I (1 - 8(Sx, Sy)) (3.33)
R Sx=l <xy>NA* ¢
B xeA . .
cof B3]
Sx=l LSX=1 J

Put K in (2.7) equal =-1n q, and expand (1l - 6(Sx, Sy)) in (3.33) into a
Mayer series. The result is a sum over sets of two by two disconnected

graphs, as in (2.7), with G = ccnnected set of nearest-neighbor pairs

_ 1
e(6) = sz q <x§>eG('6(sx’ Sy))
x€G

G ={x |3y, <xy>eG}.
i . -(|6]-1)
Due to the & functions, ¢g(G) 1is equal to q — . But for each G,

6] >16]/2, |G| = number of n.n. bonds in G. So, (Al) is satisfied.
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From (Al) and the expansion for the free energy (Appendix 1) we obtain
1
f(0, g) =1ngqg + 0(33-

On the other hand f(m, 8) is a pure energy term, equal to 28 (2 replaced

d
by d in Z ). Thus we can satisfy (A3) by choosing 250 = f(D, q), i.e.
By = % In q .

As perturbations, we shall only take 8 - B, (we could introduce more
perturbations, thus getting 2 larger phase diagram). All the ordered phases
are treated as if they were only one phase .using symmetry. Given this, (A4)
and (A5) are trivial to check.

Now we prove Peierls' estimate (A2). This was proven in [16] using
Reflection Positivity. Here we do not use this condition. The proof is
somewhat technical but the idea is easy: contours contain squares where not
all bonds are broken (Sx # Sy) but not all are unbroken either., These
configurations loose on the energy side with respect to the ordered ones
(unbroken bonds) and on the entropy side with respect to the disordered
ensemble {broken bonds). -

Let Z(a | u, b) be the partition functionvin A where we sum over all
configurations for which the set u of unbroken bonds and the set b of
broken ones are given.

Given u and b, let Ek = (si;es with k u-bonds attached to them} (we
use Ek also for # Ek). For d =2, k runs from 0 to 4.

We claim that, for any given set u and b and B = % in g,
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(E

3
+€,) F{E +E_+E.)
Z(A |_!,_E) < g 0 -4 qd 17273

. (3.34)

Assuming (3.34) we prové Peierls' Condition as follows: Define a contour
square to be a square Cj such that some bonds on its boundary are broken and
;ome are not. With our definition of contours, it is clear that each contour
I contains a number of contour squares proportional to |T| (since our
contours are thick, all squares in T need not be contour squares). Now, all
sites contained in a contour:square cannot belong to E0 ] E4. Thus, the
number of sites in EIU E UE_ is again proportional to |r], say larger

3 211}

than C|T]. There are at most 2 ways of specifying which bonds are in

u and in b, given T, since they are automatically specified outside T.
Finally, the partition function for the restricted ensemble is, when

g = % log q, equal to q“‘l (up to boundary terms), so we get a bound

1 C
- F{E,+E,+E,) - £
AT | A, ) < 21T q i 5217 q 7

(3.35)
which implies Peierls' Condition. However, one has to add two remarks: wehave to
use expansions in order to properly control the effect of the boundary

conditions on A. Moreover, B8, is not equal to %-1n q but so close to it

that it does not affect estimate (3.35).

So we are left with the proof of (3.34). We evaluate the partition
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function by assigning to each site in Ek an energy faﬁtor and an entropy
factor in such é way that the product of all these factors over all sites
gives an upper bound (equal to the r.h.s. of (3.34)) on Z(A | u, b).

The energy factors are easy: Put qk/4 for each site in Ek (8 = % In q .

and each Wbonds belongs to two sites). For the entropy factors, we give ¢

to each E, site (since there are no u-bonds attached to those sites, the spin
. 1/2 1/4

has no constraint), g to each E1 and q to each Ez: Indeed we

have to allow for one factor of q for each connected set of u bonds. It is

an easy geometrical observation that in each connected set of bonds

E 3
1
L+ g
(The simplest cases are: two end-points i.e. E =2, E =0 ora closed

1 2
loop with at least 4 corners i.e. E1 = 0 but E2 > 4). Multiplying together

all these factors gives (3.34).
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IV Alternative formulation and concluding remarks

In this Section, we discuss further the meaning of the hypotheses of our
main Theorem and how they could be improved to give more general results.

We first formulate a more physical hypothesis which would replace (A1)
and be sufficient for our purposes. Unfortunately the proof appears to be
more complicated with this hypothesis, so we used (Al). Although assumpt ion
(Al) looks rather odd, it expresses, as we have seen in the proof of Theorems
1-5, the general form of most cluster expansions. (We remark thét, in
general, one cannot avoid, in (2.4), the term exp(-K[A] - z K(1, mq)): It
occurs already in the trivial example where Qq is reduced1to one point.)

Qur alternative hypothesis essentially requires strong clustering
properties of the correlation functions in the restricted ensembles. In order
to state this clustering property more precisely, let us define
p(wcl, cees wcnIA, wq) as the probability density, in the qth restricted»

ensemble (whose partition function is ZR(A | wq)), that mcl’ eeey WG are

precisely the configuraticns Ci, «vs» Cq, and the
configurations in the other cubes are unspecified.
Let A}, ..., Ay be sets of elementary cubes and w = .
A ¢ca C

The partia]ly truncated correlation functions are defined by:

T n-1 '
(Wy 5 eewy wy ) = (-1)" “(n-1)! T pluy ) (4.1)
° 1 A nZI " nePn({lg...,k}) aen ° Ay

where P, is the set of partitions of {1, ..., k} into n elements,

Ag = U Ay and we left out the dependence on A, wq.
kea
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The assumption replacing (Al) can now be stated as follows: There
exists m> 0 such that
T k
Ip (mAl, eeey wAk)l < 151 p(wAi)exD(-m(Al’ eeey Ak)) (4-2)

uniformly in A, wq, provided d(Aj,A) > 2R+1, ¥ i, and d(Ai,Aj) > 2R+1
if i # j. Here 2(Ay, ..., Ak) s the minimal number of elementary cubes in
a set N such that NUAjU...UAg is connected (equivalently, it is the
tree distance [17] between the A's). In addition one would replace
assumption (A4) by requiring (4.2) to hold.for u e U(n) with m

independent of .

We note that (4.2) can be derived from (Al), and thus holds for the
models considered in Theorems 1-5, by using the expansions as in Appendices 1
and 2. Moreover, m is then of order [1n eol. However we expect (4.2) to
hé]d quite generally, with some m > 0, throughout the region in parameter
space where the system, in the restricted ensembles, lies in a single phase.
This is therefore a much less restrictive hypothesis than (Al}. One could
weaken this assumption by adding a factor .; clAi| on the r.h.s. of (4.2) at
the expense of increasing p in Peierls' E:idition.

We sketch how (4.2) can be used to replace (5;). One of the main virtues
of {(Al) is to provide a suitable expansion for exp(-ﬁ?wa | A, mq)), the
interaction between outer contours (see (3.8)). We can easily relate
exp(:W) to a ratio of correlation functions: In the numerator and the
denominator of (3.8) we have partition functions with some boundary condition

q

@' in 8(r); i.e., the configuration in the elementary cubes of o(r) whose

distance from A\S(I) is less than R belongsto the qth restricted ensemble.
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Let axr) be the region obtained by deleting these cubes from 6(T). Now
multiply the numerator and the denominator in (3.8} by
T exp(-H(ud))Zg(3(r) | wd),
Ted
wg being the configuration in 6(T)\ ékr).
These transformations show that (leaving out mq, A):
K q q
exp(-4(ad)) = p(ud)/ T o(uf) (4.3)
red
4"

Now, given (4.3), instedd of expanding exp(-W) as we do in A(22), we

expand p(mg) in partially truncated correlation functions: -

pd) = I el e wl) (4.4)
weP(3) {r;ler 1 k

where the sum is over all partitions of 2 and the product over all elements of r.

(4.4) follows from the inversion of (4.1).

Now, the reader can check that, if we insert (4.4) in (4.3) and then
(4.3) in the partition function of the contour models we obtain a suitable
polymer expansion for the latter. Moreover, using (4.2) one shows by
techniques similar to the ones of Appendix 2 that this polymer expansion
converges. ‘

2) Contrary to (Al), hypothesis (A2i) is fairly physical: it requires the

presence of a "free energy barrier" between typical configurations of different
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phases. This condition cannot be relaxed too much, because something has to
cause phase sepération. However, p presumably needs not be as large as we
require it to be, and Dinaburg and Sinai [1#] have recently used a weaker
Peierls' condition in their analysis of ANNNI models .

3) Condition (A3) simply Aefines the point in parameter space around which we
perturb. One could say, in order to relate this framework to the
Pirogov-Sinai one, that, instead of pertdrbing around zero temperature, we
perturb around any point where there is approximate phase coexistence i.e.
phase coexistence would take place if the phases and the restricted ensembles
would coincide. Of course, this is most useful in cases (Potts or
Widom-Rowlinson models) where the corresponding "low temperature" i.e. ¢
or z+o limit is somewhat ill-defined. Moreover, by (A5), we have a complete
phase diagram in the neighborhood of this point. However, a phase consists
not only of one restricted ensemble but also of bubbles, surrounded by
contours, of othér restricted ensembles. This shifts the point of coexistence

-p ]
of the phases by an amount of order Le : the e factor comes from the

1

smallest contours and L enters in (AS): L Yods roughly the linear
coefficient of the dependence of f(u) on u. Thus we want our set of
perturbations to be large enough: Typically n should satisfy:

Le P« n<<p (4.5)

(The upper inequality is necessary so that Peierls' condition (see Lemma 1, c)
is not destroyed by the perturbation). Of course, (4.5) can be satisfied, for
fixed n, L, by choosing p large but L,  and n may be related in a

natural way in more general situations and then condition (4.5) has to be kept

in mind.
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4) Conditions (A2(ii)) and (A4} are rather technical and could probably be
improved: (A4) could follow from an expansion in u around the u =0
theory. Part ii) of A2 is used to control the derivatives with respect to wu
of Hu for the expectation inside the contours {(for the expectation in the
restricted ensemble we can use A4) but it could probably be simplified.
5) Within the context of the Pirogov-Sinai tﬁeory, there are two interesting
developments. Slawny [8] has given a method, rigorously justified, to
compute the asymptotes of the phase diagram and Zahradnik [9], using a
different approach to the theory, has proven the uniqueness part of the phase
diagram: The phases constructed by the Pirogov-Sinai method are the only
ones. We expect that both results can be extended to our situation but we
have not checked this. If this is true, one could presumable rigorously
justify the asymptotic expansion, in q-l, of 8(q), the transition
temperature for the Potts medel. Also, our results on the surface tension
(18] should be extendable to the present framework (see also [19]1).
6) Finally, although we have not considered this case explicitly (it is
studied elsewhere [11,13,15]), it is clear that our method allows an extension
of the Pirogov-Sinal theory to continuous spin models, at least for bounded

_ spins. For a class of ferromagnetic models of continuous bounded spins, a low
temperature expansion has been given in [20]. We think that the method of
that paper could be used here too; in particular, the expansion "around ‘the
ground states" in [20] would provide the necessary condition (Al) here. For
unbounded spins as well as continuum models not satisfying Condition A (see
Theorems 2,3 and 4), we have to geneeralize our Main Theorem to a situation where

tHu, defined in (2.6), is no longer finite but where a one-sided bound holds

(stability):
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H(E) > Bn(g)

Several technical complications enter here e.g. when we estimate
derivatives with respect to wu, the boundary terms and so on. However, it
does not seem that there is an intrinsic limitation in our method that would
prevent us from covering these cases too.

7) Coming back to our main goal, namely the understanding of the liquid - gas
transition in one-component fluids, we shall make two remarks. First of all
we consider a Widom-Rowlinson model with two kinds of particles, A and 8.
If there is no interaction between the B particles, we can integrate
explicitely over the B particles and we ére left with a one-component fluid
(of A particles) with many-body interactions induced by the B particles
[21]. Then the coexistence of A and B particles becomes a liquid (A
rich)-gas (B rich) coexistencé. However, in the symmetric case studied by
Widom-Rowlinson the A particles were also non-interacting and, consequently,
the effective interaction induced by the B-particles included infinitely
many-body potentials. Here however, we can zllow & small hard-core between
the A particles, which implies that we have only finitely many (B induced)
jnteractions. However this is still not a very realistic model.

If we consider two body forces, we can only offer the following picture,
baéed on the ideas of this paper: We take elementary cubes whose size is
approximately the range of the intermolecular potential. It may be useful to
take this range to be large so that we are "close" to the mean;fieid limit
[22]. Define two restricted ensembles, g and £, by demanding that the
density in each elementary cube be roughly equal to the actual gas density
(for g) or liquid density (for 2).

Now we observe that the free energy, as a function of density, in a box
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of the size of the intermolecular potential is approximately the van der Waals
one: it is minimum for the density being equal to the gas or the liquid one.
That is, 511 other densities f]oosé"‘to the gas one for eﬁtropy reasons and to
the 1iquid one for energetic reasons. Here we see the similarity with the
Potts model. This fact should be responsible for satisfying Peierls’
condition (A2).

On the other hand, one can expect that a clustering like (4.2) holds in
the gas or the liquid phase. Since the conditions defining the restricted
ensembles tend to reduce corgelations, (4.2) should hold a fortiori in our
restricted ensembles g and £. It may even be éasier to prove. However,

these ideas require a lot of further investigations.
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APPENDIX 1

In this Appendix, we show how to use the diluteness hypothesis (Al) (and
{(A4)) in order to prove the existence and smoothness properties (2.8) of the
free energies of the restricted ensembles. We also use this and Peierls'
Condition in order to prove Lemma 1.

First of all, we apply the polymer or algebraic formalism [23] to
(3.7). Let g be the set of R-connected sets G 1in Iﬂ. Let X:g + N be

a multiplicity function on g ; we define

-
-~

Xt =1 X(G)!
G

Supp X = {G | X(G) # 0}. We assume that supp X 1is finite.

X< A means supp X CA

[X] = x(6)|G]
: G

{1 if Xt =1 and if 4d{6,6') >R for all G, €' & supp X

0 otherwise
X(
o(X | A, w) = a(X) g 2(G [ A, w)

Notjce that ¢(X | A, w) depends in a non-trivial way on A, w.only if

d(supp X, &) < R (by (Al) (iii)). By {2.7) we can write

)

ZR(A | mq) = exp(-K[|A] - § K(i, w))
i X

I o(x [ a, w9 (A1)
CA

Now, using the algebraic formalism, we can write:
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: |
T e A, w) =exp T4 (XA, ) (A2)
XCA . XcA

T
where the truncated functions ¢ are defined as usual:

T -1 G T
R RAEC S IR o F T

with

Jw - 3 (0¥

yea(Xx)
where g(X) 1is a graph whos& vertices are all G's in supp X (counting
multiplicities) and edges are drawn between any two incompatible G's
(d(G,6') < R); |yl is the number of edges in y and the sum is over alil
connected subgraphs of g (X).

¢T(X | A, mq) has the following properties:

- ¢T(X | A, mq) = ¢T(X) is independent of A, wq if d(supp X, &) >R
- ¢T(X | A, mq) = 0 unless supp X 1is R-connected

& (X) hazs the same periodicity under translations as z(G)

isup ¢T(X A, dﬁle-‘xl/z < 0(eq) for ey small enough (A3)
£ R 0 0 Q
s

where 21 is the sum over all X's such that the first elementary cube in
X

supp X is Cj. This estimate (A3) is essential in all subsequent arguments.

It follows easily from the combinatoric estimate:

T
sup J¢ (X | A, d| < (C eo)lxI
AW

T
for some C independent of e and the fact that ¢ (X) =0 if supp X s

0°
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not R-connected, (See [23] where somewhat different notations are used.)

Using (Al,'AZ) we can write

:
oz (a ] wd) = KA - DK, D e T e (X A, w0
R i XCA

and therefore

: 1
f(q, ») = -lim log Z (A | w)
ling TAT i

exists, and equals

.
flq, u) = K (u) - )2(° 6 (X)

(A6)

d T 0
(assuming Z -invariance of ¢(G), hence of ¢ (X), otherwise } has to be

replaced by an average over the period of z(G)).

Moreover, the boundary term
q G
A(Alw,u)=1nZR(A[w)+|Al f(q, u)

js given explicitely by:

T T i T
IR, W) r T (e (XA e ce () < ] e (X)
i XCA Ciqa Xi_
d{X,A)<R XN A g

The second and the third terms in A(A | mq, u) are clearly
0(50) |aA], " due to (A3)

while the first is

(A7)
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0(1) |aa| by assumption (Al, v). Now we give the
Proof of formula (2.8):
Using (A6) and (A3) one can easily bound '55— f(g, u)
i
d _ d T :
g @ w) = K'(q, w) - 1° g= (o (X)) (R8)
i X i
IK'(q, u){< Co by hypothesis (A4),
while . b
d T - T X(G)- ,(X(G!
4T = oot T T oe e @@ 1@ g
du; G G'#G

(1eaving out the A, mq dependence).

Using assumption (A4) on P'(G) and ] [X(G)| < |X|, one obtains a
¢ _

bound on E%_ ¢T(X) like (A4) with |X] replaced by |[X{-2 (and with a
i
different C).For small e, this implies the convergence of the sum 7° in

g X

(A8). However, the latter is not 0(50) but O0(l) because the smallest

graphs, with |X] = 2, are 0(l). This impiies

< Clp+1)

d
[ao=t(a.u)
i
which is (2.8).
Similarly, one can bound the derivatives with respect to u of the
boundary term, using (A7) and (A4)

ﬁim L ud, w)| < Clo+1)aa] (AL0)
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Now we turn to the

‘Proof of Lemma 1:

First of all, we write explicitely ¢(mr | A, wq, u), by inserting (3.5)
into (3.6) and then using the expansion (AS) for all the restricted partition
functions entering the resulting formula and (A6) for the corresponding free

energies. This gives:

| Ay @y u) = H ()
T
+ (in Zo(a | e, ) - 00 Zp(aN o(r) | w%, wf, w)

+ f(q, w)|Int T|) - % (In Zo(Int T | o) + f(m, w)|Int T ]) (A11)

It is clear.that the terms in the first and second parentheses can be
written, using (A5), as a sum of terms of the form K(i, mr) for
T
d(Cij, T) < R and of the form ¢ (X | A, mq, mr) with d(X, I') < R. But

T q . q -
then ¢ (X | A, w, wr) is independent of A, w uniess [X} > d{T,A)-2R.

T
Using (A4), one sees that ¢ (X | A, mq

, mr) with such large [X|'s are
exponentially small when d(r,X) » =. This implies a).
Turning to b), we can bound the derivatives of the last two parentheses

in (All) in the same way as we bounded 4 a{A | wq, u) in (AlO).

dui
d _ : _
Moreover, IEE: Hu(mr)l = |Hi(wr)| < n(wr) since "Hi" =1, Therefore
Ly |4, o, W) < n(u) + e |T] (A12)
du,i T ’ ’ T

for some constant ¢ .
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This proves b). It also implies c) because we can write
) q ' q.
A’ , = A’ L ’ = O
w(wr! w, u) w(wrl @, u=0)
relo My g
+ 7 e plup | A, @9, u') du% . (A13)
i=1 0 .

Now we insert (Al2) into (Al3). We get

Jav¥(a ) expl-lu | A, wl, 1))

-
<

< exp(n{r-1)co|r])
q
.f dv*(wr) exp(-w(u. | A, 0’y = 0)) exp(n(r-1) n(w)).
the first factor is less than exp(p/4[T|) for n small enough. We
multiply and divide the second factor by
* Q
[ dv (mr) EXP(-¢(wr | A, w ', uw=20)})

Then we use Peierls' Condition (A2) in the form of equation (3.7) and
Condition (A2)(ii) with A = n(r-1) and » = 0 to bound the second factor by

exp(- % o|T]), again for n small enough.

d) is proven similarly.
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APPENDIX 2. Interacting contour models

In this Appendix, we provide a convergent polymer expansion for-the

contour models, thus proving formulas (3.15), (3.16), (3.17).

64

Then we prove

Lemma 3 (for contour models with parameters). Our polymer expansion is fairly

standard, given that the diluteness hypothesis implies that the interactions

between the contours (W) are weak in a suitable sense.

1) Existence of W(wy):

n
We start with an explicit formula for w(wa | A, w ) which will also

prove (3.14}) i.e. the existence .of w(ma) ‘when the limit A » @ {s taken.

") N
Since W =¢ + W we start with W.

By definition (3.8),

§ .
W(w, | A, W) = T I Zp(a\ e(3) | w9, wd)
Ted

- n (A N\ e(r) | of, @) - (n-1) 1n Zp(a | wd)

with n = number of contours in 3.

Inserting (AS) into the above formula, gives

N
Moy |8, a) = 1 1o
XcA Ted

S(n-1) #T(x A, w9) - alx, 3) 6 (x ] A, w, wd)

(x | 4, o, o) n(x, T)

(A14)

(A15)
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where

otherwise .

if XeA\ 8(3)
n(X, 3) ={z :

Indeed we observe that in (Al4) all the terms proportional to K or of the

form § K(i, w) cancel because, definition, d(T, r‘y > 2R +1 for
i _ T
r, r' ed and d(r, &) > 2R + 1 also. So we have only ¢ (X) terms.

Moreover, by inspection of (Al5) one sees that only those X's satisfying
d(X, T) <R, and d(X, T') <R for at least two contours T, T' e3d give a

non-zero contribution., Indéed, if d(r, X) > R, then, by Assumption

q
re

A similar formula can be derived for @(mr | A, mq) where the only X's

AL(iid) ¢T(X'| A, uq, wg) does not depend on w

that can contribute to ® satisfy d(X, I) <R, and d(X, A) < R (as we
noticed in the proof of Lemma 1, a, Appendix 1}.
T
From (Al5) and the exponential decay of ¢ (X) with [X| (see eq. (A4)),
we get
~ q A
Tim W | A, w') = Ww )
Aro ] 3
and its independence upon mq. Actually, one has a bound of the form:
Y q N _
[W(w | A, w) - Wla )| < 1 |T| exp(-Md(r, A))
3 3 Ted
with M~ 0([1n 1),

and
e | A, W) | <[] exp(-Md(T, T)).

~
Thus ¢+ 0 and w(wa) = w(wa).
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Moreover, one can estimate the interaction between one contour and any
set of other contours as follows:
let T e3d and 3' =23\ {r} then,
sup W () = Wlw )] < 0e,) T (A16)

3

T
this again follows easily from the bound (A4) on the ¢ (X) and the fact

T
that the 1.h.s. of (Al6) is bounded from above by sup | 6 (X | &, w)
w X: 3

- 3 d(X,T)<R

Now (Al6) is the basic fact behind the convergence of our polymer
expansion: the interaction between a contour and the other contours is
bounded by |F| times a small coefficient. But, by the definition of =

functionals, every contour has a weight exp(-t|T|} which controls the

0(|r|) divergence in (A16).

2) Polymer expansion for caontour models

Now we give the polymer expansion of Z(A | F)(Z(r | F, w') can be
treated in a similar way and the independence of S(F) on mq follows easily
from this expansion). Writing explicitly the inductive definition of

Z(A | F), one gets:

(A | F) = e / dv*(w ) exp(-W(w )) T Z{w | F)
3ch 3 3 Ted r
= 7 [ dvi(e) exp(-W(w)) T exp(-F(w)) (A17)
3cA 3 3 Tres r

where the first equality is just the definition.
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In the second equality, the sum runs over all families 3 of contours

with o(r) =q for T €9, d(r, T')> 2R+ 1 for I, T' &3, and not just

over outer contours. 'W(ua) .is defined as follows: we say that a contour T

separates a set of contours 3 if there exist two contours T, FZ in 3 that
Yie in different connected components of T. We say that T surrounds 3

if a8 lies inside one connected component of Int I'. Finally, we say that a

subset 3'<3 is a set of outer contours relative to 3 if there is no

contour I e 3 that separates 3', no contour T e 3' that surrounds
3'\{T? and if 3' cannot be enlarged while maintaining the first two

properties (notice that a contour T ¢ 3 may surround 3'). Then
Ww ) = Ww ) (A18)

where the sum runs over all subsets 3'c 3 that are outer relative to 3.

Now, using w(ua) = Q(ma) and inserting (Al5) into (Al8), we obtain,

Wu) = [ 1 €1 o(x|ad)nalx, )
X 3'<sd Ted'

T T
-(1a'] = 1) ¢ (X) = ¢ (X | w(3'(X))) n(X, 3')} ' (A19)

where
w(3 (X)) = {mr | T e 3(X)}
and

3a(X) = {rea | d(r, X} <R}
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(Similarly for 23'(X)).
. T
So a(X) are the T's in 3 on which ¢ (X | ma) can depend. We
abbreviate:
W(wa) = )Z( $(X | w(a(X)) (A20)

where @(X | w(3(X)) is defined through (A19).
Obviously, w(X | w(3(X)) depends only on w(3 (X)) and equals zero unless
supp X s R-connected and #3(X) > 2. Moreover,

(x| u(a ] < (€ e) (a21)

for some constant C independent of e, (different from the one in (A4)).
Indeed, each ¢T(X) entering into the definition of ¢ satisfies such a
bound; Moreover, the number of 3' that give a non-zero contribution is

at most O(1X]|) (because each 3' is outer relative to ) and the number
of T's in 23' giving a contribution that is not cancelled by one ¢T(X)

is 0(|X]). These factors can be absorbed into £ in (A21).

Now we insert (A20) into (Al7) and expand:

o n
exp(-W) = | ('!) (A22)

In order to write (A22) more explicitely, we introduce new muitiplicity

functions:
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N {X} N
and write
exp(-H(w,)) = %%‘Tw(N) (A23)
with NI = T N(X)!
X
N(X
$(N) = I; Y(X | w(3(X))) )
(this follows from (A20) and®(A22).)
Combining (A23) and (Al7) we have our polymer expansion:
21 F) = 1T dvtley) exp(-Fluy)) HI (A24)
deA N :

with F(ma) = rza F(mr)’ .
€

Define supp N = L) supp X.
N{X}20

For each pair (3, N) 1in (A24), we can decompose 3 U supp N = PlLJ e UJP
n
into maximal R-connected subsets. Thus d(Pj, Pj) >R if i# j. Now the
integral in (A28) factorizes over the contribution from the different Pi's
n n
because, if P = (3, Y ) with U3 =3, [JY =7Y=suppN, then (Y .)
i it i 1 i 1 i . i
cannot depend on w(r) for T e?d , j#1i since d(Pji, Pj) and therefore
J

d(Yj, I') is larger than R. These Pi's will be our new polymers.

The activity &£(P) of a polymer P = (3, Y) is:
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g(P) = 1 [ dv¥(wy) exp(-F(w,)) ii¥l (A25)
N:supp N=Y o8 3 N1
Then we may rewrite (A24):
n
(A | F) = ) I g(Py) (A26)
{Pl,-..,pn} i=1

where the sum is over all sets of two by two “disjoint" polymers, (P
disjoint from P' means d(P, P') > R).
We have the following estimate on g(P):

lg(P)] < sup CTVMNT [ exp | ) y T (NTI exnéF(wa}dv*(wa)

N:supp N=Y N:supp N=

were [4)] = sup T [4(x | w1,
m .

By (A21) we have

T Te(N)T < 0(eo)|Y$
N:supp N=Y

and

sup 7 [9(NJT < exp(-M|Y])

N:supp N=Y
where M = 0({1n eol).

Finally, using the fact that F 1is a t-functional:
f dv*(wa) exp(-F(wa)) < exp(-t]3])

we obtain:

le(P)] < exp(-C|P|) (A27)
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where |P| = |Y| + [3] and C can be chosen as large as one wishes by
letting T and € * 0.

Given (A26) and (A27) one can.obtain, from the algebraic formalism, a
convergent expansion for 1n Z(A | F), as we did in Appendix 1 for the free
energy of the restricted ensembles.

1f we include the w-dependence in Z({A I'F, w) then one obtains a
formula similar to (A26) but the activity of the polymers close to K are
modified. (3.15) ig proven just as (A6) in Appendix 1. For (3.16) we notice
that each polymer with a nongzero activity g(P) contains some contour
(because for ¢(X) to be non-zero, X has to be close to some contour) and
therefore has a weight at least as small as e_t.

From this expansion, one also gets, in a standard fashion, the bound on
the boundary term A(A | F, w, 1) and the existence and clustering of the

correlation functions. We could get Peierls' estimate from the expansion but

we prefer to do it as follows: Write

P(r) = Z(AIF)"l T [ dv¥(w ) exp(-W(w)) T exp(-F(w)) (A.28)
a: 3 res
les
Let 3' = a\{r} and bound P(I) from above by restricting the sum in
Z(A|F) to the sets 23'. Now use (A.16) (which extends easily to W) in the

numerator to compare it with the denominator; we obtain

P(r) < exp((0(gg) - )(T)) (A.29)

which is Peierls' estimate.

Now we prove (3.17). It is enough to prove:
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1% 109 Z(AIF, w)| < [A]0(e™)
and
) ] ,
[S= Tog Z(a[Fy, w)] < [Al0(e ) LIy = Fplll

with Fp = tF] + (1-t)Fa.

Using (A.17) we write

<
o

1= og Z(alF, W = 1<EE (- D]

72

(A.30)

(A.31)

(A.32)

where < > 1is defined in the obvious way by (A.17). Observing that, in the

definition of W, (A.19), the only X's that contribute must satisfy

d(r, x) <R for at least one (in fact, two) T's in 3, and using the

bounds (A.4) on ¢T and its derivative with respect to u,

d —
|5= W(w )| < 0(1) 1 |r]
du 3 red
Thus the r.h.s. of (A.32) is bounded by

0(1)  P(3) § Ir| =0(1) 1 P(r)|T]
3cA  red rea

we easily get:
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(here P(3) denotes one of the terms in the sum (A.28)). By Peieris estimate,
(A.29), this last quantity is less than O(e-T)[A|, which proves (A.30).
Now Qe prove (A.31). By»a caic&1ation similar to the one above and the
definition (3.18) of |||F|[], we get

w8(r)/2

9= Tog Z(alF,, w1 < [1IFy=F, 11 - (FEAP(r)e (lo(r)] + <nlu )>.))

(A.33)
where < >p s just < > as in (A.32) conditioned on T. Now, notice that,
by convexity, we need only tq bound the derivative %{ for t =0 and 1.
But, in these cases, Fty =F; or F2 is a t-functional and we can use (3.13)

to prove:

<n{wp)>r < 0(73)|T|exp(0(eg)|r]) (A.34)

To prove (A.34) we use (A.16) in the numerator and the denominator of < >p

in order to "decouple" [ from the other contours. Thus we have
<n>p < exp(0(eQ)|T|) <n>(T, F)

which, by (3.13), implies (A.34).

Now, inserting (A.34) into (A.33) and using Peierls' estimate (A.29), we
easily obtain (A.31) for 1 1large enough.

We remark that we c?uld have bounded the derivatives (A.30) and (A.31)

(for t =0 or 1) using directly the polymer expansion as we did in (A 8),
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(A 9). However these more “probabilistic" arguments (i.e. dependent on F,

W being real) are useful for our last estimate:

Proof of Lemma 3

This is the analogue of Proposition 2.5 in [5]. The dependence upon b

js treated just as in [5]. Using (3.19), we estimate

d

|a:ﬂog Z(A|F,b,u)]
d
d

¢ 77 1o b (I (0| + T T sup 1<) (Int T
ach s res ml ol m

"

where P(3) = fdv*(ma) exp(-w(wa)) I Z(wp|F) and < >(3) 1is the expectation
led m
conditioned on & being the set of outer contours; < >(Intmr,mr) is defined

as in (A.17) with A = Int T and b.c. wp. Clearly, with the bounds that we

re

have on %—w,
U

and

sug <= W(-)>(Int rouD)| < 0(1) [Int T
T

Since, for each set 3 of outer contours in A, ] |F| + V(3) < [A|

-1 7o bV(2) res

and 7°° I° P(3) = 1 we have the bound
acA

15 1og Z(AIF, b, w)| < O(1)[a]
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which yields the third part of (3.21). (Since we have already a bound on
d
rm S(F, u) by (A.30)). o
Now we control the F-dependence in (3.21). Let F¢ = tF + (1-t)F'. We
shall bound |%€ log Z(A|Ft , by )| fort=0 or 1.

Proceeding as above, and using the norm (3.18), this is bounded by
LIIF - F'l]]-[2-1 §°ebV(3)P(a)( | eT8(T)/2(8(r) + <n(wp)>(a)) + 0(e~T)|Intr|)]
ach led
where we have used (A.31) for the estimate in Intl'. We shall prove below

that -
<n(uwrp)>(3) < 0(<3)|r] (A.35)
which is similar, but more subtle, than (A.34). (We could have used

(A.35) in place of (A.34)).

Then we have,

Y (8(r) + 0(<3Ir| + 0(e=T)|Int T|) < O(<3)[A] (A.36)
Ted

for any 3 made of outer contours in A. Moreover, if T C A,

§(r) < §(A) -2(2R + 1)

because d(r,x) > 2R+1l. So we gain a factor

exp(- t2(2R + 1)) which can "absorb" the 0(<3) in (A.36) and give (3.21).
L C
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So we are left with the proof of (A.35). Let I(+) denote a characteristic

function and write

<> = <nl(n < A)> + <nl{n > A)>

<A+ e-(A/ZT) 2t<exp (n/t)>

(using n < 2t exp(n/21)).

Now, in <exp(n/t)> we use {A 16) to "decouple" T from the other
centours and then (3.13) on ‘<exp(n/r)>(r, F) as in the proof of

(A.34). Thus we have

( A/27)

<n{wp)>(3) < A + 2te exp(e2|T| + O(EQ)lFI)

Choosing A =2(t+1)3|r| gives (A35).
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