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. Introduction.

Let {x(t), t 2 0} be a self-similar process with parameter H > 0
in the sence that {X(ct)} d {cHX(t)} for any c¢ > 0 and {Yj, j=1, 2,
«++} be a sequence of randomvariables belonging to the domain of attraction

of X(t) in the sence that

oy [nt]
nH z deﬁ'

(1.1 X (v)
n j=1

X(o) ,

where d and g denote the equality and the convergence of all finite
dimensional distributiouns, respectively.ﬂ This paper deélé with the analysis
of the rate of convergence of (1.1). (ecf. [1], [3], [4}, [6]) Especially,
we shall consider the fractional stable process studied in [4], and to
attack the problem we shall use the method of probability metrics, (for a
general acquaintance with the method we recommend the survey paper [11].)

.

2. Ideal metrics and their properties.

Denote by X the set of real valued random variables defined on some
probability space and by (X ) the space of laws Py X &€ X, 1In the
space [ (%) the mapping u: L (%)xZ(X) + [0, »] is called a simple
probability metric w(X, Y) = u(PX, PY) in case when it possesses the metric

roperties of "identification', "symmetry" and "triangle inequality". For
prop s ymm! g
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2
shortness we shall say only "metric". The metric y is called an ideal
metric of order r > 0 if the following properties are fulfilled:

1) (Regularity). For any X, Y and Z € ¥ such that Z is independent
of X and Y,

WX+ 2, Y+ 2) <X, Y)
2) (Homogeneity of order r 2 0). For any X, Y ¢ X and any number
c # 0,

u(eX, cy) = lclru(x, ) .
The existence of an ideal metric of a given order r > 0 was shown by
Zolotarev (cf. [7]). Namely, denote by £ = {f} the set of all possible

real-valued continuous functions on R, and define the set

Fe

where if r > 0, m is a nonnegative integer and Y € (0, 1] such that

(e 5 1t Ww -t <lx-y]", x.ver},

r=m+7Y, and if r =0, m=7v =0, and where

m
™ =4, m=1, 2,00 £ P = .
dx

Then for each r > 0 the functional
2 (X, V) = supl|E(£(X) ~ £CE))| 3 £ € ,’Zr}
is an ideal metric of order r. This is called the Zolotarev metric of order

r. If E(Xj - YJ) =0, j=1, *++, m and r > 0, then

A

L (X, D £ [TQM /T e &, 0 + k x, DI 8177,

where

KX, 1) = f |x[r-l|P(X <x) - P(Y £ x)|dx

—o
is the so-called difference pseudomoment of order r and br = br(X, Y)

= min(E]X[r, E]Y|r), (cf. (8], [9]). If r 1is a positive integer, then
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Cr can be given in the following integral form

(o]

(2.1) g (X, Y) = f—m!Dr(x)[dx ,
where Fx(x) = P(X £ x),

x

Fr,X(x) = f_m

which is the (r-1)-multiple integral of the distribtution function FX(x),

(x) - F_ _(x). (cf. [10].)

and where Dr(x) =D £,

(x) = F_

r,X,Y X

Next we shall introduce another ideal metric of order r >0 with two
advantages;
(A1) it has an integral form like (2.1) for any r >0,
and
(A2) there exists an upper bound of the ideal metric for any r 2 0, which
depends on the difference pseudomoments Kr but does not depend on br'
The advantage (A2) is essential in estimating the rate of convergence of
the processes related to stable random variables, where wé cannot assume
the finiteness of br.

For s =1, 2, *++, p ¢ [l, ®] and a> 0, denote
T
GXY(x) = x| IDs,X,Y(x)l s

t(X, Y; s, p, @) = ”GXY”p ,

where |- E stands for the p-norm;

Hglg =0/ le@|P aa*?, 1 <p<w,

ligll, = ess sup{|g(x)|; x € R} .

Note that

Kr(X, Y) =r C(Xy Y; l: l; r—l)'

Let
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F(s, p, a) = {f : R > R, continous; ||f <1},

s,a”q =

where fs a(x) = x-af(s) (x) and 1/p + 1/q = 1. Demnote

b

t(X, Y; F(s, p, a)) = sup{|E(£(X) - £(¥))| ;5 £f¢€ f(s, p, &)} .

Lemma 1. If (X, Y; }(s, p, a)) < o, then

(2-2) C(X: Y; ;(S, P a)) = E(XQ Y; s, p, a)

Proof. Note that the finiteness of (X, Y; F(s, p, a)) implies

(2.3) Exd -vl) =0, j=0,1, ¢, s-1.
Really, if s > 2 and (2.3) is not fulfilled, then
Io
o(X, Y; f(s,p,a)) > (s::glfcx d(FX(x) - FY(x))l = o

where is the first j for which (2.3) 4is wrong. If fe F(s, p, a),

j0
then by (2.3)

f_mf(X)d(FX(X) - FY(X))

© s-1
L I-w[f(o) + oeee +(}s<——l)! f(s—l) (0)
x s-1
(x-t) (s)

+ fo DT £277(0)de]d(Fy(x) = Fy(x))
0 (s "¢ (o5

= D/ £ (de + 75D (e,
— 0

where Bs(t) =D (t) = F () - F (t) and
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Thus, by (2.3) again,

=

00

By the duality of

(2.2). The lemma

and

Ks’p(X,

It is easily seen
r=s-1+1/p.

6 ,» the proofs
S,P

f_ Ed(Fyx) = Fy(x)) = -1 s fs,a(t)taDS(t)dt ;

ZP = {f; l£ll, < =} and 23 with 1/p+l/q=1, we get

is thus concluded.

Y) = C(X, Y5 F(s, p, 0)), for s =1, 2, ««-, p & [1, =]

t

o 2, X 1/
T 2s-DU 2377 (0 [ - Fy)|P an P ax

o ]

+ 5 572 r [Fx(u) - FY(u)Ip du)l/p dx] ,
0 X

.

for s =2, 3, ¢+, p € [1, »
that the metric es is an ideal metric of order
b

In the following, we shall state some properties of

of which will be given in the next section. Note that

. .. by Lemma 1, if 95 p(X, Y) < ®, then
,p ottt

(2.4) Ss,p(X,

where

(X, Y3

Y) = ¢(X, ¥; s, p),

s, p) = (X, ¥5 s, p, 0)

A

" P oae1l/? g -
[fdmIDS,X,Y(x)f dx] for 1 < p < o,

sup{[Ds’x,Y(x)|; x € R} for p ==,

This representation assures the advantage (Al), and the statement (b) in the

following Theorem 1 gives us the advantage (A2).
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Theorem 1. Suppose that (2.3) is fulfilled and r = s - 1 + 1/p.
(a) For s =1, 2, *++ and p € [1, =],
2.5 8, (X, 1)LLK T,
where Cr(X, Y) is the Zolotarev metric.
8. (X, ) = {k (X, T)}MP
l’p 2 l ’ ’
(2.6)
es p(x, < {F(l+l/p)/F(l+r)}Kr(X, Y) , s =2,3, *--.
(c¢) For s =2, 3, ¢+« and pe€ [1, »),
(2.7) 6. (X, (s, (X, V)
: s,p =" s,p
(d) For s =1, 2, *++, pe [1l, ©» and p' € [1, pl,
s-1 s-1,,1-p'/p p'/p
(2.8) N P(x, Y) < {max(E|X|” 7, E[Y]T D} 1CR p.<x, )} .

In Theorem 1, we suppose that (2.3) is fulfilled. The next theorem
shows that (2.3) is necessary for the finiteness of the left hand side of
(2.4), and that under some moment conditions (2.3) is also necessary for

the finiteness of the right hand side of (2.4).

Theorem 2. Let s = 2, 3, ¢,

(a) 1If es P(X’ Y) < », then (2.3) is satisfied.
b3
() If KS(X, Y) <o and (X, Y; s+l, «) < o, then (2.3) holds.

() If p<=> k(KX Y) <= X Y5 s, p) < and |D (a)] <=

s+1,X,Y

for some a € (-», ), then (2.3) is fulfilled. In particular, if p < =,

(X, Y; s, p) <« and E]Xls + E[Y]S < =, then (2.3) holds.



KSTS/RR-84/004
29 Novemver, 1984

Let L(X, Y) be the Lévy metric in X ;
L(X, ¥) = inf{e > 0 ; FX(x—e) - € é=FY(X) é:FX(X+5) + €,

for all x ¢ R} ,

and let

wg (%, D = supl[EE® - £ ] 5 €6 ly <1 lell, <11,

where 1/p + 1/q = 1.

Theorem 3. For any s =1, 2, *++ and p e [1, =],

(2.9) Ss’p(X, Y) > ms,p(x, Y) > K(s){L(X, 1) }s*'l/p ,

-1
where K(s) = 2/[1\'55s (s+1)]. 1In case s =1, 2, 3, we have more precise

estimates;

@10 8, m 2w (KD 2L o) Rt
(2.11) 6, (X, V) >w, (X, V) > (I/&){LE 1)}2/P
2,000 D 20,06 D 2 ’

and
(2.12) 8y (X 1) 2wy (X V) 2 (A/20){L(, nte

In case p = 1, the inequalities (2.10)-(2.12) were proved by
Grigorevski and Shigan&v [2]. In (2.9) the exponent s + 1/p can in
general not be replaced by a smaller one, (see Remark 1 in the next section).

It is also well-known that if X has a unformly bounded density px(x),
then

1

(2.13) L(X, ¥) > (1 + sup{px(x) s x e RD T oKX, V),

where p(X, Y) 1is the ordinary uniform metric;

p(X, Y) = sup{IFX(x) - FY(X)]; x € R} .

Using (2.9)-(2.13), we obtain a lower estimate of es by p.

b



KSTS/RR-84/004
29 Novemver, 1984

3. Proofs of Theorems 1 - 3.

Proof of Theorem 1. (a) Let p < «». For every x, y € R and f with

1£°) <1, we have
q S

D0 - @D i) < gD e - g1 y| P

A

lx -

Since r =s -1+ 1/p, then 7(s, p, 0) C.j?r and hence (2.5) holds.

Let p = ®., As in the proof of Lemma 1, we see that (2.3) implies that

t ©
<] X, v) < SUP‘D (t)[ = sup|f D__ (x)dx| < s |D _ (x)|dx
s,® ter S teR - S 1 e 51
@, if es-l,l(x’ Y) =,
hS
es—l,l(x’ Y) = Cr(X, Y, if es—l,l(x’ Y) <

by Lemma 1. As to s = 1, since [f(x) - £(y)] < "f'”l, then

8] (% V) 2 5y, V).

{b) The first assertion is trivial. If s > 2, then by (2.3) and (2.4),

o P 1/p
(3.1) 8 oK 1) = [f_mlns(x)l dx]

0 -
< @[ e B @P el v,
. 0

say. Let I[+] be the indicator function. Then by the Minkovski inequality

0 0 1/
s |f Ds_l(u)I[u < x] du|p axi~'?P

—
[}

0
<f M _@laza

say, where

0

1
J?.,p = f-wlu[ /plFX(u) - FY(u)Idu
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and if s > 3,

0 u s-3
J = f |ull/p[f (u—t:)

SsP T, o1 Fx(8) - Fy()defdu

0
S DD SRS § s-2+1/p -
< {(1+5>(2+5> ((s 2)4;)} Il IFX(t> - By (o) de .

s

Analogously we can estimate I2 and get (2.6).

(c) Note that
(3.2) [IAIf]5<1><u)du|pdx]l/P < fA[fB[¢(u)|pdu]l/pdx , p2>1.

where A = (-», t] and B = (-», x], x <t <0, or A=[t, ) and
B =[x, ©, x>t2>0. Using (3.1) and (3.2), we have

0 ¢t 1/
I, = |/ D Goax|P ae]™'P

-0 -0

0 t 1/
<5 U b @) |P ax]T'P e

0 t x 1/
=7 s [f Ds_z(u)du]P dx] P gr

-0 -0

0 t x 1/
</ ru |Ds_2(u)|p du]™'P dxdt

-0 =CO -0

0 s-2 X

i 1
3 f_m%’ﬁﬁ SRIEROIEES ' ax
and analogously
1B [P a6
Ly 2d Ty U Iy el dx
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So, we get (2.7).

(@ Let B_= nax{E|x|57L, E[Y|571}.  Then

0
es,p(x, Y) = Bs[f_

o0

[B;le(x) [p dx + folB;lﬁs(x) ip dx]l/p

0
Bl

CO

- 1 ® . 1
|B 1p @ |P ax + 1 |B 15 =) |P dx]l/p
s s o s s

- R1-p'/p p'/p
By {es’p,(x, 1} .

Proof of Theorem 2. (a) As in the proof of Lemma 1, if (2:3) is not true,

then es’p(x, Y) = =,

(b) Let
3.3 k& D) = sf-w|x|s-1|FX(x) - F (0 |dx < =
and
n sn P x (x—*)s_l
(3.4) Gs+l,k°°(x’ Y) = supx]f-m -;(s—:—lT!—-(FX(t) - FY(t))dt] ; X € R} < o,
By (3.4)
s-1 s-1 s-1-j K j
limsup| £ (O, x° ~ 3/ (-e)I(F (t) - F (t))dt| < =
X+ ® J'=0 J -0 X Y
and by (3.3)

X
Linsup| S (-0)%TH(F, (v) - Fo(0))de| <

x> -C0

1
s KS(X, Y) <o,

Thus
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s-2 s=1 g-2-5 % i
(3.5 limsup| 2 (7,0) x TS0l E() - R (e)de] =0 .
X > ™ J=O —c0
Since
x s=2
limsup |/ (-t) (Fx(t) - F_(t))dt]|
X > © -0 Y
< (S-l*)-'lv X, YY) =2+ s-l\) (X, ¥) <=
= s-1 ’ s 1) s
by (3.5) we have
$23 o1 s-3-j .~ j
(3.6) limsup| £ (577) x°7°70 5 (-o)l(F (t) - F (t))de| =0 .
. j X Y
x> o J_O —0
As (3.5) and (3.6) we obtain
s-k s=1. s-k-i X :
(3.7) limsup| £ (5.0) x°°7 5 (o) (F () - F (t))dt| =0
. J X Y
Xr® J=0 -0
for all k=2, 3, *++, s. In case k =s, we have
X
0 = limsup|/ (Fy(r) - FY(t))dt|
X ® -0
X
= limsup|/ € d(Fy(t) - F ()] ,
x+co -00
namely E(X - Y) = 0. Put k = s=1 in (3.7), then we have
X x
0 = Limsup|x/ (Fp(t) - Fy())dt + (s=1)f (=) (Fy(t) - Fy(t))de| |
X>r > -0 - -0
Since
x
limsup|x/ (Fye() - FY(t))dt{
X > ™ -0
[+

= limsup|x/S (Fg(e) - FY(C))dtI
x> ® x
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o
< limsup f |t]|F_(t) - F (t)|dt = 0,
= X Y
X > X
then
X
0 = limsup|(s-1)S (=) (Fy(t) - F (£))de]
X o -0
2 2 . J ]
and hence E(X~ - Y ) = 0. In the same way we obtain that E(X’ - ¥°) = 0,
j=1, ===, s-1.
(¢) Let Kr(X, Y) <o, g(X, Y; s, p) = ”Ds”p < ® and |Ds+l(a)[ < @

for some a € (-», «). Then

© > IIDSHP > limsup|x - a[-l/q[D

X =~ o

s+l(x) - D.=.:+l(a)l

. -1/
> limsup x q|Ds+l(x)| .
X =» co
So,
s-1 . x .
limswp| £ (57H) 571V oI @E o) - Foe))ae] < w
i ] X Y
X @ J—O —c0
and

X
limsup|x /9 s 0 HE () - B (0)dt

X > © -0

0
< lim x ey (—t)s—llFX(t) - FY(t)ldt
_}(—m -0

X
+ lim x—l/q S ts_l[FX(t) - FY(t)Idt
X0 0

((s-1)7t

A

+ r—l]Kr(X, Y) < o,
Hence, for any e € (0, 1-1/q)

s~2 . b3
limsup| T (351) xs--l-J 1/q-¢ s

' (-6)7 (Fy(£) = Fy(£))de| =0 .
X > ® J=O —co
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Following the proof of (b), we conclude (2.3).

1f E|X|® + E|Y[® < ®, then
i1 -1 ir=1 r r
kX, 1) < E|X|X] -yl 7] < EX]T + EJY] <=

(see [7]) and

a S
ID (@] < f_ml%l— d(Fy(t) + Fo(t)

Proof of Theorem 3. As in [2], we define

1, if x < z,

(3.8) fo(x) = -1, if x>z + g,

[

3 sin[(23+1)(n/e)(e/2 - x + 2)], 1f =z < x < zie,
3=0

where m = [(s-1)/2] and the constzants {aj} are chosen in such & way that

fés-l)(x) is a continuous function, for example,
!

a; = [(2m+1) l_!]2/[‘22m(2j+l)(m-l-j+l)!(m-j)i_] , §=0,1, ***, m .

Then
z+€ m s-
||fésﬁl ={/ |ZI a, jLE'Sin[(2j+1)(ﬂ/€)(€/2 -x + z)]iq dx}l/q
4 z =0 7 ax
m
< (@) et g aj(2j+l)s < c(sye ST/e |

j=0
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where C(s) = Wsss_l(s+l), (see [2]). Note that since

”fJIoo =1 ; C(S)S—S+l_l/p ,

then

Ms’p =z max(“fd[m,]]fésﬂlq) < c(s)e's+l“l/P .

From (3.8) and the definition of wg . it follows that

[>]

-1
(3.9 PN C U_w Mo, Fo(0) () = By |
-1 z z+€
2L U (o) + DAFG) = S (£ + ARy ()]

2¢5™1+1/pg oy -1 [Fe(2) - F (z+e)]

v

Let L(X, Y) > €. By the symmetry in (3.9) we have

ms p(X’ ) > ZC(é)—l Es+l/p .

Letting € + L({X, Y), we have

wg L&, ) ;2C(s)—1{L(X, oY s

Hence

e - (X,Y) > s+1/p )
S,P =

wg 06 D) 2 2¢(s) ML, v}
The proof of (2.9) is thus completedl We omit the proofs of (2.10)-(2.12),
since the idea of their proofs is the same as that in the general case,

~ (see also [2]).

Remark 1. In the following, we shall show by examples that the exponetnts

of L 1in the estimates (2.10)-(2.12) are precise.
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Let s =1, and let P(X = 0) 1, P(¥Y=0)=1-~-¢ and P(Y = €) = €.

Then L(X, Y) = € and Gl,p(x, ¥) = €1+1/P.
Let s =2, and let P(X=0)=¢, PX=28)=1-¢€¢, P(Y=¢) =2
and P(Y = 2e) = 1-2€. Then L(X, ¥) = € and es’p(x, Y) = {2/(p+l)}l/p€2+l/p‘
Let s =3, and let

0, if x £ -g,

F,(x) = { x+ 1/2, if - <x £

A
m
-

1, if x > ¢

and
0, if x £ -€,
1/2-e, if -€ < x < -€/Y3,

F () =< 1/2, if -e//3 < x < €/V3,

1/2+e, 4if €//3 <x <&,
1, if x > €.

Then L(X, Y) = €/2¥3 and the standard calculation gives us eB,p(X’Y) <

const.X€3+l/p.

Remark 2. In case p = 1, Grigorevski and Shiganov [2] proved

(3.10) 6 (% D 2 K&, DI,

where

m(X, Y) = inf{e > 0; P(X €A) - P(Y ¢ A®) < g,
P(Y ¢ &) - P(X € A®) < € for all Borel set A} ,
N being {x ; |x - y| <€, y €A}, is the ordinary Lévy-Prokhorov metric.
Since ™ > L, then in case p =1, (3.10) is better than (2.9). However,
for p € (1, ©}, it is impossible to find the estimation

es,p;o(v),
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for some nondecreasing function o(t) of t > 0 such that ¢g(0) =
o(t) > 0 for t > 0. The following example shows it.
Define {Xn, Yn’ n=1, 2, «++} by
P(Xn =2j) =PX_=2j+1) =1/n, j =1, «++, n.
Then (X , Y ) =1, but
n’ n
- if ) P . l/p o 1/p-1
Gl,p(xn, Y) =1/ IFX () = Fy ([ dx] =n
~ n n
n+© when p > 1.

for

16

0 and
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4. Closeness between the elements in the domain of attraction of the

self-similar process.

In this section, we shall study the domain of attraction of the
fractional stable process considered in [4]. This process is self-similar
with parameter H ¢ (0, 1). We shall recall briéfly the main result of [4].
Let {Xj, j € 2} be a sequence of independent and identically distributed
random variables belonging to the domain of normal attraction of a strictly

stable distribution of index a < 2 with characteristic function

(4.1) exp{-[zla(Al + iAzsgnZ)}

-1
for some 0 < A <=, la;7a,

according as z >0, =0 or < 0. Take B8 ¢ (/a -1, 1/a), B # 0 and

A

tan(an/2), where sgnz =41, 0 or -1,

consider the random variables

I c. N k=1, 2, -,
k7 ez 33

Y

where

5Bl i 5 >0,

-5, 1 g <o
For t ¢ [0, 1], we define

_y [nt]
A (v) = [B[n™"C T ¥
k=1

+ (nt - [nt])Y

" [ne]+1) °

kgl means O and H = 1/a - B.

where [a] is the integer part of a, I
Consider two independent stable processes {z+(t), t >0} and {z_ (&), t 2 0},
both having characteristic functions

izZy (t) a
4.2) E{e } = exp{-t]z] (Al + iAzsgnQ)} .

Define the fractional stable process by
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-]

Ay = (e - s B - [s]Byazsy , telo, 11,

where A(0) = 0 a.s. and Z(s) = Z+(s) I(s > 0] + Z_(-s)Ifs < 0].

Theorem A. ([4]). As n » =,

A_(8) NG

Let {XJ'., j € Z} be another sequence with the same properties as
{Xj, j € z}. Suppose {X:'], j €z} and {Xj, j € Z} be mutually independent.
Define the process Ax"x(t) corresponding to {X;, j € 2} in the same way

as An(t). The results in this section are the following.

Theorem 4. Let 1 <a < 2 and take r >1 with 1 <a <r < 2a. Further

take B such that 2/r - 1< B8 < 1l/a-1+ 1/r, B # 0. Suppose

8, ,(Xg» Xp) <= for s, p with s=-1+1/p=r. Then for each ¢ &[0, 1]

' r ' -Hr+4r-1
3) 8, (A (6), L) < 4[8IT B (X, Xp) (atD) Ca p »

where

3 + 1n(n+2), if B = 2/r - 1,

B,r -
1+ 3{(g+1)r-2} 1, if 2/r-1<B8<l/a-1+1/r.

Theorem 5. Let 0 <a <1 and take r with a <r < a/(l-a). Further

take B such that 1/r < B < 1/a. Suppose Gs p(XO’ X(')) <o for s, p

with s - 1+ 1/p = r. Then for each t ¢ [0, 1]
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4 8 (8 (6), AL(E)) S48, (X Xu LB+ DT+ 14 (Br - D7

1.

Theorem 6. Let 0 <& < 1/2 and take r <1 with 2a/(atl) < r < 20 < 1.

Further take B such that 2/r - 1 < B < 1/oa. Suppose es,p(XO’ Xé) <

for s, p with s -1+ 1/p = r. Then for each t € [0, 1]

A

1 r +\ _—HT -1
(4.5 8 (8 (0), A(E)) < 4IBITO, (Xg, Xpn (L + 3L(BHDE-2} )

By (2.6) and (2.7), we can find out when es p(XO’ Xé) < o in term

3 " } T 1 . s
of the difference pseudomoment Kr(XO,XO) or Ks,p(XO’X{)) which is also
related to the difference pseudomoment. (Recall our advantage (A2) for
5] .) Furthermore, by (2.9)-(2.13), we can estimate the difference between

S»P

An(t:) and Ar’l(t) in term of the uniform metric p.

5. Proofs of Theorems 4 - 6.

Proof of Theorem 4. Define for t > 0

(t]
w(t) = I Y, + (£ - [e])Y

k=1 k [t]+1
and
1 [t] L ;
= - 1
w'(t) = E Yk + (t [t])Y[t]+l .
k=1
Since GS 0’ s=1, 2, ***, p e [1l, ®»], is an ideal metric of order
r=s-1+1/p, then
(5.1) 8 (0 (t), '(t) =6 _(|8la Hu(nr), |B8]a M (nr))
' S,p n > “n S,p ’
- !Birn—Hr

es,p(w(nt) , w'(nt))
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It is not difficult to check that

w(nt) = I gm(nt)Xm ,

meZ
where
[nt]-m
(5.2) Em(nt) = X cj + (nt - [nt])c[nt]+l—m .
j=1-m

Using the properties of homogeneity and regularity of the ideal metric Gs o’

we obtain for the deviation between the distributions of w(nt) and w'(nt)

the following estimations:

(5.3) ,es,p(w(““)’ w'(ne)) <6

] r
s,p %o %) zzizm(nt)l

m

(cf. [7]1, [10]). By the definition of {Cj} it follows that

(5.4) z nm(nt)r; z [gm(nc)]r <4 I nm(nt)r ,
m>0 meZ m>0
where
[nt]+1+m —g-1
n_(nt) = I 3 R m>0.
" j=l+m

Later we need the following estimation of J(r, B) = Zm:O nm(nt)r :

(5.5) J(r, B) o for B < 1/r -1,

(r-1), _ _
([ne] + 1) T 1+ {(B+)r - 1} 1 + ([nt]+2)2 (B+L)r

(5.6) J(x, B)

A

<{(B+L)r-1}"T{2-(B+1)r}™Y) for 1/r-1 < B < 2/r-1,

where (a)+ = max(a, 0),

(r-1)

(5.7) J(r, B) < ([nt] + 1) {3 + 1n([ot] + 2)} for B =2/r-1,
(r—l)+ 3 .

(5.8) J(r, B) < ([nt] + 1) U+ mnro7 for 8> 2/r-1

and
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(5.9) J(r, B) < BTLGBHT + 1+ (Br-1)Y}  for B > 1/r
If (B+)r <1, then
n (o)’ 2 {[nt]/ (fatl+m) /T3,
which proves (5.5).
Let r ;1. Then
[nt]+1+m '
In@ sz ¢ 37D (uog et
m>0 m>0  j=l+m
where 1/r + 1/r' = 1. Hence
,  [nt]+l o [nt]+l+m
I, B < (lae] + DT/ (g 7B Dr L ooy < BT
j=1 =1 m
[nt]+2
< ([ne] + DL {1+ 2r o BFDT gy
1
o [nt]+l+y
+1 7 < BT 4g0y

1y

Hence if (f+1L)r > 1,

I, B) < (Int + DL @+ {@)r-11"1 + ((aej+2) BT DT+20 o1y, 137t

[nt]+2
+ f x_(e'l-l)ﬁ'l dx}

1
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and considering the cases 1l/r - 1 < B < 2/r -1, B=2/r -1 and
B> 2/r -1, we obtain (5.6), (5.7) and (5.8), respectively. If 0 <r <1,
then the formulas (5.6)-(5.8) are proved in the same way as r > 1. Let
B > 1/r. Then
© ©

<«
T n@m) < T( ¢
m=0 o =0 j=m+l

j~(8+l))r

A

BT+ + 1+ (Br-D Y,

A

which proves (5.9).
Let us return to the proof of the theorem. By (5.1), (5.3), (5.4),
(5.7) and (5.8),

' r ' -Hr+r-1
8, pB,(0), 81(0)) < 4lBle, [(Xg, X)(a+ 1)

3 + in(n + 2), for B= 2/r -1,

1+ 3{(g+1)-2}"Y, for B> 2/r - 1.

By the assumptions 1 <a <r < 2a and B < 1/0 - 1 +1/r, we have

rh

1 L a =veaa
-Hr+r-1 < C. The proo

Proof of Theorem 5. Let 1/a -1 < 1/r < 1/a and 1l/r < B < 1/a. Then

by (5.1), (5.3), (5.4) and (5.9), we get (4.4).

Proof of Theorem 6. By (5.1), (5.3), (5.4), (5.8), we obtain (4.5).

6. Bounds on deviation from the fractional stable process A(t) of the

elements in the domain of attraction.

For simplicity, we assume Al =1 and A2 =0 in (4.1) and (4.2).

* . .
Let {X., j e Z} be a sequence of independent and identically distributed
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strictly stable random variable having characteristic function (4.1) with
Al = 1 and A2 = 0. Hence {X;, j € z} belongs to the domain of normal
attraction of X;. Define A:(t) corresponding to {X;, j € 2} in the
same way as An(t). Qur results on the rate of convergence of An(t) to

A(t) are the following.

Theorem 7.

* -1
P (), A(E)) < (KM ¥

where

Folle-s B - s 7R % ds < w

-0

~
m

K(a, B)

and

cln'l, for g <O,
y(n) =

Cz(n,t)n_Ha, for B > 0.

Here C. depends onlvon o and B8, CZ(O) =0, _Cz(n,t) < C3 if

nt > C

4 and C3 and CL} are constants depending on O and 8.

- Theorem 8. Let o > 1, Under the situation of Theorem 4, if

*
62’p(X0, X <=,

then for each t ¢ {0, 1]

-1.-1 _
(6.1 pA (), MO < (L+c e, (0, 4 D+ @m Ty,

where

a
"

Clo, B = MY exp(-27K[2[Ddz < =

—c0
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Theorem 9. Let o X 1. Under each situation of Theorem 4, 5 or 6, if

*
el’p(XO, X <=,

then for each t ¢ [0, 1]

1.-

-1,-1
* (1+p ) -1
(6.2) p(a (t), A(t)) < (1 + CS){Gl,p(An(t), An(t))} + (KM “p(n).-

A

To get the rate of convergence of An(t) to A(t) 1in Theorems 8 and 9,
*
it is enough to apply Theorems 4 - 6 to GS p(An(t), An(t)) in the first
3
term on the right hand side of (6.1) and (6.2). We start with the proofs

of Theorems 8 and 9.

Proof of Theorem 8. We have

p(8_(£), A)) < p(A_(£), AS(E)) + p(Br(E) , ACE))

By (2.13)
* *
p(An(t), An(t)) <@+ mn) L(An(t), An(t)) s
where
mo = sup{[é%P(A:(t) 3 x)|; x € R}.

Since

h (2) = E{exp(iab. (£)} = exp{~|2|%[8|% 7" 1 |g (o) |*} ,
Z

me

where gm(nt) is the one defined in (5.2), we write

hn(z) = exp{- Knlzla} ,

where

K 2K (a B | % i

I8 z 1gm<nt)|°‘.
cZ

m

In [4], it was shown that Kn -~ K as n - o, Therefore
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Lo () 2 01 Y| _(2) |az= )Y cme}qn(-z‘]1<|z|°‘)dz

for large n. Thus mn < Cq for 1large n. Since o > 1, EX, = EX 6 = 0.
Hence we can take s = 2 and apply (2.11) to get

-1,-1
* * (24p ™) .
L(a (o), An(t))é“{ez,p(An(t)’ A (eN}

As to the second term on the right hand side of (6.1), it will be proved in

Theorem 7.

Proof of Theorem 9. Since a < 1, we have to take s = 1, and apply (2.10).

The statement is concluded by exactly the same argument as above.

Proof of Theorem 7. Recall that

h (2) = Elexp(izd ()} = exp(- k_|2|%

and

"

h(z) = E{exp(izA(t))}=exp(- K|z|%

(see [4]). Hence
o (2) - h(2)| < exp(- K|z|D)[z]%[K - K

By the Esseen inequality (cf. [5] p.109),

T

p(AT(8), M) <b f | (h (2)-h(2))/z]dz + r(B)CT T,

T
where T is an arbitrary positive number, b 1is any positive number
greater than (Zﬂ)_l, r(b) is a positive constant depending only on b

and C = sup{iiLP(A(t) 5_x)| ; x € R}. Hence
dx =

T - -1
p(A;(t), A(e)) £ bR - K| S exp(K|z|% |2]% tdz + r(b)CT
-T

Since exp(—Kizla)izla_l is integrable over (-», ®») for 0 < a < 2,
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then letting T - « implies that
* -1
pCa (8, A(£)) £ (km) 7K - K
Hence, to complete the proof of the theorem, it remains to show
(6.3) IR - k[ < ¥
The proof of (6.3) will be devided into the following four parts:
0 0
(a) | = {8 (o) |® - 1 [le-s]™® - || 7|%s] < v
m=-x -0
(®) |z e ey |® - s |-l B - s 7B %] < v
m={nt] m t
({nt]/2] _ t/2 _ o
(c) > [ 8n HEm(nt)iu -7 | jt-s| B _ is| BIads| < Y(n)
m=1 0
and
[ne]-1 _ t - -
(d) l I e o) |% - s [le-s|™ - Is|7B|%s] < v
m=[[nt]/2]+1 t/2

However, since the proofs of (a)-(d) are carried out in the simialr manner,

we shall show only (a) and omit the proofs of the others.

Proof of (a). Denote

-2 -3/n
6,51 T e o) |* -1 [le-s| 7P - || 7B %]
Since
[nt]-m —g-
Emo = £ 5" 4 ar- meD (el 41 -m P for m<o
o j=l-m
and B+ 1 >0, then
nt+l-m © nt-m
0< 7/ x_B_ldx 2E (nt)y < S x—B_ldx
1-m o ~-m
Hence
2 -8 -Ba
A= L oo |[{@-m)/n} " - {t+Q-m)/n} 7|

-n
m=-x
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2 -H a
;mimlﬁn g (nt) |
2o -8
L I n |(—m/n) - (t—m/n)_Bla = Xn .
m=—m
Denote
g@ o |ea - (2| P, ae (o, @
Then A
-3/n
N |[t_s|‘3 - Is]7B)%s = 1
and
X, 28(3/n) +g(2/n) + L.
Hence
cSn < g(2/n) + g(3/n) .

For any a ¢ (-, ®),
gla/n) < ot max{|t—a/n[-ue, !a/n]-ae} < P(n) .

Thus

(6.4) 8, < v .

Let t >0 (if t =0, Kn =K =0) and 1/n < t. Since 0 <t <1,

we have for some C > 0

1/n

(6.5) i |u'3 - (t+u)'51°‘du < cl(1/m ¥ 4 (er1/my 18 108y < y(n).
0

So
0 -8 _ | |8

(6.6) 5 e=s|™% = |s|7F|%s < w(n) .
-3/n

If m= 0, -1.
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(6.7) | sn‘Hg_l(n:) |*

[nt]+1 A
lgn 1% £ 57871+ (ae - [ncD) (lae] + 2787
j=1

a

a e+ 7P - am TR

A

-

2 max((e + /0%, @/ <y

A

and similarly
(6.8) N ILERTEN

By (6.4), (6.6), (6.7) and (6.8), we obtain (a).
The estimates (b)-(d) can be shown similarly, and hence Theorem 7 is

proved.
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