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Introduction

Let M be a finite dimensional manifold and let L(7,7) be a function on the
tangent bundle TH. Our aim is to construct a €% semi group of bounded linear
operators HML) and its infinitesimal generator AML) on the intrinsic Hilbert

space H (M) (see §5 for its definition,) where t€R, and A is a positive parameter.

As above problem is too vague to consider, so we restrict ourselves to the
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following case which seems rather typical

1)

(M} M is a smooth, simply-connected and connected d-dimensional mani-

fold.
(L.I) L(7.%) is represented by
Loy = L3 - V). L°(27) = (1/ 295 )P Y
for (7,%)€THM. (Hereafter, we use Einstein's convention to contract indices.)

Moreover,
(L) ds? =g;;(z)dz*dz’ defines a complete Riemannian metric on #.

In the following, for such g;(z), we associate quantities in Riemannian
i

geometry as are used usually.)

(L.I1) There exists a constant k=0 such that for any 2-plane m, the sec-

tional curvature K, satisfies —k?<K,<0.

(L.IV) Denote by Ry (z) the component of curvature tensor £(,). Then,

there exists a.constant Cq such that

Ve R M(z)] = Co for 0<|a|=3,
where a = (ay, * - - ,aq) is a multi-index, V* = Vil Vg? and V; represents

the covariant derivation in the direction of z/ for any local chart at

z=(z!,...,z%).

(LV) VeCg (M) are real valued.

For any natural measure g on M which is defined without mentioning

Riemannian metric {see §5 for its definition), we consider the following transfor-

mation in L?(#.dyu) with parameters t>0 and A>0. For any f<Cg5(HM) and

sufficiently small £ >0, we put .

&)

(HNL:wf X =)

= (2mA) 2 [ p(Lip)(t.z.y)expt-A" S (L) (2.9 f (w)dply).
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Here we denote
@ S(L)t.zy) = intt [, Lo@HAT: A zgd, H(D=dA(r)/dT,
(4) .y, = ty()ec([0,t]-H) : absolutely continuous in T

with Y0)=y, %(t)=z, and [, <H(F).H)>xndT < +2}

and

(5) p(Lip)(t.zy) = [det (=8,:0 o S(LXt.z.y) )/ p(z)uly)]V?

where u(z) is the density of p at z, i.e. du{z)=u(z)dz'A- - - Adz?, 8_; denotes
the partial derivation in the direction of z* at z=(z!,....z%), and <X,Y>; is the

Riemannian scalar product at z for X,YeT, M.
QOur theorem is:

Theorem. Let M and L be given satisfying Assumptions (M) and (L.1)-(L.V).

Then, there exists a positive number T>0 such that the followings hold:

(a) For any natural measure u. the operator HML;u) defines a bounded

linear operator in L¥(M,du) for 0<t<T.
(b) 1‘15101||H:)‘(L:ﬂ~)f - fil=0forall feLl¥M.du).
(c) There exist positive constants C and C’ depending on T independent of

u such that

6) NHA(L)f — ENMLiwENLS || = [CKt+s)¥ 232453 + C(t+s)s]Ir ]
for 0<t +s<T. Moreover, we take C'=0 for V=0.

Furthermore, we have:
(d) There exzists a limit HNL;u) = Uim{A} o (L:u)]™* in the operator norm in
2 ve
L3(M.,dy) for any t>0. Horeover, {HNL;:u)}e=o with HY(L;u) = the identity
operator, forms a C° semi-group in L3(M.dy).

(e) For any two natural measures p and v on M, we have

(7)  HNL:p) = U HNLW)U,,
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where U,, is an isomorphism from LP(M ., dy) onto L3(M ,dv), defined by

® (Vs =) = f @)z vz)V? for f el dp).
(f) The infinitesimal generator AN L:u) of HNL;u) is given by

(®) B (HNLWS )jt=o = ALip)f = U;,LA*(L:ug)U“,,J for f<Cq (M),
(B(Lipg) Mz) = No{ty/ 2 = B(z)/ 12)f () + V(z)f (z).

Here A, is the negative Laplace-Beltrami operator and R(-) stands for the scalar

curvature.

In other word, the above procedure defines a C° semi-group BMZ) and its
infinitesimal generator AML) on the intrinsic Hilbert space H(M) such that if
H(M) is trivialized by a natural measure u as L3(#,du), then HMZ) and ANL) are
represented by HML;u) and AML;u) on L3(M,dwu).

» The old and debated question whether the Schrédinger equation in the
curved space contains the term with %2R (-) will be solved completely if we could

proceed as same as above for A=A,

In §1, we enumerate the basic properties for the quantities derived ffom the
classical mechanics defined through L. As our configuration space is curved, we
cannot apply directly the iteration scheme used in Fujiwara [8] to our case.
Instead of it, we use the Morse theory to obtain the estimates of the classical
quantities. In §§2-4, for the special choice of u=y,, we give the proof of (a)-(d) of
Theorem. As one of the corollaries, we give the covariant property of the opera-
tors HXL;u,) and AML:u,) under a diffeomorphism of M. In §5, we give the
definition of the half-density and the intrinsic Hilbert space on M, which com-
bined with the result in §4, gives readily the procf of Theorem. Here, the mean-
ing of the appearance of the term R(-)/ 12 is clarified. In spite of this fact, in §6,
we claim that for any number S€R, we may produce the term N*(1/ 6—8/ 12)R(")
if we change our procedure a little bit. But in this case, we must use the fact

that 4, is essentially self-adjoint on Cg (M) not proving it as in §4. Moreover,
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there exist no covariance properties unless §=1.

Some parts of Theorem were already announced in Inoue-Maeda [11].

Contents

1. Some properties of the classical action. - preliminaries from differential

geometry
2 Some basic properties of HML;ug ).
3. The convergence of the product HMZ:x,) in the operator norm.
4. The computation of the infinitesimal generator of HNZ;uy).
5. Proof of Theorem and its interpretation.

6. We may produce any multiple of F() in the infinitesimal generator.
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1. Some properties of the classical action - preliminaries from differential
geomelry

For any z,y €M, the set ( ;4 introduce in (4}, denocted simply by Q in this
section, forms a Hilbert manifold. (See p.247 of Abraham-Marsden [1].) The
tangent space T,{? at ¥€Q may be identified with the space of vector fields Z on
M along ¥ with Z(0)=Z(¢)=0 whose coefficients belongs to (). Moreover, a scalar

product on T2 is defined by

t
(1Y) <ZuZa>, = [ <Zi(1).ZT)>ymdT
(For the notational simplicity, we drop the indices ¥ and () above if there

occurs no confusion.)

Now, we introduce two functional S (7) and S%(y) on 0 by
(1L2) S = [LGMHdT for 7€Q and
(1.3) 8%y = _/:LO(‘y(T),"}‘(T))dT for yefl.
Lemma 1.1. Under Assumptions (L.1) (L.I{) end (L.V), we have -

(i) S(y) is bounded from below.

(ii) S() is a smooth functional on Q, i.e. for any curve ¥(t ;&) on M satisfy-

y(;0)=7(-)eQ, (d/ de)y(;€)|.=0=ZETq, there emlits)
(as d&)S(7(-:8)) =0 = AS{7)-Z.

(iii) y€Q is a critica point of S, ie. dS(7)=0, Yf (a) ¥y belongs fo
C¥{([0.t]-M) and (b) ¥ satisfies the following equation

(1.4)  FO + Tt GO (OFE) = (VO
where T stands for the Christoffel symbol and (VV(z))* = g¥(z)V; V(z).
(iv) 7€Q is a non-degenerate minimum of S(-) iff there is no trivial J€T,Q

satisfying the following V-Jacobi equation,
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(1.8)ys (7 + R(I(D)HNHT) = —VV(H7))-I (7).
where J'{T) = (8/ 67)J(T) = the covariant derivative of J along y(7) and

V2V(z) stands for the matriz whose (i,j) element is given by VV; V(z).
Proof. See, Milnor {13] and modify it slightly, if necessary.

Following fact is well-known that under Assumption (L.II)

(1.6) SYt,z,y)=d¥=z.y)/2t for =z, y<M,

where d{z,y) is the Riemannian distance between x and y. We consider the ini-

tial value problem for (1.4) with initial conditions

(1.7) ~(0)=y and ¥0)=Y<T,M.
As is well-known, for any y<€7T, M, there is an interval Jy where the solution »(t)
of (1.4) with (1.7) exists. Moreover we have:

Lemma 1.2. Assume (L.J).(L.1I) and (L.V). There ezists a constant C;>0

such that

(1.9)  tq|Y|®-C| Y|t +(CE/3)tR —4Cy)]

< d(y.7(t))?

=t?|Y|%+ C| Y|t +(CE/3)t? + 4C,] for tely.
Here, |Y|?= <Y, Y>, for YET, M.
Proof.
(1r2)(d/dt)|3{(t)|2 = <(6/ 6¢)3(t).3(¢)>
—<VV{x(2)). ¥(¢)>
CilHE).
This leads us the second inequality of (1.8). And we have, by definition of

A

S{t.z.y) and S*¢t,z.y),

(1.10)  S%t.z.y) - Cit < S(t.z.y) =< S%t,z.y) + Cyt.
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Combining this with {1.8), we have

a®(y,y(t)) = 25ty ¥(t))
¢ ¢
< 2ty [ (/213127 = [y VirAD)dT + Ot ).

So, we have the second inequality of (1.9) readily. The other parts are proved
analogously. q.e.d.

Corollary 1.3. Same assumptions as above. The solution ¥(t)=y{t;y.Y) of
(1.4) with (1.7) exists for any t, that is, Iy=[0,=). Moreover, ¥(t.y,Y) depends
smaoothly on (t,y,Y)€[0,}xTH.

We denote ¥{t;¥,Y) by &, ,(¥). By calculating primitively, we have:

Lemma 1.4. Assume (LI).(LII) and (L.V). .Let (d®,,)y:Ty(T, M) -
Ts, (M be the differential of &, at Y<T,M. Then, for any WETy(TyM).'
J(t)=(dd, )y W satisfies the V-Jacobi equation (1.5) with initial canditions
(1.11) J{0)=0 and J(0)=W.

Lemma 1.5. Under Assumptions (L.I}-(L.III) and (L.V), there exists a con-

stant T>0 such that for any W#0, the solution J(t) of (1.5) with (1.11)

satisfies J{t)#0Q for 0<t<T,.

Proof.

(172)(d?/ dt3)| J(t)|? = (dsdt)<d(t).J(t)>
<J(E)T(E)> + <J(t).J"(t)>
PAGIEEE AP

by (LI and (LV). Using (d¢/df)[J(1)|2 = f,(d%/dr®)|J(r)|*dr and

v

¢
J(t) = _/; J/(7)d T, we have readily

¢
(172)(d/dt)|J(t)1? = (1~(Cit?)/2) [ |7'(r)|%d .
Taking 7', smaller than 2/ C,, we have the desired result. gq.e.d.

Corollary 1.6. Under the same assumptions in lLemma 1.5 we have

(284 )y#0 for 0<t<T| and YeT, M where T, is taken as above.



KSTS/RR-84/003
28 November, 1984

-9-

Proposition 1.7. Assume (M), (L.1)-(L.III) and (L.V). Then, there exists a
positive number T, such that &, , gives a diffeomarphism from TyM onto M for
0<t<T, andycM.

Proof. As the functional S(-):2-R has the non-degenerate Hessian at criti-
cal point for 0<t<7 by Corollary 1.6 and {iv) of Lemma 1.1, { is homotopically
equivalent to a CW-complex with O-dimensional vertex. On the other hand, as #
is assumed to be simply connected, Q consists of one point. That is, there exists
one and only one critical point for S{) in Q. This nieans that 9, , is one to one
and onto from Ty ¥ to # Qand $; , is differentiable by Corollary 1.3. So we have
the desired result. q.e.d.

Take orthonormal bases {#;} and {e;} on Ty{(T,M) and T M respectively.
Then, the differential mapping (d@g‘y)y may be expressed by
(1.12)  (d®, )y W; = Fies.

We denote det(F}) by dety{d®; ; )y, which is independent of the choice of ortho-

normal bases.
Defining

(1.13)  B{t,z.y) = t™%|detyg(dd )yl

we want to give the upper and lower estimates of it. Before that, we prepare the
following lemma which is a modification of Rauch’s comparison lemma (87 of

Chap. I of Aubin [2], §10 of Chap. 1 of Cheeger-Ebin [4]).

Lemma 1.8. Let A(7) be a smaoth real vector field on R® satisfying

(1.14)  A{7) + K(DA(T) = 0, with A(0)=0.
Here K(7) is a redl dxd matriz of 0=7<t.

(i) If —K(T) is bounded from below, i.e. —=K{7) = —«f/ (x,=0),
then

(1.15)  <A(t)A(t)>o= kicotet -<A(t),A(t)>¢ for t<n/i;.
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(i) If =K(r) is symmetric and bounded from above, ie.

~K(71) < k3] {(xx=0), then

(1.16)  <A(t).A(t)>¢ = Kz cothicat -<A(£),A(t)>s .
. 2.l
Jor sufficiently small t, where <, 3,7  is the Buclidian scalar praoduct.

Proof. (i) We compare the equation{1.4) with
(1.17) B(7) + k3B(r) =0 with B(0)=0 .

Let §{B;{7)} be a solution of (1.17) with B;{0)=0 ,'B_,-(D)=e5 .{e;} stands for the
canonical bases of R*. As {B;(7)} is linearly independent vectors in R* for
t<n/k, we expand a solution A(7) of (1.14) as A(r) = Ljt,a;(7}B;(7). Using

<Bi{1).B;(7)> = <Ej(7).Bj(T)> and integration by parts, we get readily

<A(EVAEY>0 = [L1<A().A()>0 - <K(TA(D).A(T)>YdT
+ <EEiai(¢)Bi(t).Efas () B (t)>

+ [ i DB I g (D) By(t)>d T
On the other hand, as any solution of (1.17) with B(0)~0 is represented by
B(t) = ££,8;B;(7) (B;€R), we have readily, for B(7) satisfying B(¢)=A(t),
<A(E),A(t)>q = <B(t),B(t)>g
Since, A(¢)=B(t) implies 8;=a;(t). Defining B(7) =(sirk,7/ sine,t}A(t) we have
(1.15).

(ii) Instead of (1.17), we use

(1.18) C(7) —KEC(r) =0 with C(0)=0 . -
Let [4;{7)} be solution of (1.14) with 4;(0)=0, A;j(0O)=e;. For sufficiently small t,
{4;(t)} is linearly independent. Expanding a solution of (1.18) as

c(r) = E,‘-‘=la7~ (T)A;{7), we have, by analogous calculation as in proving (i),

<C(t),C(t)>g

= <Z?=Ici(t)Ai(t),Sf=lcj(t)Aj(t)>Q
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t . .
+ _/; <E& 10 (MAL(T) I e (MA(T)>d T .
Here we use the symmetry of K(7) to prove <,£1(T),AJ- (1>, = <A{T).A(P)> . As
A(7) = L& c;(t)A; (T) is a solution of (1.14) with A(t)=C(t), we get
<C(E),C(t)>g= <A(t).A(t)>y -
Putting C(7) = (sinhi,7/ sinhwpt JA(t), we have (1.16). g.e.d.

Now, using this, we give first of all, the lower bound for e(t,z,y).

Proposition 1.10. Assume (M), (LI)-(L.II) and (L.V). Then, there exists a
canstant Tg>0 such that
(1.19)  8(t,z.y) = (sinV/ Tyt / VTit ) ,fo%(t <T, and z,yeH .

Proof. Introducing vector fields {P;(7)} parallel along 7.{7) and orthogonal
wr.t. <> we expand any V-Jacobi field J(7) as J(7)=Sf,a?(7)P;(r) where
a’(1)eR Then, 4(1)=!{(a}(7).....a*(7)) defines a vector fleld in R* and satisfies

A(T) + K(1A(T) =0 .
Here (j,k)-element of K(7) is given by

(1.20)  <R(Pi(1)7c(TN¥e(r).Pe(T)> + <P V(yc() - Pi(T). Pe(7)>.
By Assumptions (L.III} and (L.V), there exists C,>0 such that

—K(1) = ~C\I.
Using (i) of above lemma, for £ <Tp=min(T 7/ V/C,}, we have

(1/2)(d/ dt)log| J ()]2 = /Treot/Tit.
Here, we use the fact |J({#)|* = <J(t),J(t)>=<A4(t},A(t)>;. Remarking

lti'ixolU(t)f/t =1, we have |J{(t)|/¢t zsin‘\/C',t/\/Clt. we get (1.19) by the
definition of det. q.e.d.

Analogously, we have the upper bound of &(t,z,y) as

Proposition 1.11. Under Assumptions (M), (L.I)-(L.III) and (L. V), we have

(1.21) ®(t,z,y)=<[sinh(k|Y|+Co)t/(k|Y|+Ca)t]*, for 0<t<T>
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where 2 =8, ,(Y), Ca=(k*C}TE+C\)"/? and T, is defined in Proposition 1.10.
Proof. As before, we consider {1.14) with (1.20). Then, Assumptions (L.III)

and (L.Y), combined with the estimate (1.8) give us an upper bound for X7} as

<—K(DA(T)L.A(T)> = (k| Y|+C2)?|A(T)|? for 0<T<T%.
Using (i) of Lemma 1.8, and proceeding as before, we have the desired estimate.

qe.d.

Now, we give elementary properties for S(¢,z,y), called the classical action.
By Proposition 1.7, there exists the unique critical point y¢ of S(-), cailed the

classical path, which satisfies

(122) S(t.zy) = [, {1/ 2)<Fe()3e(7)> = Vye(rdr.

Following fact is rather well-known. (See p.390 of Berger et al [3].)

Lemma 1.12. Under Assumptions (M), (L.I)-(L.III) and (L.V), S(t.zy)is a e -
C=-function on (0,T2)XMxM, symmetric in z and y, satisfying the Hamiltan-

Jacobi equation:
(1.23)ys 8, S(t.z.y) + (1/2)<V. S(t,z.y).9:S5(t.z.y)> + V(z) = 0,
and for any YET, M
(1.24) (v, S(t.zyY) = —<By i (z). Y>.
By (1.24), we have, for XeT, M, YT M

9, S (62 y)XY) = —<(diy) (X). Y>, - =

which gives us the following formula:
(1.25)  dety(d®di}). = det(VyV.S(t.z,y))/Vg(zlValy) (Vo(z)=uy(z)).

I we put p(t.zy)=|dety(dd:});|¥% we have easily p(tzy) =
—

t~4/%9"3(t,z,y). Then, we have

Proposition 1.13. Assume (M), (L.I)-(L.11) and (L V). The function p(t.z.y)



KSTS/RR-84/003
28 November, 1984

-13-
is smoaoth on (0, T2)xMxHM and satisfies the following continuity equation:

(1.28)c  8:p(t.z,y) + (1/2)p(t.z.¥)0FS(t.x,y) + <V p(t x.y) V. S(t, z.y)>=0.

Here, A®) stands for the Laplace-Beltrami operator acting on a function of z.
Proof. Define ¢(t,z,y) = dety,(d®;}),;. Then, using the identity &%, =

&40 ®y 4o Bk s We get

(dét‘*ls)z = (d @t—gl/)z '(d(@t.y" @t_;ls.y))z' z = q’t .y" Qt—i!s .y(z)-

This means
(87 8s)¢(t+s.zy) = <V, &t,z,2).052> detg(d(P: 10 Bidey))

+¢(t.z,y){(8/ 0s Yexp trace log (d(®: 4 3 ))z-
As <V, ¢(t.x,y).0s2>|5=q = —<V:¢,V,S(t,z.y)> and

8,exp trace log (€(8, ;8 ,))s = —trace[VZS(t.z,y)]

-A@S(t,zy), . <s-

we have

8:¢(t zy) + <Vet(t.z,y). V. S(t.z.y)>: + {t,z,y)A®)S(t.zy) = O
As p(t,x,y) = &(t,z,y)3 we have (1.26);. q.e.d.

Remark. As is mentioned before, S(¢t,z,y) and p{t,z,y) are symmetric in x
and y. In the following, we use (1.23)y,, and (1.26), with changing the role of
and y if necessary.

Following estimates are easily obtained by differentiating (1.5) y,._t and
using the variation of constant for ordinary differential equations (See, Appendix
in Maeda [12]).

Lemma 1.14. Let take T>0smaller than T, and satisfying O(t ,.z,y )=1/2 for
any .,y EM and O0<t<T. Then, under Assumptiom/(M) and (L.I)-(L.V), there
erists o positive constant Cy independent of z,y<€M and 0<t<T such that for

0<|a|=<3 and z=§,,(7),

(1.27) |Vg0{t,z,y)| < Caexp(k|Y|+Cpt,
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(1.28) |V2o(t,z,y)| = Cat ™ Zexp(k|Y|+Cy)t.



KSTS/RR-84/003
28 November, 1984

-15-

2. Some basic properties of HMLiu,)

In this and in §§ 3 and 4, we denote HP(L.ug) simply by H{ and L%norm of

LM ,dpy) by |I'll. Hereafter, we fix T>0 as defined in Lemma 1.14.

Proposition 2.1. Assume (M), (L.I)-(L.1II) and (L.IV). Then, the aperator H}
are stable in L*(M,du,). That is, there exists a positive constant C,=C,(\,T)

such that

(2.1)  ||HAfll < exp Cut-|If|| for 0<t<T and f<Cq (H).

Proof. H{is anintegral operator with kernet

(22) ANt.z.y) = (BrA)"%(t,z y)exp {(-ATIS(E.z,y)) -
We claim that there exist constants C,'=C,'(\;T) and C,'=C/();T) such that

(@3) [ pNtzy)dug(y) < (1+Cit)exp C't/ N

(2.3) fyh*(t,z,y)dﬂg(z)s (1+C t)exp CYt/ N,
for all 0<t <T. .
Putting y =%, .(X).X<T, M, and remarking p(t,z,y)=t %/20(t,z,y) V% we

have

@4) [ PMtzy)du(y)

= (2m) V22 [ exp (NS (£,2,8,  (X0)]0(t 2.8, L () X

Inserting the relation above and (1.21) and using polar coordinate, we have
S PNtz y)duy (y)

<(2m\) 4/ 24/ 2y0l (5%1) [ "4 sinh(kr +Cy)t / (kr +Cy)t 142

xexp[(—r?t +6C t +C Tt2)/ 2\] dr

Using

(—r2+C7t3+6C t )/ 2h = —r?t / ax + ((-r*t/ 2)+C\7t?+6C )/ 2\
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< —r% /4N + C/'t /), for 0<¢t<T and for r=0,
where C,'=3C,+(C$#T?%/ 4), we have

S Ptz )du (y) < exp(Crt/ N-Fi(t) .

Here, we set

F\(t)

= (2Tr)‘4’21;;l(Sd'l)j:u‘"‘[cosh (u{rt )2 + Cot)]% %exp (—u?/4)du .

Using sinh 7/ r<cosh r for r>0, we get

Fy(t) = £ Rit)

< (d/ 4)(2m) %/ Ryl {S1)
x f u¥lcosh(ku (At )/ 2+ Cat )42
x[kZul\+3Cku (Nt )/2+2C3t lexp (—u?/ 4)du ,

there exists a positive constant C,'=C,'(X;T) which bounds from above the right-
hand side of the inequality above. Combining this with F)\(0)=L, we get (2.3).

Analogously, we get (2.3)".

Remarking

(HMf N =) =
S Ntz )Y 2R 2 )2 f ) | duy (v)
and using Schwarz’ inequality, we have
AT 1P < exp €t/ N)-(1+Cet PP IR .

This implies (2.1) by putting C, =C/+(Cy'T/ ). ge.d.

By Proposition 2.1, we may extend A} acting on L¥(#,du,). Now, we study

the dependence of H? on t.
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Proposition 2.2. Assume that (M) (LI)-(L.1II) and (L.V) hold. For

S €L M duy), we have
(2.5) tliglo”Ht)‘f -Flt=0.

Therefore, putting HY = the identity operator, we have the mapping frem

t<[0,T] to HMf €L?(M.dpy, ), strongly continuous in t for each f €L*(M,dug).

Proof. By Proposition 2.1, it is sufficient to prove (2.6) for each f<€Cg {#M).

We take a smooth funetion x{x),0=x{z)=<1, as

1 if d(z.suppf)=2
X=) =1 0 i d(z.suppf)>3.

We shall show the following.

(26) lim|Hit) - 7Ol =0,

@7)  JimlEadt )l =0 ,
where H\(t x) = x(z)(H}f )(z) and Hy(t,z) = (1-x(z)(H}f X=z).
Proof of (2.6). Putting y=<In_,(X)=7(t,x,X), XeT (M), we get

(28) fy)=r(z)+ fz:t.X) and B(t.z.y)Y? =1+ 08(z.t.X),

where

I iz.t.X) | ‘
= [(d/ds)f (Bx(0)ds = [ <TyF (82 (X0).5(s 2. X)>ds

0,(z;:t.X)
= [, (@/ds)o(t.z.8, (X)) ?ds

= (l/ 2)]:@(1‘ vI-@s.z (X))'_V2<Vy B(t,2,@5,,()()),‘}'(5‘,:,}())} ds .
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So, using polar coordinate X=rw,r €(0,=), @€S%71, we have

(2.9) Ht.x)
= x(x)(zm\)—dxztd/a_/:fsd_l(f (z) + H,(z.t, Tw))
xexp {-A1S(t 2,8, L (ro))jrdTidrde |

where H (z,.t.rw) =}1(x,t,rc>) + {3 z(Tw))B(z .t Tw).

Using the estimates (1.8) and (1.27), we have readily, for some constant

C5= C5(T),

(2.10) | H (z:it,rw)l

=
= [%!Vf | + Cas;z'_glf | -expkr][rt + (C,\t3/ 2)] .

Using these estimates and remarking that y(z) has compact support, there

exists a constant Cg=Cg{T A} such that

(2.11) E(t.) =7 Ol = Cet3smpIv7 | +Egl /1] -

Proof of (2 7). Choose another function @(y)eCq (M), 0<¢=1 satisfying

1 if d{y.supp f)=1
#(z) =g it d(y,supp £)>3/2

Remarking ¢(y)f (¥) = F (). we have
(2.12). Halt.x) = [ Atz y)f (¥)dus (@) .
where
F(tz.y) = ()2 (1-x(@))e(ydp(t.z.y Jexp t-ATS(EZ Y)Y

By the choice of x{x) and ¢(z), we have Fy({t,z,y) = O for d(x,y)=< 1/2. Onthe

other hand, by the choice of T,

@td’ 2p(t.z,y)< V2 and gs;u;gjt"/ Rexp(—X?/2t)] <C{d)<.
zyeM X212
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So, using (1.8) and (1.10), we get
itz y)=Cr(1—x(z))elyJexp(—d*(z y)) for 0<t<T ,

where Cy is a positive constant, independent of z,y €# and 0<f<7. Moreover, as

ltin.}lFx(t.z,'y.N =0 for each z,y<€M, using Lebesgue’s dominated convergence

theorem and the argument at the end of the proof of Proposition 2.1, we get

(2.7). qe.d
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3. The convergence of the product 4 in the operator norm

Take t>0 arbitrarily. Dividing the interval [0,t] into n-equal subintervals
~ ~
such that (t/n)<T, we define an operator H(t) as Ha(t) =Hn - - - HYn (pro-

duct of n-times).

Proposition 3.1. Assume that ¥ and L satisfy (M).(L.I)-(L. V). Then, there

exists a C° -semni group HML:pg) (¢=0) an L3(M ,dyy) such that, for any t>0,
@.1)  [HNLiduy) - BNt < (@Y 2 + Ct2nY)-expCit
where C and C’ are positive constants depending on T, independent of n.

Proof of this proposition is composed of several lemmas.

Lemma 3.2. The function ¢,z y) satisfy the following :

(32) (X8, — (A% 2)A@)RNE z.y)
R = (20N (N 2)8P) — W(z)]p(t .z y)exp (-NTIS(tzy)]
(8.3) (A0, + (\2/ 2)A@NRN(¢t —.a,z )
= (2nN) " F (N2 2) A ~V(y ) 1p(t —0.z .y )-exp {-NT'S(t—o.z.y )} .

Proof. By the formula of A®) acting on the product of functions, we have

(3.4) AWRMt z,y)
= (2rA) "4 2[(AW)p(t .2,y ))exp -1 (2 )}
- 2A7 <V, p(t,z,y).V, S{t.z,y )>exp {-ATIS(t, 7.y )}

+ p(t.z,y)0Mexp {-\"1S(t,z,y)}] .

Combining (1.23)gs and (1.28)¢, we have easily (3.2). Analogously, we have (3.3).

g.e.d.
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For f €Cq (M) and t,s>0, A>0, we may write

(38) (HASS =) - (HEHM ) =)

= [ANtszy)f (W)dug(y) .
where
(3.8) Pnlt.siz.y) = RMt+s;7.y) -fuh}‘(t,z:,z)hA(s,z,y)d,u,g(z) .
Since 7L”‘(t ,s:;z,Y ) has a singularity at t=0, we define, for any positive ¢,

(3.7) Ri(t.siz.y)

= f:[(d/ da]fﬂh"(t +s —0,z,2 )AN0.2,¥)d e (z)]do

which satisfies lirg'l‘z'{(t,s;r,y) = R\(t.s:z,y) for any (t,s,x.y), t>s. Exchanging
o
d/do and the integration, we have using Lemma 3.2 and integration by parts,

@8) Nif(t.siz.y)
= —(\¥/2)(2m\) ¢ fs S§ (t +s —g) /3372
fﬂ[ﬁ(a.z YAt +5s —0,2,2) = p(t +5 —a,z,2)83)5(0,2,y)]
xexp {-A"YS(t +s —0,z,2)+5(0.2,y)} dug(z)] da ,
where we put p(¢,z,y)=t% 2o(t,zy).

Lemma 3.3. Assume that (M), (L.I)-(L.V) hold. For T>0 defined in Lemma

1 14, there exist pasitive constants Cg and Cy depending on A and T such that

(3.9) ljggfyklﬁf (t.5:7.y) dug(y)s Col(t+s)¥2 —t¥2 + s¥21 + Cy(t +5)s

lim [N RE (1,5:2,9)| dpg (z)s Col(t+5)¥2 — t¥2 + s3/3 + Cgt+s)s .
-0 N
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Preof. Remark at first that
(3.10) Plo.z.y)ABB(t +s —-0,z,2) — (¢t +s—0,2,2)A*)5(0,2,y)
=0,2,9)[AP5(t +s—0.z,2) = NGt +5 ~0,2,2)|;=2]
+ [B(0.2,y)AC(t +s —0,2,2) ;2 — Pt +s~0,2,2 )0 D(0,2 ¥ ) |22y ]
+ Bt +s -0,2.2)[ M50,z ) 2y — A B(o2.)] -

Take the geodesic 74(7) with 7, (0)=z,¥4(r)=2 where r=d(z.z). Then, we

have , using {1.28),

(38.11) |AEB(t +s—0,z,2) = APt +5 -0, ,2) |5 = |
=< j;r}VzA(’)ﬁ(t +s=0,2,7(T))|dT
< Cad(z.z)exp kd(z,2) ,

where Cg and & are positive constants independent of z,2€M. Analogously
(3.12)  |4@5(0.2.y) — A5(0,2 ) 122y | = Ced(y,2)expFd(y.2) .

In order to estimate the second term of the right-hand side of (3.10), we use
Lemma 3.4. A®5(t,z.,2) =, =R(z)/6 + tO{t,z),

where the function | O(t,z)| is bounded from abave Cg>0 for any 0<t<7T and

Jor eny <M.

Relaining the proof of above lemma later, we have, by Assumption (L.III).

(3.13)  |B(o.z Y)ABB(t +5-0.2.2) 2= — Bt +5—0.2.2)0 (0,2, ) 2=y |
= |{(plo.z.y) - VR(z)/ 6] + {R(z) - R(y))/ 63

+ {1 =Bt +s—o.z.2))R(y)/ 8}
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+ {t+s—0)p{o,2,y)O(t +s —0,7) — ap(t +s —a,z,2 ) 0(a.y)}]
< Cgld(y.z)exp Rd(y,z) + d(z,y) + d(x.2)exp kd(z.z)] + Co(t+s) ,

- where Cg is a positive constant independent of z€M.

Inserting these estimate in (3.8), we get
e S
3.14) [ AIRE(ts.2.9)du, (v) < (-3 2) [ [Li(0) + La(o) + Lo(o)]da

where

(3.15) Ly(o)
= Co(2mN(t+s—0)) ™V X (2mro) ™2 [ [ [d(z.2) + d(z,2)exp kd(z2)]
xexp {~A"W(S(t+s—0,2,2)+5(0.2.y))d g (z )d g (y)

(3.18) Ly(o)
= Ce(zfr)\(t+s—a))-dfa(zma)—dfzj;fy[d{y,z) + d(y,2 )exp kd(y.z)]

xexp {=A"YS({t+s—0.z,2)+5(0,2,9)){duy (z )duy (y)

and

(3.17) Ls(o)

= Co(2mA(t +s5—0)) ¢ *(2nAc) /2t +5)

XIMfMexp AT S(t +s—0,2,2)+S(0.2,y))duy (2 )duy (y) .
Using (1.8), we have

(3.18) L](U)
< (2nA(t +5 —0)) "% 3(2nAa) "% Pexp C\{t+s)/ A

fo[d(x,z) + d(z,z)exp kd(z.z)]exp (-d¥(z.z)/ 2\t +5 —0))
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x{ [ oxp (=d¥(z,y)/ 2ha) dpg (y 3y (2} .
Then, calculating the integral in §- - -}, using the normal coordinate at z and

then using the normal coordinate at x, we get readily

(38.19) L,(0) < Ce(t +s—q)V/?

for 0<g.t+s —o<T with some constant Cy depending on A,T. Analogously, we have

(3.20) Lz(o) < Cgo'/?
Lastly,

(38.21) Lg(o) < Cg(t+s)
Substituting these into (3.14), we get

(38.22) fykl%f(t,s,z,y)[dp,(y) < Col((t +5)¥? = £¥2 1 s¥2) 4 Cy(t+5)s

Proof of Lemma 3. 4. In order to calculate this, we take special bases in
defining &(¢,z,y}=t %dety(d®; ,)x for Exp,X=y. That is, taking the normal

coordinate (X', .. ., X%) at z, we have
(3.23) plt.z,y) = [det(A(t,z))/ Vdet{g;{X))]VE

where A%t,X) is the component of (d9,; )y with respect to (X', ... ,X%). As
AM0,X)=6#, putting the remainder term of the the Taylor expansion of

det(A¥t,X)) at t=0 as O(¢t,z,X), we get

(824) AEB(t.z,y) = A®)(det(gy (X)))"V2 + tO(t,z,X) |

On the other hand,

(8.25) A™Ndet(gyi (X)) Y3 x=0 = ~R(z)/6 .
(See p. 593 of Sakai [13] & p. 97 of Berger et al [2].) Also, as
p(t.zy)=t4?p(t.z,y), the boundedness of O(t,x)=0(t,x,X)x=c is easily

obtained by Lermnma 1.14. g.e.d.

For fixed t,s and z€M, we have
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(3.26) |Rf(t.szy)
< _/:{(Bﬁ(t +s—0))"¢2(2rg) 3/ 2
xfy |3(0.z, y)AE(t +s —0,2,2) - B{t +s —0,2,2)4)5(0,2.)|

xexp {-A"YS{t+s—0,z,2)+S(0,2.y))} dug(z)da .

By Fubini’s theorem, we see that the right hand side of the above inequality is Lt
function with respect to y-variables. Thus, using Lebsgue’s dominated conver-

gence theorem and ltl_.ng?z:;f (t.s.z,y) =hr(t.s,z,y) a.e., we get
(3.27) fHXI%)\(t,s,z,y){d/Lg(y)s Callt+5)2 = 92 + s¥%) 1 Cy(t+s)s

because of Lemma 3.3. By the same argument, we have

3.28) [ ARt s.zy)|dug(y) = Cal(t+5)¥2 = t¥2 + 5%%) + Colt+s)s .
So, by the same computation as in the proof of Proposition 2.1, we have, by put-
ting C=Cg,C'=Cs,

Lemma 3.5. Under Assumptions (M) and (LI)-(L.V), for any O<t,s,t+s<T

and any f €L¥(M.duy), we have

(3:29) ||HASS — HMHM < [C((E+5)Y2 = 132 + s¥2) + C(t+s)s I -

To prave Proposition 3.1, we prepare

Lemma 3.6. {HNt)}n forms a Cauchy sequence in B(L3(M,duy)) in opera-

mnt
tor norm, quom.lM any finite interval, where B(L?(M.du,)) denotes the
space of bounded linear operators in L*(M,du,) with the operator norm. More-

over, its limit H} satisfies the estimate (3.1).

Proof. As we have, for s€[0,T]},

HsA - (Hs‘\/n)" = Z,’nz.oz[H(\n ~jls/n — H(‘n—j—l)s/n'Hs§n]'(HsA/n)j ’
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we get

(3.30)  (H? = (HYn)Y)f = exp Cos-[C(sV2 + (n-1)(s/n)¥?) + CS2Is 1]

by (3.29) and (2.1). Using (3.30), we have

(3.31)  WHYf = (Heyam)™ 1]

< VPN HS AN Hn (Hlyam Y™ = (B2 Y5 (B )91l

= Yrgtexp (Culn =i =)t/ )3 IH n (HY an W™ = (Heym) 0™ 1)
< expCyt [CRIFUE/ )V + (m—1)(t/mm V3] + CERHE/ m )T
s expCyt [Ct¥ 312 + (nm)™V2) + Ct2n7|f ||

Therefore, we get

(3.32)  |[((HE) = (HYm)™)F

< (HY )™ = (HE 2P+ W H ™ = (H )™l
< expCit [CtYH VY2 + m™Y2 + 2(nm)"V2) + Ct3(n'+m )]

Thus, ﬁ,{‘(t)=(H"‘,n)" is a Cauchy sequence uniformly in t on any finite interval in
the operator norm. Therefore, it converges to a limit H}. Letting m tends to =
in (3.32), we get (3.1). g.e.d

Remark. Above proof is a slight modification of the proof of Theorem 5.3, p.
240 of Chorin et al [5]. This simplifies greatly the proof of Lemma 5.7, p. 79 of

Fujiwara [8] which seems rather difficult to follow.

Now, we generalize Proposition 3.1 a little bit :

Proposition 3.7. let us assume that M end L satisfy (H) and (L.I)-(L.IV).

Take T>0 as in Lemma 1. 14. Assume also that two subintervals
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Al : 0=t0<t1< A <tn=t,6(A1) = max]t’-—tj_l! N
J
and

Agl 0=Sg<51< PPN <Sm=t-6(A2) = m‘?x[sj_sj—l N

are given as 6(A,) and 6(4g) are smaller than T.

Define H(Alit)rz Ht:_tn—l Tt Ht)‘l’ and H(Az:t) = H/\

Sm~¥m—1

s Hs"l. Then, we

have

(3.33) ||H(Ay:t) — H(t)|
< exp Cat-[CE(5(A))Y 2 + 6(B)/3) + 2tVR8(A)V38(A) VR + CE(6(A)) + 6(L2))] -
(8.34) [|H(A;:t) — H}|| < t-exp Cat-(C(A)VZ + C'6(Dy)) .

Proof. Following the proof of Lemma 5.8, p. 81 of F [8], we get the resuit.

By the above argument, we obtain'(d) of Theorem In case of u=g,.
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4. Computation of the infinitesimal generator of H}
Our object in this section is to prove:

Proposition 4.1. Assume (M) aend (L). Then, for any f €Cq (M),
(4.1) A0 (M} )(Z)e=0 = A¥[Ay /2 — R(z)/ 12]f () + V(z)f (=)

This follows from :

Lemma 4.2. Under same assumptions as above, we have
(i) 8 (B )(x) =0 = 0: (HPS Nz ) e=0 for F<CT(H).
(1) (HM)(=) — f(z) = (&1 )(=z) + LG(t.\f)(z) for f <C5 (M),
and ltl-l:lol |Gt A f)]=0.

Proof. For each n, we have

(H N=z) - £ (z) = 8 )=z) = (BN W z) + EPal(HY o (HYw — D1 Nz)

Dividing both sides of abave by t, taking n sufficiently large and making t tend to

0, we get (i). Here we used the estimate in Proposition 3.1.

Proof of (i) Combining (1.23)ys and (1.28)¢ with the definition of

RMt,z,y), we get readily

A3 (HAF )(z)
= Nem\) 2 [ [ap(t.z.y) = X'p(t.2.3)8, S (t.2 )]
xexp {=ATIS(t,z,y)} f (y)dug(y)
= tHN(OZ/ 2)8 + S (=)

= (N7 2)(@m) 2 [ M9p(t 2 y)exp (-ATIS (.29 f () dpg(y).

Therefore, by Lemma 3.4,
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A0, (HIf (=)
- (/2 - R(z)/ 12)f (z) — V(z)F (z)
= [(H} - D3/ 2)8 + V)F |(=)

-2/ 2)(2nxt)-d/2fM(A(v)p(t z.y) - R(z)/ 12)

xexp |-ATLS(t,z.y)if (v)duy (y)

~s
= G(&AF )(=)
Using Proposition 2.2, we have

(a2 = IX(3/ 2)p+V)f||» O forf €C(H).

Also, by Lemma 3.4 and similar computations as in praoving Lemma 3.3, we get

L)</ [ (6Wolt ) — R()/ 12)

xexp{—A"IS (¢, Y f (¥)dug (y)ll = 0, for feC7(HM).
Remarking (H}f)(z) - f(z) = j:a,(H?,‘f Xz)do and putting G(t.A.f)z)

(1s t)j;tg(c,kf ¥z )d o, we obtain the desired result. g.e.d.

Now, we have proved {a)-(d) and (f) of Theorem for pu=p,. As corollaries
the arguments in proving parts of Theorem, we have

Corcllary 4.3. There exists a distﬁbuﬁon kernel BML.ug)(t.z,y)
HNL.4g). Thatis, for any f heCs (M), we have

(¢.3)  (HNLug)f h) = <B(L.pg)(E 2.y )k (2)®F (y)>

271 7F
where <, > stands for the duality between@MxM) and @/ (M xM).

This follows by applying Schwartz’ kernel theorem to the left-hand side

(4.3).

of

Q

f

of
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Proposition 4.4. let ¥ and 7 be smooth manifolds diffeamorphic to each
other. (We denote the diffeomorphism from M onto H by ¢.) On M, there exists a
Lagrangian L satisfying (L. I)-(L. V) also with (M). We induce the Lagrangian and
the Riemannian metric on M by I =%*L and 7 = d*g. where ®* denotes the
pull-back by &. Then, we have
(¢.4) (@) BN Ting)@* = BNLigy) .

In other word,

(¢.4) BNTug)(t.374=).87(y)) = BN(L.uy)(t.z.y) for zyeH.
Proof. By the definition of A*{L,ug), we have readily

(HNL:pg)f Xz) = [HNL e X34 )NE ) for zeM, feCy(H).

Moreover, as (M,g) is isometric to (#,5), we get the assertion. q.e.d.

Corollary 4.5. The differential operatar A"(L;p,g) defines a self-adjoint
operator in L¥(M,du,} if M and L satisfy (M) and (LI)-(L.V). Moreover, we may

define {Urlren @ C® group of unitary operators on L*(M,dyug) as

(#5)  Urf =s-limHew.f forf <C5(H).

Proof. By the symmetry in x and y of kernel ANt z,y),
(HMLing))* = HNL.ug). This gives (HMZLipg))* =HMLiug) which asserts
(AM(Liug))* =AMLiyy). Moreover AMLiug) is bounded from below, using

Theorem 7.9.1 of Hille-Phillips [ 10], we have the desired assertion. g.e.d.
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5. Proof of Theorem and its interpretation

We first remember the following definition.

Definition. (p.427 of A-M [1])

(i) Two measures on M are said to be equivalent provided that each is
absolutely continuous with respect to the other.

(iil) A measure on M is called natural if it is equivalent to the Lebesgue
measure in every coordinate chart of M.

(iii) Consider the set, of all pairs (f ,u). where 4 is a natural measure on #
and f<l?(M,du). Two pairs {f,u) and (g,v) will be called equivalent pravided
that f (dus dv)/2=g, where du/dv is the Radon-Nykodim derivative of y w.r.t.
v. We denote the equivalence class of (f ,u) by fVdpu.

(iv} An eguivalence class f Vdp is called a half-density on # and the set of
all half-densities is regarded as sections of 1-dimensional ve;:tor bundle AY2(#),
called the half density bundle on ¥, which may be trivialized by choosing a
natural measure u on M.

{v) We denote H(M) the intrinsic Hilbert space on M, by the set of all such
equivalence class (f,u).” As H(}) is trivialized by choosing a natural measure &
on M, so H(M) is isomorphic to L3 M,du) by the isomorphism U, : f €L¥(M,dw)

-+ Uuf = f~vducH(H). So, Uy, defined by (8) is represented by
(5.1) U =UU;!
Moreover, Uy, is obtained by the transition function of the half-density bundle
AV Z{M)
Proof of Theorem. For f €Cy (M), we rewrite HNL;u) by

(5.2)  (HML.wf )Xz)
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= (2rN) ™2 [ [det[~0,:8,. 5 (L)t 2.y)]/ Vg E Vg (y)] 2

xexp {-ATIS(L)(t .z, y) (Ve TZ)7 w3 (Vg (¥ )7 sy NV A (v)dy )
= (Vg E)7 =z )RRV [ p(Lipg)(t.z.y)

xexp {=N"'S(L)(t = YY)/ VIWNESf (y)dug(y)
As|If = IIF (Y} NG TINY 3, tor f €L3(M.dp), we get
WHMLs ) f Nl = NHNL g X ¢ )(M(-)/ VT Bl
So, the isomorphism Uy, : LM du)~>L*(M,dpu,) given by
(U, f X2) = f ()= )/ Ng(=)) /2 for f <L¥(M,dp)
leads us |

(6.3) HNLp = UppHNLitg) Uy -

v

Since  (HYn(L))™ =7 Ugh(Hon(Lipg))* U, we " get HNLiw) =
U BN Lot ) Uy
The end of the proof of Theorem. — 7

Remark 1. By putting G -, = {y(-)eC([0.t]-H) : #0)=y,¥(t)=z}, we pro-

pose toregard Feynman’s expression (Feynman [7]).
t

G4 [, @@l LN HD)ET dr ()
as it stands for the ‘distribution kernel’ of the operator H(L) on H(M) which is

represented concretely by using the trivialization of the bundle AY?(#). That is

, for any natural measure u on ¥, we define (5.4) as

(55) 1f;, expl-N" LA AT (),
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= HNL;u)(t.zy) |dw(z)| V3@ |duly)| /2,

where HML:u)(t.z,y) is the distribution kernel of the operator AM(L;u) whose

existence is assumed by Schwartz’ kernel theorem.

In the separate paper [12], Maeda proves that HMZ;u)}t x,y) is a in fact

smooth function on ¥x ¥ for £ >0.

Remark 2. As is already noticed, the term R(z)/ 12 in the expression (9) is
necessary to consider the operators H}(L) and AXL) in the intrinsic Hilbert
space. And the choice of a natural measure seems to correspond to fix the
measurement of the physical system described in the intrinsic Hilbert space.

But in any way, to answer completely why we consider the problem in L2

scherne, it is necessary to put A=iA. (See, de Witt [6] concerning the term

RE()/ 12).
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6. We may produce any multiple of Z(-) in the infinitesimal generator

In stead of the argument in the previous section, we may produce any mul-
tiple of R(-), if we change the order of our procedure and we content with the

convergence of ﬁ,ﬁ‘(t) only in the strong sense.
To make pur point clear, we consider the case where V=0.

For any SR, we define an operator HM{g) as

(6.1) (HMNB)F)(=)

=(2mAt) /2 [ p%z yWexp (-A1SYt .z ) (y)dpy @) ,

for f€Cq (M), where t%/%p%t,z,y) is independent of t and simply denoted by
p%(z,y). In this case, as we may put A=1 without loss of generality, we denate
HMB) simply by H,(B). And we drop the supper index O above for notational sim-
plicity.

Theorem 8.1. Under Assumptions (M).(L.I)-(L.IV), we have the following :

Fiz T>0 arbitrarily. For any <R
(a) H,{§) defines a dounded linear operulor in L*(# ,du, ) for 0<t<T.

Moreouver, there exists a constant C,; such that

(62) |IH(B)F ll= exp Ciot-[IF |l
for 0<t<T and f €C§ (M).

®) LemllH (B)f ~f lI=0 for f €L M.duy)
() 8:(H B )=)),., =872 - (1-(B/ 2))R(z}/ 6] ()

= (8af ){(z) for feCT (M)

(d) There exists a limit s—gﬂ(Ht,n(ﬂ))"f, denated by H,(B)f for each

FECS(HM). $H(B)}i=0 with Ho{B) = the identity operator, forms a CC-semi
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groupin L¥(M,du, ) with the infinitesimal generator given in (c).

Remark. Comparing above theorem with Theorem, we remark that the
order of statements is changed. And in proving (d), we use the fact that the
Laplace-Beltrami operator A is self-adjoint in L?(#,dpy) under our assumptions
{ This fact is proved in the previous sections but we need that fact in order to
prove (d).)

Proaf of (a).(b). In our case, t%8%t,z,y) is independent of t and denoted
simply by &(z.,y}. We may rewrite the operator H;{f) by using normal polar
coordinate at x and Ezp, X=9; .(z) as
(6.1) (H(B)f)(=)

= {2mt )dfzfowfsd_‘e(x,E‘zpzrm)“(ﬁ"")exp (—d¥(z,Ezp, o)/ 2t)ri drdw .

To prave the statements {a) and (b}, we proceed analogously as proving Pro-

position 2.1 and 2.2 ‘But for =2, we use the fact ®(:z,y.)21 for estimating

8(z Fxp,rw)t~®/?  (As V=0, we may take ©(z,y)=1 in Proposition 1.10.)

Proof of (c). Take a function ¥(z,y)eC(Mx M), O=sv(z y)<1, satisfying

[ gd@y)=t
UzY) =g ied(z,y)=3

Define operators H,(t.8) and H(t,8) as follows :

(63)  (H\(t.8)f N=) = (2mt) 2 [ v{z.y)o(z.y Pexp (~d¥(z.y)/ 2t)f (¥)duy (y) .

(64)  (Ha(t.B)f (=) = (2nt)™#2 [ (1-z.y))p(z y)Pexp (—d*(z,y)/ 2t)f (¥)dp, (v} -~
Now, we claim the following :

(85) (H(EBS)N=) =1 (z) + t(Apf W) + EGy(E.f Xz) for feC5 (M) .

(66) lmllGi(t.r)] =0,

and

(67)  Lmllt Ha(t.8)F (N =0 .
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By Taylor's expansion, we get

88) fy)=7(z)+@uf)Z)X + 172008, f ) ()X X + F(z.X) ,
where Yy =Ezp, X. (0,af Xz) =0;af (Ezp. X) I, @A

Fz.X) = (1/6) f, (03403050 (ExpsX)|dsX X0 X .

Then, it is clear that F{(z,X)=v(z,Ezp, X)F(x,X) is a smooth function in x

and X with compact support.

Analogously, we have

6.9) ©z.y)¥2 =1~ (1/6)(1-(8/ 25)&,—@))“’}4 + gz y)

=1+ @z.y) .

where

1 L.
0g(z.y) = (1/6) f, 8,401;8,0(z, Ezp.sY)' €/ 2ds Y i Y*,

By Assurnption {L.1IV), there exist constants C}; and « such that

(6-10)_ | @g(z.y)|<Criexp «| |
for any =M and any Y<7; #. Inserting (8.8) and (6.9} into (6.3), we get (6.5) by

defining Gy(t.f ) as

(8.11) tG(t.f)

= —f(z)(@nt} /2 [, r{1=@y))[1+(1/ 8)(1~(B/ ) Ry(z)Y* V]e ! V%2t gy

+ @S Y=)@rt)y 22 [, Uz )Y O(z ) TE DI gy

— (17 (0383 f Y@)(@nt) ™2 [} ([(1-1(z.y)] + Uz.y)8(z y)] ¥ P11 2 qy
+ (amt) 42 [ ZHF(I.Y).U(J:,Y)l"(ﬁ/z)e'”"z/z‘ dy,

wherelv(x Y=z ,Exp. Y) ete.
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By (6.10) and the property of F{z,y), we have the estimate in {6.8) readily.

The estimate (6.7) is a easy consequence of the introduction of v(z ,y).

Proof af (d). Under Assumptions (M),{L.I)-(L.IV), it is well-known that A is
self-adjoint in L3(M.dw,). So A is also self-adjoint. Moreover as A4 is bounded
from below, Ag generates a C%semi group . This and the facts {a)<c) guarantee

us to apply the generalized Lax theorem to our case {cf. p. 214, Chorin et al [4]).

So we proved our Theorem 8.1. g.e.d.

e
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