Research Report

KSTS/RR-84/002
27 Nov. 1984

Rational approximations
to the values of certain
hypergeometric functions

by

Iekata Shiokawa

Iekata Shiokawa

Department of Mathematics
Faculty of Science and Technology
Keio University

Hiyoshi 3-14-1, Kohoku-ku
Yokohama 223, Japan

Department of Mathematics
Faculty of Science and Technology

Keio University
Hiyoshi 3-14-1, Kohoku-ku, Yokohama, 223 Japan



KSTS/RR-84/002
November 27, 1984

Rational approximations to the values of

certain hypergeometric’functions
By Iekata SHIOKAWA

Rational approximations to the values of the exponential
function have been studied by many authers. We refer among others
to the following theorem due to Bundschuh(1], Mahler{7], and
Durand(5]: Let a, b be positive integers. Then there are explicit
positive constants C, B such that
(1) —-2-B/loglog g

ea/b__i > Cgq
q

for all integers p, g with q 3 3. Especially for e the verg
précise estimate was obtained by Davis([4]; namely, | e-p/q | >
(%-E)q_zloglog g/log g for all integers p, q with q:>q0(8), and
< (3+¢) q_zloglog g/log q for infinitely many integers p, q.
His proof is given by constructing explicitly the convergents of
the simple continued fraction of e found by Euler. The method
of Mahler and Durand depends on the classical formula by Hermite.
Bundschuh used . Kummer's relation satisfied by a particuler
class of hypergeometric functions to construct rational approxi-

- mations to e¥. He also obtained similar results for tanh x and
the retio JA*1(x)/Ja(x) of the Bessel functions of the first
kind.

In this paper we give a new proof of the inequality (1) with
an improved constant B for the values of not only for the exponen-
tial function but also for certain confluent hypergeometric func-
tions including those obtained in [1] and [2] mentioned above.
Our method is based on the continued fractions of Gauss.

We denote by

X = Gy lY), Y>0,
the inverse function for the function
Y= Fyg(X) = X log X + T X, x>e T,

where ¥ is a given real number.
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Theorem 1. Let a, b be positive integers. Then there is a

positive constant C depending only on a, b such that

ea/b s ¢ q—Z—Qlog a-Gyl(log q)/1og g Joglog q

- B
q log q
for 4ll integers p,q with g3 3, where ¥ = log((4b)/(ea2)).
Corollary 1. For any positive €, ther is a positive con-
stant C depending at most on a, b, and £ such that

ea/b _ _E; > ¢ q—2—(Zlog a+ £)/loglogg

g
for all integers p, q with g 3.

Corollary 2. Let b be a positive integer. Then there is a

positive constant C depending only on b such that

e1/b _ P s C q—2 _loglogg
q log g

for all integers p, g with g 33.
For the proof we need the following

Lemma 1. Let

2,1 1
8 &+ az + "7

be a continued fraction with real partial denominators which

represents an irrational number. Assume that

o -1
(2) Z |anan+1 < o -
h=!
Then the ratios pn/(a2a3...an) and qn/(a1a2...an) converge to
finite non-zero limits as n- & . Furthermore
,}j‘;‘o ane1 Xp = O

where

1
Oﬂl T a1t et 2 +

Proof. By (2) thereis a positive integer n, such that

(3) -— ¢ <—§—, nzn,.

ol K

1
[%ﬁﬂl

Let nj3n, be fixed. Denote by p the kth convergent of

n,k/qn,k
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the continued fraction dn, i.e.

gk 1 ! k31
qﬂlk netl *+ @5 * s n+k ' o
Then
q = a q =a_  .a (14 —~——l~——)
n,l n+1’ n,2 n+1°n+2 an,13n42
and
1 1 -1
q = a a_ ,a (1+ 1 )(1+ (1+ )y )
n,3 n+17n+2"n+3 2n+1%n42 2n+2%n+3 8h+1%n42
1 Vn,2
= a a a (1+ Y(1+ ! )
n+1 n+2 n+3 20413042 a,,230,3

for some v with $<v <éi— , in view of (3) and the follow-
n,2 nrz 2
ing inequality

1 1 3 : 2 2 1 3
3(1—;—x—y'< 51 1f—9<x<3and 2<y<2.
Repeating this we get
k-1 v
= 2 TT n,Jj
Sn+k T Zn+13n+2° 0 %nsk !‘(1+ ——_TE——f_'_)
j=1 n+j n+j+1
for some v. . with % < v_ . < 3/2, and thus the ratio
n,j n,j
-9 ; ; ~ s
n'k'/(an+1an+2"'an+k) is also converges to a non-zero limit
because of (2). If we regard 9,  as a polinomial in k variables
14
17 qppor ceer @y and write it as qn,k=qn,k(an+1’ Apapr crer

an+k), we have

pn,k= qn+1,k—1(an+2' qhe3r o an+k)

and hence Ph k/(a ceed is also convergent.
14

n+k)

We may assume pnqn#o, since there are infinitely many such

n+2an+3

n's. Then from the recurrence relations

Pnik = pnqn,k + pn—1pn,k)

9n+k = 909,k * 9q-1Pn, k-’

we have
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Phsk P qn,k (1+pn—1 pn,k )
= r
22383 ++3n4k 8283-+°3 @41 tfnsk Pn 9n,k
. 9n+k _ 9n qn,k (1+ 9n-1 pn,k )
a5... = .
172 2h+k 8980428 Bpi1tfnsk 9n qn,k

The right-hand sides converge as k>ow to finite limits different

from zero, since under the assumption the continued fraction

P
; 1 1 PR, = lim n’k
00
n+1  + a .o * 2.3 K> %,k
converges to an irrational number.
As we have seen above
a ofl. = a llm——[iEL—}S—
n+1 >~n n+l e qn,k
[2a2] u v _
= T (e —2E e —Dek nk -t
k=1 n+k" n+k+1 n+k n+k+1

with 1 <u <3/2, +<v <3/2, which converges to 1 as n»>o0.
n,k n,k

Proof of Theorem 1. The proof is based on the continued
fraction
X 2 1 4 22 _Zi. _ii .l < cee .
2-x + 2-3 + 2-5 +2-7 + 2:9 +
This formula appears in [6;(2.4.30)]; however, it is stated
there incorrectly. Using the equivalence transformation

il b2 b3 e r1b1 r1r2b2 r2r3b3
* e+ c3, 0" ryey , T L T3S

— we find the regular continued fraction
X 1 1 1
+

e” =1 Qa, +a, + a4 + °°°
1 2 3
with
_2=X _ 4(4n-1) _ 4n+1
=555 @ = —x —r =T x ¢ B2t

Now we put x=a/b. Then the continued fractions satisfies
the conditions of Lemma 1. We denote its nth convergent by

pn/qn. It can be shown by induction that dnpn’ dnqn are integers
for all n>1, where
(4) dn=2an, n>1.

applying now Lemma 1, we see
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q q d
lim —% = 1lim 22 o 1 o = 0,
ny»oco ‘n+1 n-> 0o CIn+1 n n> 0o n

so that we can choose a positive integer n, such that
(5) lqn|‘<lqn+1\ ’ lqn/dn|< |qn+1/dn+1l ’ Idnl<%

for all integers nyng, for some n0=no(a,b).

Now let p and g >0 be given integers. We may assume
Iq“o/d“ol < 4q.
Then by (5) there is an integer n=n(q)3> n, determined uniquely
by the inequality
(6) | ap_q/dn_q | €4a < |/,

By virture of the formula
Ppdn-1 = Ppo19y = 21
we can deduce

P9 - 9P #0 or p,_,9-q,_4p # 0.

Assume first that p,g —qnpis defferent from zero. Then we have
P, d,(p,a-q,p)
n<n q q

a/b
+ dn(qne —pn) [
where dn(pnq-qnp) is a non-zero integer, so that

‘dn(pnq—qnp)[ > 1,

and
a/b, 1
|dn(qne -pn)l < 2q
because of the formula
B a/b +1
q,e -P, = =

9n+1? ¥n+19n
with (5) and (6). Hence we get

a/b p 1

‘dnqn(e -—é—)| >-_‘2q ’
or equivalently
Iea/b__%%l S %q—1—log[dnqn|/log q

We will find the same inequality, if we start with another possi-
bility pn_1q—qn_1p#0. Therefore, using (4), (5), and (6}, we

obtain
-2-(2log d_+log|a_|)/log gq
(7) ea/b-Jl‘ > c,q n | ni
q
-2-((2logaln+logn)/logq
(8) 7 c5q .
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The constants c1, c2> 0, and in the sequel those implied in O-symbols
depend possibly on a and b. It remains to replace n and logn by
functions of gq.

By Lemma 1 and (6) we have

(9) logg = log|a1...an| - logd + 0(1).
Here we see
2n+1 [2%)
2-x 8 2 1
a,a,...a = =) (nH)"T7 (1= —=),
172 2n+1 16X 'X k=1 16k2

so that

log a;...a 2log n! + (2n+1)log@§0 + 0(1)

2n+1|

log a1...a2n|+ logn+ O(1).
Using Stirlig's formula

log [((x) = xlogx- x - $logx+ 0(1), x» 00,

we get
4
log‘a1...an‘ = nlogn+ nlog STET + 0(1),
which together with (4) and (9) yields
(10) . logg = nlogn + ¥n + O(logn), ¥ = 109%1)(—[.

Henc§}e have
(11) logn
and so

loglogg - logloglogg + 0(1),

FK(n) = nlogn+ ¥n = logqg+ O(logloggq).
Therefore we obtain

- n = Gr(logq+ O(loglog q))

G.x(log<;)+ o(1).
From this, (8), and (11) Theorem 1 follows.
Corollary 1 is an immeadiate consequence of the following

Lemma 2. The function GK(Y) can be developed in the series

-1 n-k
Y &2 - (loglog ¥ - ¥ )
G lY) = =—= {1+ 2 > A 4,
X log ¥ { ns1 K=o n,k (logY)n

provided Y is sufficiently large, where the coefficients An x are
14
given by the following relations;

Bast,ke1 = P - nyFi,mn Pn 0<k<n, nx1,

51+k =k
Osk'gnl
0 Kq<ny

14
1 Byrkg
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where
B - ’lz'ﬂk (DR A N
n,k m=1 m No+..enp=n n1,k1‘ oo ’km'
ek
D T |
with An,0=1’ n>» 0, and An,n=0’ ny 1.

The first few terms of the series are

2
Gyl¥) = loY . {1+ lo?long =¥ . (loglog ¥ 53’) , loglog ¥ -¥
g og (log ¥) (logy)z

(loglog ¥ -—K)3
(logY)3

_ 5 (loglogY—?{)2 N loglog Y - }
2 (logY;3 (logy)s = 7707
The proof of Lemma 2 will be found in the last part of this
paper. )
Our method can be available for the continued fractions of
Gauss which represent some confluent hypergeometric functions.

The following are such examples.

X x2 x2 %2
tanx=—1-_—3—__? e SRR
X x2 x2 x2
tanhx=—1——+3— i
falx) o6, X X X s,
f?'\(x) AN+l + AN+2 + A +3 0+
where —A . is not a positive integer and f/\(x) is defined by
~ o0 o0
f).(x) =nz='0 nt(A+1)( A+2)...( X +n)
Tpa (X X x2 . x2
LT ) 20N #1) - 20 +2) - 2(A+3) - °77F
where J>\(x) is the Bessel function of the first kind of order A
defined by
I = e 3 f/\(-j—z).

(cf. [6; §6.1.31, [8; Chap.II].)
Theorem 2. Let 8 be one of the numbers given below. Then

there is a positive constant C depending only on g such that

-2- BGyl(logg)/logq ;.10

| ® "g‘l > Cq logq
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for all integers p, g with q >3, where 6 and the correspondig
constants B and ¥ are as follows: let a, b be positive integers

and r, s be integers with X= r/s # -1, -2. -3, ..., s>0.
e - B ¥
a a 2b
tan-E—, tanh-B— 2log a log eaz
tan/a/b , tanhJa/b 1 log_ZFS
e og a RN
Ja/b [a7b I e
_Eala/b) 210g ([3s) log LB
£)(a/b)
_E&ilii(b) 2logfas) log 2b-
Ja(a/b) sa’s
J, .1 (fa/b)
A+l logfas) logii@i
a/b JA([E7b) eas

Corollary 3. Let @, p, and ¥ be as above. Then for any
positive £, there is a positive constant C depending at most
on & and g such that

Ie _il > Cq-2—(p+$)/lcg1 5G
for all integegsp, q with g2 3.
Corollary 4. If a=s=1, then there is a positive constant
- C depending only on @ such that

-2 loglogg
ogq
for all integers p, q with g2 3.

o - > e

Proof. Let & =tanh(a/b). By the equivalence transformatin,
the continued fraction is transformed into the regular one

1 1 _ 2n-1

tanhx = -1_ =
a; + a, +°73a n X

r D21,

which satisfies the conditions of Lemma 1. Let x=a/b. Then
R . _.n
dnpnand da, q,r ny 1, are integers, where dn—a , n21. Choose nosuch

that (5) holds for all nzng. For any given p and q with g ?C3:
there is an integer n=n(q)3 ng satisfying (6). Then we have (7)
and (9). We see
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_ (2n-1)1 1
8182+++8n T T{n-1)1 on,n
so that
_ 2
log a1a2...anl = nlogn + nlog-zs? + 0(1).

Hence we obtain (10) with Y= log (2b/(ea2)). The rest of the
proof is the same as that of Theorem 1.
For the number tanh/a/b /[/a/b, we use the continued fraction

tanh/x _ _1_ 1 1 e,
< - a; +a, + az+
where
4n-1
a; = 1, A5n41 = 4an+1, a2n =—F— . 0 >1.
This with x=a/b also satisfies the conditions of Lemma 1. We have
2
log aja,...a ) = nlogn + nlog ef§'+ o(1)
and
n -
d2n - d2r1+1 =a, nz0;

and the proof will be carried out as above.
The rehaining cases can be proved in the same way.
Remark. We have assumed a, b, - and s to be positive
integers onlv for brevity. All the results stated above are
valid even for integers. in a given imaginary gquadratic field.

Proof of Lemma 2. Put x=logXand y=logY¥. Then

~ . Y = xlogXx + ¥X, X>e” ¥
implies
(13) ey=ex(x+1{), x>-%,
so that
y = X + log(x+%¥ ) = ¢(x), say.

We denote by x=(¢'1(y) the inverse function of y= ¢(x), and
difine '

f(y) =ye* ¥, x = 95_1(y),
then we have, using (2),

=¥ b4
(14) f(y) = X+y - y-logy + ¥ + logf(y]) )

We have to show

0o n-k
(15) fly) =1+ S5 2 a k(logy—?ﬂ .
n=1 k=0 "¢ "
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In what follows, we always assume that x and y are

sufficiently large. Noticing that logf(y) = 0(1), we have

by (14)
?_?_ n
£ly) = 21 (logy - ¥ - log f(y))
n=0 yn
[
_E k2 n, (logy-¥)°°k
(16) 2, (Fleg £(yN)* S5 ()21 .
n=k Yy
Also
oo
log £(y) = ii_(logy—ts— log f(y)m
. T o (1oy - )" n
) =S —5 (- 9Ym (-log £(y))
m=1 n=0 y
oo m 09 00 4 .. - m-n
.S Llloay®l | S (jegeyn® 5 (M) Hegy-¥)
m=1 y n=1% - m=n Yy
so that - )
09 o o] m-1
-5 L Lleg v (iogqyy) 1. 2 Loy =),
m=1 y m=1 Y
o9 o m-n
¢ 2 (-logf(yn® 5 L@ Hogy -0
n=2 m=n y

Multipling the both sides of the equation above by the series

o) m-1 0 x _ m-1
1+ S (loqym T ) ) L S (-2 (logym ¥) )k,
- m=1 Yy k=0 m=1 y
we find
AO = -log f(y) + Az(—log f(y))2 + A3(—log f(y))3 Feoay
where An are of the forms
2 oy (logy-¥)"K
An - zz an,k m
m=n k=0 ! y
with some constant coefficients ag)k.
M 1
We consider now the power series
Y = S(X) = X + AX% 4 axd s L,
which is convergent in a neighbourhood of the origin, and
S(0) = 0, S'(0) = 1. Then there is the power series
2 3
X = T(Y) = ¥ + B2y + B3Y + ...

10



KSTS/RR-84/002
November 27, 1984

having positive radius of convergence such that
S(T(Y)) = Y,

where the coefficients Bn are given inductively by

> B ...B_ .

n
B=ZA
n

k=2 kn1+...+nk=n ny Py

(cf. Cartan [3].)
Putting X = -log f(y) and Y=A0, we get

~ 2 3
-log f(y) = Ay + ByAg + ByAg + ...
0o n n-k
_ = (logy -%)
= 2 :Z Cn,k n !

n=1 k=0 y
wher Cn k are constants; which together with (16) yields ({5).
14

It remains to prove the relations satisfied by the

coefficients An K* We have from (14)
’

(17) f(y)log £f(y) = (logy-¥ ) £(y) - y(f(y)-1).
Here by (15)
o (_”m—1 n
log f(y)= 2. ——?r———(f(y)—1)
m=1
and

0  n-m n-k .
(f(y)—1)m - j; zz A(m) (log y-%) A
n=m

Ko Tk v
where
' (m) =
A = A c..A ,
n/k n +:%%+nm=n n, .k noekn
k1+...+km=k
0 ski(ni
so that
© v o me1 ok
S 5 - 1 -¥
logfly)= 2 2 (1)~ pfm) (logy-¥)
m=1 n=m k=0 ’ v
®  n-1 n-k
= 5 (logy -7 )
= 2. B,k - .

o]
It
-
~
1]
o
~<

This together with with (15) leads to

11



KSTS/RR-84/002
November 27, 1984

b—'—i o (log y-¥)" 7%
f(y)log £(y) = 2 (B + > A
n=1 k=0 n,k N, +n,=n n1,k1 n2,k2 yn
2
k,+k-=k
O;k gn
it i
On the other hand , we have from (17)
(logy-79) f(y) - y(f(y)-1)
[} ‘n-1 n-k
(logy -%)
= A lo -5)+ A -A —_ .
1,0( 9y 221 £§;1( n,k+1 n+1,k+1) yn '
where An,n=0' nz 1. Comparing both sides of (17) with these
equalities, we obtain the relations for An K and Bn K in Lemma 2.
. ’ 14
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