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1. Introduction

Let X(t,w) be a complex valued stochastic process on a complete
probability space (Q,?ﬂ P), tSRl,msﬂ . Suppose throughout that X(t,w)
is measurable £ x7 on R]k Q, .7 being the class of Lebesgue measurable
secs on Rl. Assume also that X(t,w) is an Lr-process, namely X(t,w) ¢
Lr(Q) for each tERl, 1<r<= and that X(t,@) is 2w- periodic in the

sense that
(1.1) E[X(t+2m,0) - X(t,w)| =0,

for each :sRl. For an Lz-process X(t,w), (1.1) is equivalent to

2 . . R .
E{%(t+2m,0) - X(t,w)|“=0 which, as we easily see, is equivalent also
to the coundition that the covariance function p(u,v) of X(t,w) is

2r-periodic with respect to each of u and v.

Write
lice, )l = llxce,wil, = telxce,w7) Ve,
1.2) . 1t
{ix( oM - =1]2(c ’/{}s c [ f JIK(* 3 d /

The class of X(t,w) for which [[x<-,~)[|s o< for some 1<r<w,l<s<e

is denoted by 15 = L;’r(Txﬂ),Tﬁ[-n,ﬂ].
Write,for a positive integer p, the p—th difference of X(t,w) with

increment h.of t, by

1.3) (P)X(c W = 3 (1P £y x (et w)
k=0

and define, for §>0,

*(p) _ @) - ®ye. .
.8 M) =M 28, |§T3<5M“ X5l Lo

(®) _w®) _ v *®
(1.5) M) =M (6K =M, (8

sup aub|[Aﬂp)Y’“ -)[|r
|h|<s 1:l<w
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We agree to call (1.5) and (1.4) the mean modulus of continuity

of order p and the mean integrated modulus of continuity of order

p respectively.

It it obvious that MS(EQS) and Mﬁp)(é) are nondecreasing

I
functions of &>0. The following inequalities are obvious too.

(1.6) Msfip)(é) < zpmzfi)(s), MEP)(G) < 2P (o).
For any A>0, we see

*(p) P\ (P) (® Py (P)
1.7 MO < AT TS, M (A8) £ ()M 77 (8).
This is proved based on the identity
n-1 n-1

T ees T
kl=0 kr=

@8 APx(e,w) APt e+ e B, 21,

0

(See[4] Problem 1.5. 3. p.76)
Let P(t) be a nondecreasing continuous function on [0,1] with
*
$(0)=0. The class of X(£,w)eL®’%(Tx0) for which ¥ B)(8) < W(8),
»

0<6<1, is called Lipschitz class A:(g)(W)=A:(E)(¢(6)). Amkﬁp)(w)

is defined by AEP)(w).
In 2, we consider the approximation of X(t,w)ets’r(TXQ) by
trigonometric polynomials of the form

n .
(1.9) P_(t,u) = I ak(m)elkt,

=-n

where ak(w)ELr(Q), k=0,+1,+2,...,+ n)and investigate some relationship
between the magnitude of approximation error and the continuity
modulus of X(t,w).

In 4, some basic theorems concerning the membership of a function
to Lipschitz class Aa of order a,0<a<l are generalized to the case of
stochastic processes. In 5, we give the results on the relationship
between Lipschitz classes defined above and the magnitude of Fourier

coefficients. This sort of problems for the ordinary Fourier series is
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classical(See,f.ex.{6]).

In l} we give theorems on the almost sure absolute convergence
of Fourier series. In 8 ahd 9, we consider the mean derivatives of
stochastic processes and give the conditions in terms of such
derivatives for the almost sure absolute convergence of Fourier
series. In 10, we give the results on sample continuity and
sample differentiability of stochastic processes.

Results in this paper are generalizations of what have been
previously shown for the case s=r and are announced in [10], some

corrections, improvements and additions being made.

2. Trigonometric approximation and continuity modulus

We begin with some remarks stating as lemmas. Write throughout

this paper
(2.1) 6§ = min(s,r),

so that 1<@<w .

Lemma 2.1. For X(t,w)eL®’¥(1xQ), lgsgw, l<r<s,
8
(2.2) k) e 3D, as.

Proof. Suppose first 1<s<r so that €=s. By the Minkowski

inequality, we have

{E[—Zl? f_;lx(:,w)[sdt]r/s} Y

. < G /7 tElxee,w [F15Far) Ve

which implies

1

5 fﬁlx(t,w)|sdc<cc ,  a.s.

Suppose next 1<r<s. The Holder inequality gives us

£ olxew Fae < 0o Tlxcew || e ™® <o

r T -w 2

which gives us X(£,w) € L' (T), a.s.



KSTS/RR-84/001
27 November, 1984

We may now define the Fourier series

o«

int
(2.3) X(t,w) ~ I cn(w)eln ,
n:-w
where
(2.4) c (w) = 7%; T X(t,wye "tde, w=0,%1,...
a.s

Lemma 2.2. Ls’r(TxQ) is a Banach space with natural addition

and scaler multiplication endowed with norm iz,

- ls,r'
This is shown by the standard method which proves LF to be a

Banach space.
We now consider the approximation of X(t,w) € Ls’r(TxQ) by

trigonometric polynomials of the form (1.9).

Write
(2.5) a@)={%Jm,|H§ﬂ
and
(2.6) ha(ol = ( : e (2 ) T
k=-n

We note here that in [10] we erroneously announcéd that inf is
actually attained by a trigonometric polynomial.

Now let On(t,m) be the (C,1) mean of the Fourier series of a
2m-periodic stochastic process of Ls’r(TxQ) and form the De la Vallée
Poussin mean
(2.8) T (t,w) = 20, ,(tw) - o _1(tw), n2l.

We then have ({15] p.115)
2.9 (t,w) = 2 fn X(t+u )h(nu)/uzdu
( . ) Tn > W = ot e > W >

where

(2.10) h(t) = %(cos t - cos 2t), %-fgh(u)/uz du = 1.
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The following theorem is an analogue of Theorem 13.5 of [15].

Theorem 2.1. For X(t,m)sLs’r(TXQ), 1<r<o, 1<s<@
. - - . . s,r
(2.11) H‘rn( ,0) = XL, o,r She (.

The proof is carried out in just a similar way. In fact, in
arguing as in the proof of Theorem 13.5 of [15], we take a
trigonometric polynomial P_(t,w) of the form (1.9) such that
%, - Pn(f,-)“ st < ens’r(X) + 1/N, N being arbitrary positive
number. We then obtain

S,r
e Csmd = XLl g L 2 dle () + 1/
from which (2.10) follows.

Let p be a positive integer and n be a multiple of p! and

define
2.12) (t,w) = (-DP7? : 1PV E (t,w)
(2.1 En tiw) = V=1 QT

which is a trigonometric polynomial of order 2n-1.

Lemma 2.3. For X(t,w) € L¥°T(T*Q), l<r<w, l<s<w,

< 2p+2es,r
s,r = n/p

(2.13) 1XC,) =€ Ll .

Proof. We have

: - 1P % 0P B, (t,w) - X(t,w)]
: X(t,w) - En(t,w) = (-1) o W [Ty 6 , .

Using Theorem 2.1,we have

P
|RICHIE S CH] £x E llxC,) = 1,,C00 ¢

P P
Py _S,T 4 PyeS:T(x
L4 vil Ve ® < vil(v)en/P( )

A

P_1y.5°T
4(2 l)en/p(x).

In what follows, n is not necessarily a multiple of p} .
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Theorem 2.2. Let X(t,w) € Ls’r(TxQ),1§;<M,l;§§? and p be a

positive integer. Then there is a positive integer n, depending only

0

on p such that for n>nO

S,T *(p) BT _
(2.14) e (X LM ).

,r n
Proof. Let no=2pj. Choose a positive integer q such that
2qp <n<2(q+l)p for any n>n0. We have, writing m=qp!,

=270 gm0/l

p o0
I DPVAE T (e u/mw)h(e)/u’ da

v=0

P
PV P
vio(_l) (V)Tm/\)(t’w)’

where Tm/v(t,m) is interpreted to be X(t,w) when v=0. This is legitimate

by (2.10). The last expression is

PTG [ry  (eaw) = X(ew) ]

™Mo

T ov=1

Hence
(2.15) 1= DPIX(E,W - € (0]
On the other hand
2.16 =22 b (u/muwh)/u’ d
(2.16) I ==/ D (u/muwih(u)/u” du,
where
D (v,w) = Aép)x(t,w) - AES)X(t,w)-
Hence

1= —% 75 D, (a,0) h(u)/u du,
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2 5

Tm k=0

2(k+1D)™

ok Dt(u,w)h(mu)/t.\2 du

which is by periodicity of Dt(u,w) and h(u), equal to

o

2 2m -2
o fo Dt(u,w)h(mu) L (ut2km) du.

k=0

The last one is, in absolute value, not greater than

% f(z)TT ]Dt(u,w) | |h(mu)’|/u2 ‘du,

Therefore from (2.15), we have

.
Tm

%G5 = 6ol g mm ST ID o [ Inm) |/ au

8 (p) 2m 2
sup “A X(7, ) ” / Ih(mu)i/u du
™ u<om u/m s,r ' 0

1

A

*(p) .
AMS,I' (ZTT/m).

i . . -— L] . S’r
Since |[|X(+,*) Em( s s,r—z— eZm—l(X)’ we have, for n>ng,

r S,T

S,Tr
e1:1 ) Le < eZm—l

x)

s’

2m
*(p) *(p) ]

< AMs,r (2m/m) < I*Ms,r (2m/qp. )

which is, in view of qp! >n/4, not greater than AM:SE) (87 /n).

We shall now give an analogue of the Bernstein inequality for
trigonometric polynomials, the proof of which is carried out by a
known argument (See f.ex.[4] 99-100).

Theorem 2.3. For

n

ikt
(2.17) P (t,w) = I a (we™ ",
=-n
the following inequality holds:
(2.18) nij— P (e, | < ol e ¢,
’ aed s,= " n s,r

for any nonnegative integer j, 1<r<®, 1<s<e.
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3. Stochastic process of bounded variation

A 2r- periodic Lr—process X(t,w), 1gr<=, for which

n
(3.1) S;p jill[X(tj,o) - X(tj_l,-)“ <%

sup being taken over all divisions D: —n§t0<tl<"-§;néy

P A
bounded variation in Lr(Q). The class of such processes is denoted by
BV'. The quantity of (3.1) is denoted by Vr=Vr(X). This notion was used
in [7]. For a later use, we prove

Lemma 3.1. EEE X(t,w) sLs’r(TXQ), I<r<e, 1<s<e , be of bounded

s . .T - .
variation in L (R). Then,for every positive integer p, we have

* . -
a.n  ® @ < cm®P e s s,
_ 1/s . .
where C—Cp sVr s Cp s being a constant depending only on p and s.
Proof. We know [8] that, for 1<r<e,
] (
.3 e x| | ae < 2Pln]v.
Now
() ooy o R SNTING) CE0 BTN C) NI VE
M_0(8) |h|Sl<1§ (5 S NP x| 27 o™ x(e, »)IL[cJ

S tsudla P xce, ol o1 M 18P x(e, | aeltE.
h ; t )

This is true also for s== ., Using (3.3) we have

which shows (3.2) with C, s=294s(zn)‘¥fs.
N . A

b

4. Lipschitz classes and trigonometric approximation

In the approximation theory the relationship between the membership
of a function to a Lipschitz class Aa and the order of approximation
of the function by trigonometric polynomials provides a fundamental

problem. We shall consider the similar problem for the Lipschitz class
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A*Sz_(éa) and the approximations of a periodic process in L5'T, Actually
we give analogues of basic Jackson and Bernstein theorems (See{4]). We
also show an analogue of a basic result of Alexits and Kralik om the
strong approximation [1],[2]. More detailed results in approximation
and generalizacions om the strong approximation [12],[13] and [16] will
be able to be sexternded to the case of stochascic processes, but we A
do mot attempt to do in this paper and we just show the very basic
results.

Theorem 4.1. Ler X(t,w) € Ls’r(TtQ), I<r<m, I<s<om,

(1) If

(4.1) x(e,0) € AP,

£

for some positive integer p and for some a>Q, then

(4.2) ez’r(l{) = 0@y, .

(ii) If (4.2) holds for some >0, then for anv positive integer p,

ZEeT

(4.1) holds, when p>a , and when (&pce)
.3 x(ew) € A7 P8P,
holds. When p=a, (4.2) i;nplies
(4.4) X(e,w) € AL ®) (6P| Logs]) .
This is an analogue of Theorem 2.3.3 or Theorem 2.3.5 of [4].

Theorem 4.2. Les X(t,w) € Ls’r('rxﬂ), 1<s,r<= and let 0<a<l. The

following four statements (A.S)F(A.S) are equivalent to each other.

(4.5) X(c,w) € A:<§) (Ga), for some positive intezer p,
?

(4.6) T (X) = 0™, as we,

. '_ - .
%.7) lfogCos) = XG0l g L = 0™, as o,
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10

and

10 -
(4.8) = zl||sk(.,.) - XC,0l g = ok %, as we,

where Sn(t,w)=Sn(t,w;X) and on(t,w)=0n(t,w;X) are respectively the
Remark. If 0<a<l and (4.5) holds for some positive integer p,
then it does for any posive integer p.
This is obvious from Theorem 4.1 (i) and the first part of (ii).
The proof of Theorem 4.2 as well as of the following theorem will be
given in the following section. The equivalence of (4.5),(4.6) and
(4.7) is true also for s=r=1.

Theorem 4.3. Suppose X(t,w) € Ls’r(TXQ), 1<s,r<w, is 15t~

cotinuous. For O<a <1, each of four statements in Theorem 4.2 is also

equivalent to

_ -
(4.9) lloynCar) =0 (0]l g = 0™, as we.
Note that X(t,w) is always Lr’r-continuous, since
r‘ 1 s r
[|X(-+h,+) = X(+,*) Ilr’r = B 5 /L X (eth,0) - X(t,w) | de,
in which the inner integral is bounded and X(t,w) is Lr(T)—continuous
for a.s. and the dominated convergence theorem is applied.

We shall give the proof of Theorem 4.1.
*
Proof of Theorem 4.1. (i) Suppose X(t,w) € AS(E)(éa) for some
3

positive integer p and some a>0. By Theorem 2.2, there is an n, such

that for n >n0,
S,T *(p) - -0
e x < 4M S,r(8ﬁ/n) o(n 7).
(ii) is shown by the same way as in the proof of Theorem 2.3.3 or 2.3.5

of [4]. Suppose ei’r(x) = O(n—a), O<o<p. Let Tn(t,w) be the De 1la

Vallee Poussin mean of X(t,w) defined by (2.8). Write

U, (t,w) = Tzz(t,w), U (e0) = Tzn(t,w) - Tzn_l(t,w)-
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11

Then for n>2 using Theorem 2.1, we have

o ol L < Hrzn(-,-> - XCuo |l L +||r2n_l(-,-) - xCL

= S,r - -na.
(4.10) = O(ezn_l(X)) = 0(2 R
n
Thus z Uk(t,w) =1 _(t,w) converges in Ls’r(’IXQ) to X(t,w). Then
k=2 2"
for any positive integer m,
I (® I by (»)
AT R(e,0) = lim I A U, (,*)
h S,r - Hk=2 h k “s,r
m o
(p) (®
e ap™u Coollg o+ 18,0 Lo ]
= k=2 h k S,Tr kemt1 h k S,T
BN €-) - ; Py (14
<tz Ao ¢, + Z T O U e+ n,e ||
=2 h k S,T kem+1 V=0 Vv k s,T
H - (p) P >
(4.11) =l ¢ aPlu -, +2° 2 Jlu ¢, L .
k=2 h k S,r Kemt+1 k S,T

Since for each h

® _ rh h ... /b
Ah Uk(t,w) = IO cluP fo dup—l fO uy (t+ul+ +up,m)dul,

where (p) in the integrand denotes the p-th differentiation, we have
m
; (P)
oz aPu e, |
k=2 h k s,T

m
| | b LY (®) (g gee s .
< T fgdu £t du peee £t e [lugP o o I

T k=2
which is, because of Theorem 2.3 and (4.10)
m
k;
< I 2PpmlPlu L Il

m
(4.12) < O(Ih[p T zkp-—ka) = O(IhIP Z(P—Oﬁ)m ),
k=2
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12

when O<a<p. Therefore from (4.11), for O<a<p,

-ko.

o(Jn|P 2™y Lo 5 2

(p)
oy xC 5 ||
b ST k=m+1

)

o(|n|P 2(P~)my 4 5oy

-1 m

m-1 < s <2

Choose m so that 2 . We then see that

(p) a
sup |[{A;T X(*,) = 0(87).
l(é” h ||S,r

|n
Suppose next ei’r(X) = O(n—a) and a=p. Then from (4.12)
- (® P
(4.13) I| £ A, “k("')lls,r = o([h]*m)
k=2
and hence with the same choice of m as before,
sup |1Aﬁp)x(',-)lls r 0(Pm) + 0(27"P)
<8 ’

| n]

0(8P|10g 51).

If a>p, then the right hand side of (4.12) is O(|h|p), from which

we hzve (4.3). The proof cf Theorexm 4.1 is thus com

5. Proofs of Theorem 4.2 and Theorem 4.3.

The proof of equivalence of (4.5) and (4.6) in Theorem 4.2 is
included in the proof of Theorem 4.1 (i). Therefore we have only to
prove that (4.6) is equivalent to (4.7) and also to (4.8). Obviously
(4.8) implies (4.7) and (4.7) implies (4.6). Hence‘in order to show
Theorem 4.2, it is sufficient to prove that (4.6) implies (4.8).

The following proof of this fact is an adaptation of that of
Lindler's generalization [11] of a theorem of Alexits and Kralik. It
wilf@e convenient to begin with the following lemma.

" Lemma 5.1. If X(t,w) € LT(IxQ), l<r,s<=, them for any 2<q<=,

1<r,s<q,

n
(5.1) kfm!lsk("°)‘|g,r < Cn||X(-,.)||:’r, n>m,
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13

where C is a constant independent of m and n.

Proof.
n a n | q
kin ”Sk(.") Hs,r =¢c kim‘l T f[u!él/n X('H-u")nk(u) du ”s,r
L q
te 15 1 pacju) om0 aull]
— -
= C(Il + IZ)’

say, where Dk(u) = sin(k+1/2)u/(2sin u/2) is the Dirichlet kernel.

n
1
Il < kém [E- f{uli}/nllx(.+u")[!s,r IDk(u)Idu]q
- qa (1 q
= kinllx(')') “s,r[?r- i) Iul;l/n Dk(u) du]
. . q
(5.2) < cnl]x(-, )|]S’r.
. 1 u o, 1
Since Dk(u) =7 cot 3 sin(ku) + 5 cos (ku),
L |
,<cl I |5 I) fa<u)<n X(v_+u_,-)cot(u/Z)sin(l_cu)duH:,r

=2

n

. 1 vty . 1

i + kX !{-i%— fl/n< lu]<m X(=+u, )cos(ku)dulls,r]
= =

say.
Repeated applications of the Minkowski inequality give us

n ./
s/q 1 T 1 SRR S - G dulT18/738/d g
121 L5 f_ﬂ (kZ (E]| . fl/n<lulSFX(tAu,m)§tot2 sin(ku) ul ] }
- S
n
1 1 oo sinladdal 91579 g6 18T
25— {4 Bl kE | T fl/n<lu{§r X(t+u,w)zeots sin(ku) ul 17 Fded

which is, by the Hausdorff-Young inequality.
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14
Lo 1 1. .u.q' 1r/q"ys/r
2T I—H{E{ bij fl/n<[u|;ylX(t+u’m)§C°t5] du[ } de,
-1 1-1_ . . . . . s .
where q "+q' "=1. This is, again by the Minkowski inequality,
1 ool g 1 ur q'/f y8/q'
I fl/n<{u|§r[E]X(t+u,m)7co:3| 1 du} dt
™ 1 ql _qt S/ql
L S fl/n<1u[énllx(t+u,') Hr [u] ™ du] de.

Again by an application of the Minkowski inequality}we have

1w sy - '/ /q'
I, §=C{fl/n<[u[éy [7EF'I—W [[X(t+u,-)[[r|u[ Sqe]1? /8qy14/4
=CC Iy el enll @V IxC, 0 (12
(5.3) <callx¢,o 1T .

122 is handled in a simpler way to get

I, < ClIxCL IS -

2

(5.2) and (5.3) with this complete the proorf of the lemma.

Proof of Theorem 4.2. We shall prove that (4.6) implies (4.8).
m-1

v m
For n>1, choose m sothat 2 <n< 2.
N =

Let T(t,w;X) be the De la Vallee Poussin mean of X(t,w) in (2.8).

Note that Tn is a trigonometric polynomial of order at most 2n-1l.
n m j
1 1
5 kf s Coes0-XCL Il 25 El g._l s, Cses0-XC50) I L
= IZ k=237
;= 2j
== 'El L '—1”T j_z(.’.;x)—x(-,.)_sk(.,.;(sz_z—x) |ls,r
] k=2J
. = 2j
g I T Can0axeaa g
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say. Using Theorem 2.1 and (4.6) we have

i< Ly 1 &SI =L gDy
= - . j=2 n ., .-

j=1 =2]—1 ji=1
(6.5) = o 12Ny C o™

Take q as in Lemma 5.1 so that g>s,r>q', ¢>2.

23
I Hsk<-,-;r2j_2 -0l .
k=271
i qt 23 Y
=00 T s Chest -0 |3 1
i1 23- s,Tr
k=27""41

which is from Lemma 5.1, Theorem 2.1 and (4.6)

- O(Zj/q')O(Zj/qesgfz(X)) = 03 (1)
2

From this we have, as in (5.4),

(5.5) 3, = o(n %y.

Proof of Theorem 4.3. Obviously (4.7) implies (4.9). Hence it is

sufficient to prove that (4.9) implies (4.6). We note that because of

the Ls’r—continuity of X(t,w),
(5.6) o_(t,w) > X(t,w) in L5 T (TxQ) .

This is easily seen from the property of Fejér integral. Write
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Vy(t,w) =0 ,(t,w), V (t,w) =0 (t,w) -0 . (t,w, n>2.
2 2 2
From (5.6)
n

I V. (t,w) =0 (t,w)
k=2 & 2"

converges in Ls’r(TXQ ) to X(t,w). The proof of the first part of (ii)
of Theorem 4.1 with Vn(t,w) in place of Un(t,w) applies to have
Theorem 4.3.

6. Lipschitz classes and the magnitude of Fourier coefficients

We study the relationship between the membership of X(t,w) to the

Lipschitz class A*(P)(¢) and the magnitude of z e (.)HB for
ST ]k!>n K Y

some B'and Y- Cn(w) is the Fourier coefficient of X(t,w). We first

indicate the following analogue of the Hausdorff-Young inequality.

Theorem 6.1. (i) If X(t,w) € Ls’r(TXQ), ¥;§§;;§',s_l+s'_l=l,

then
s' [ 1/s'
(6.1) Czofle el T e IxCLo Il -
n=—m
1
(ii) If I l]Cn(w)|[: <o for ¥;§;;;s', then X(t,w) € LS ’r(TXQ)
-0

n=
and

(6.2) [[£C,0) Hs' r;( L ||cn(.) |1i)l/s.
’ n=-x

By rpeated use of the Minkowski inequality and the ordinary

Hausdorff-Young inequality, we have

U1 tele @ (T3 M fe w1
S n=-—x
; {E[TITF' fi,n_ [X(t,m)|s dt]r/s}l/r

< el f’jﬂ[]-:]x(t,w) [rdc]s/r}l/s
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This shows (6.1). The second statement is similarly shown.
Let P(t) be continuous nondecreasing function on [0,1] with ¥(0)
=0 as in 1. Write as before 0= min(s,r), 6_l+6'_l=l.
*
Theorem 6.2. Let 1<r,s<2. If X(t,w) € ASEE)(w) for some positive

positive integer p, then

I < v am,

(6.3) z llc, ()
n k P

3

where‘Cp is a constant depending only on p.

This was shown in [6] when r=s, 1<r.(The proof in [6] is seen to
be applied to the case r=1.)
Proof. We shall prove

= .S,T
on p-s,

(6.4) | ? nck(m)lli' < c M ® (1/n).
k

Suppose first 1<s<r<2. Since the Fourier coefficient of AhX(t,m) is

ék(w)(l—eikh)P, we have, by Theorem 6.1, (6.1)
(6.5) “A(p)X(' 9 H b [ T “Ck(.) Hi’|Zsin(kh/2)lP"]1/s'.
: h ? S,T k=~
Hence
© 1 . 1 l 1
M:fg)(l/n) >n fé/“[ £ lle () |13 |2sinGn/2) P2 ] /s’ 4n

k==x

which is ,because of the Minkowski inequality,

> 2Pa{ 3 [fé/n||Ck(')||r|sin(kh/2)[pdh]s'}l/s'
|k|2n
-2z @l fsmoara Pan o ¢ 1511
|k[2n
1 l/S'
>cl T e (o lIZ e,
2ot T lle I

for



KSTS/RR-84/001
27 November, 1984

18

n Ié/“ |sin(kh/2)|Pdn = 2 7X/m

< o [sin—%[p du > C > 0,

where C is a constant depending only on p. (6.4) is thus proved.
The above proof was carried out for 1<s<r<2, but we easily
see that it is adapted also for s=1,s'=w>.
Suppose, second, 1<r<s. By successive use of the Holder
inequality, the ordinary Hausdorff-Young inequality and the

Minkowski inequality, we see that

1T EIA}gp)X(t,m)[r ae)t’T

®lere
llAh X(, )‘ls,r Z=[ 2 T -m

1

1 1/r
2w

E[ f’_’w|A1(1p)x(t,m)_|r dt]

v

LT o @]|F 1o TP T/
k==

o«
] 1
S{T [E|c, (|51 /T|26in D TP/
= k 2
k=-~%
This corresponds to (6.5), from which we have, as before,(6.4).
We also see that the proof also goes om for r=l,r'=w,and the
proof of Theorem 6.2 is complete.
The converse of Theorem 6.2 is true in the following form.

Theorem 6.3. Let l¢r,sg2. If
6.60 ¥ mn T an < w0, ocea

holds for some positive integer p and some constant C independent

of t, then
8 ,1/86 1
(6.7) [ 2 e 1772 evd
|k[2n
implies X(t,w) € A;gfl,(w), Clbeing a counstant independent of n,
-1, ,,-1
and 8 “+6 = 1.

Proof. Suppose,first,1<s<r<2. The convergence of the series

] ]
in (6.7) assures, by Theorem 6.1 (ii), that X(t,w) € 5T (TQ) .
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Here we note that r'<s'. (6.2) with Aép)x(t,m) in place of X(t,w)

gives us

{z [Elck(w)lr'[2sin(kh/2>|pr'15/"}l/s
k: -C0

A

”A}(IP)X(°,') ”s',r'
={z AkIZSin(kh/2)|ps}I/s,
k=1
where

A= e OIS+ e ) 113 -

Now we have

o) (1/[n]]
[N (Ol | IR z a | 2sin(kh/2)|P®
. . 2psAk]l/s
k=[1/ h ]+1
(1/|n]1
PRI AL EAIIP LI, Wl
k=1 k k=[1/]n|]+1
(6.8) = Kl + K2 ’
say. From (6.7)
(6.9) K, = P01/ 11/]n]] + 1) < cwlnD,

where C is a constant which may differ on each occurrence in what

follows.
Writing R = I Ak’ we have
n k>m
{1/]n]]
G T R - )
pPs [l/ih!] PsS Ps ps ps
h| z (&7 - (k=1)"7)R, - [n¥"(1/|n|] R[1/|h|]‘
k=1

Since Rk < Csws(l/k), we have
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(1/|n]]
K <clnlP® PSS
k=1
i, 1PS;,S 1 -l-ps,s
< clalTT@ + TR e

A

clhlpsffhI £ T1PSYS 0y de < cp®(Jnl).
Inserting this and (6.9) into (6.8), we have

18Px¢, 1l g cvdlnDy,

s',r

which shows the theorem.

Second, suppose 1<r<s<2. A similar arguement gives us

Pler. . > . psy1l/r
Ha,P k(e )Hr,,r. <« kil B, | 2sin(kn/2) [F9)™F,

r r . .

where Bk = [lck(-)|]r, + [!C_k(-)||r,. From this we can, in the
*

same way as above, get X(t,w) € Argpi, . Thus the proof of the

theorem is complete.

7. Almost sure absolute convergence of Fourier series

Let ¢(t) be a nondecreasing continuous function on [0,1] such
that either ¢(0) = 0 and ¢(t)/t is nonincreasing on (0,1], or ¢(t)
is identically 1 on [0.1].

Theorem 7.1. Let X(t,w) € Ls’r(TXQ), 1<r,s<2.

7.1) y k10

o@/m1 ™ ® a/m <,

for some nonnegative integer k and some positive integer p,then

co

(7.2) £ Jal*t6/1n) 17 e () |<=,

n=-—%

almost surely.
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(1/|n]]
K <clnlP® PSS
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A
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r r . .
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*

same way as above, get X(t,w) € Argpi, . Thus the proof of the

theorem is complete.

7. Almost sure absolute convergence of Fourier series

Let ¢(t) be a nondecreasing continuous function on [0,1] such
that either ¢(0) = 0 and ¢(t)/t is nonincreasing on (0,1], or ¢(t)
is identically 1 on [0.1].

Theorem 7.1. Let X(t,w) € Ls’r(TXQ), 1<r,s<2.

7.1) y k10

o@/m1 ™ ® a/m <,

for some nonnegative integer k and some positive integer p,then

co

(7.2) £ Jal*t6/1n) 17 e () |<=,

n=-—%

almost surely.
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This is a generalization of Theorem 3.1 in [7] in which r=s.

Proof.

s= I oG DI Elc W]
=3 a
- 2@+l

L}
[}
™M

L
—
&
—~
[

'l-)]"l slcj (w)]

o+l
bt 1 lle. ¢y ]
i 1

§=2"+1

5 2(n+l)k

n=1

IS

n+l )
eI T el
3=2"+1

-]
5 2(n+l)k
=1

A

- n+1
L}
T 2(n+l)k 6']1/9 2n/e

T

2
(o™ 1™ [ ¢
n=1 P 5

1A

lllcj<-)|l

4 = 2" - ! - @
22y &MY szl ]
- w=l o+l [ 4

8',1/8"'
T 1

which is, from (6.4) and ¢(cA) > A¢(t) for O<A<L,

cc 1 2 pamI ™ P am <.

m=1
-3 K _
The same is true for S' = I |a| [o(1/[a])] lElCn(w)[ . From these
=-co
we have that (7.2) holds almost surely.

Theorem 4.1 suggests that the same conclusion in Theorem 7.1

. . , S,T s,r_. .
holds with the coundition (7.1) with en x, z = l[Gn(',')-K(-,-)[[S .

or
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-1 o
ST (=1 z
n._ k=1

o e - . o 5 -*
||sk( »*3X) X(-, )lls,f’ in place of Méfg)(l/n),r
We now show thac actually ic is.

Since

8.4 T £22Tm 2 ),

it is sufficient for our purposa to prove the following theorem.
Theorem 7.2. Let X(t,w) € LS’ (TxQ), 1<r,s<2. If

(7.4 r o<l/e

(6(1/n)] LeS'T < =,
n=1 o

for some nomnegative integer k, then (7.2) holds almost surely.

Proof. Define, as in the proof of Theorem 4.1 Uz(t,m) =

Tzz(t,w),'Un(c,m) = rzn(t,w) - rzn_l(c,m), n>2, where rn(t,m) is the

n
I U (c,w) =1 (t,w)
v=2 Y 2"

- . s
converges to X(t,w) in L ’r(TXQ) as mooo,

Now let m be a positive integer.

N
[[Aép)x(-,~) I, .= Liml] = A(p)Uv(',‘)lls,r

$sT  Now'ly=2 B
m N
. (p) , (P
<l ¢ aPu (-, +lim|] T AFU (-, |
=y BV T Moo ymml DV >t
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1z a®u e I e I D i
< U,Cse + 2 ) lim|] I U (++ih,*)
v=2 BV ST 3201 e vemrl VY s-T

= 1,0 + L,(h),

say.

p
Ly = I

P : o e) - et3ih. e
J A 11m1|12N( +ih),*) sz( +ine) |l .

N>

1

P
T ® Lim||t (o, =T (-, ]
j=0 3 N+®]l 2N " ls.x

Ia

f[hﬂhﬂbf)—xbu)H&r

Noveo +HT2m("') -X(.y.)Hs,r]-
s

Since from Theorem 2.1 ||T N(-,-)— X(-,-)|| L e &r which converges
2 s 2

T

to zero as N+~ from (7.4), we have
p+2 s,r
L,(h) g 2P7%eST,
= o

m-1

. m . .
and hence choosing m so that 2 <n<2” , we obtain for a given n

(7.4) sup Lz(h) L e”’" < e’

On the other hand
| z [al® I
Lozl 2 [[a o (-,
1 —> h v

S,T

which is, from the expression just before (4.12),
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m
VPih|P . .
< 2 Pl

m
<z 2Pl (Cun) = xCL Il o+ T Gae) = kCL T L
v=2 2 2 2 ’

m
< 2|h|P 5 S,Tr 2\)p+2
= v=2 2V71
and hence
It Y
(7.7) sup Ly(h) 2P g 2P R
|h|<1l/n v=1 2

Therefore we have, from (7.5) and (7.6)

£ _ m-1
WP (1/m) cc@® oz 2%e T+ o3,
S,T v=1 2
and
oo _- ' - . * R
< 3 oY parmn W@
T n=1 =St
© k= —1/9' -1 m—l‘\)psr
<c z o P (6(1/m)] = T 27e)
- n=1 v=1 2
© _ ' -
+c 1 of 1/8 [6(1/n)] lei’r
n=1
(7.7) = CLl’l + CLl’z

say.
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By (7.3), Ll,2 is flnit_e.

n
©

1,1 n-1

n=1 +1

=

|

™
N M

H=

L 1
where Zm 1 < u ;2“1 ,

A

A

v=1 2 n=v

1

W8P 17t

' n
5 2n(k—l/e -p+1) [¢(l/2n)]—l 5
n=1 v=1

V

m'
z

2\)pes\,)r
1 2
\)pes\,)r

2

5 zvpes,r 5 2n(k—l/e'—p+l)[¢(l/2n)]-l .

since [6(1/2M17F < 2"V [6(1/2")17L, the last one is

(=< o
<3 ST P Vg2t 5 2
v=1 2 n=v

Taking p > k+3 we have

oo

L, <
1,15 2
w© 2 .
<c 1 o1 k=178
v=1 n=2v—1
Lo -] _ ' _
cc z 2 /ST
n=1

Therefore from (7.6), we have

n=1

z nk'l/e'£¢(1/n)1'1M:f§><1/n> < =,

2v(k—l/e'+1)[¢(l/2v)]—les\,)r
2

-1 s,
0(1/m1 e

n(k-1/6"'-p+1)+n

r

25
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for some positive.integer‘p. Then we obtain Theorem 7.2 from
Theorem 7.1.

We remark that , because of Theorem 2.2 and the proof of Theorem
7.2, Theorems 7.1 and 7.2 are substantially equivalent.

Theorem 7.3. Let 1<r<2, 1<s<2. Suppose X(t,w) € Ls’r(TXQ) is of

bounded variation in Lr(Q)' If

(7.8 ; k-1/8"-1/s

n=1_

/w1 P @m it

for some nonnegative integer k and some positive integer p, then (7.2)

holds almost surely.

Proof. Using Lemma 3.1 and (7.8), we have

(o]

z nk—l/e’

-1,4(®)
) [0(1/m) 17 2 (1/m)

n

1/s

n?‘l/e'{¢(1/n)]‘1[M§P><1/n>jl/5'n- .

A
a
™

n=1

Hence Theorem 7.3 follows from Theorem 7.1.

We remark that if s=1, then (7.8) never holds.

8. Mean derivative and the absolute convergence of Fourier series

Let X(t,w) be of LT (< ), 1<r<w, 1<s<». If there exists an

Xlii(t,w) € Ls’r(TXQ) such that
(8.1) [| (1/h) [X(s+h,*) - X(*,*) Hs,r -+ 0,

as h>0, we say that X(t,w) has the mean derivative X&(t;w) in Ls’r(TXQ).
If Xﬁ(t,w) has the’'mean derivative Xﬁ’(t,w) in Ls’r(TXQ), then
X(t,w) is said to have the second mean derivative X&'(t,m) in Ls’r(TXQ).
In a similar way, we successively define the k-th mean derivative
XM(k)(t,w). For s=r, these were defined in [8]. The following lemmas
are generalizations of the correspondings with r=s and the proofs are

carried out without any sustantial change.
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S TE hpllxép)(',')ll

S,r

which proves (8.4). The similar is true for h<0 and Theorem 8.1 is
proved for 1l<s<w.

If s=» , then (8.4) is easily obtained from (8.§).

We now give a theorem which assures the almost sure validity of

(7.2) for a stochastic process which has the mean derivative.

Theorem 8.2. Supposé X(t,w) € Ls’r(TXQ), 1<r<w, 1<s<e , has the

+ .
k+l-st mean derivative Xék'l)(t,m) in Ls’r(TXQ) for some nonnegative

integer k. If

-2+1/8
n

- (8.7) z [6(1/m)] teo |

n=1

then (7.2) holds almost surely.

This theorem immediately follows from Theorezms 7.1 and 8.1. The

following corollary is also immediate with ¢(t)=ta, 0<a<l.

(k%l)

Corollary 8.1. Lf X(t,w) € Ls’r(TXQ) has the mean derivative XM (t,w)
. s,T . ) o
in L (TxQ) for some nonnegative integer k and
(8.8) 0 < a <1-6 ,
then
z ke ‘
8.9 Z |n| lcn(m){ < @

n=-x

almost surely. _
Theorem 8.2 and Corollary 8.1 with r=s were shown in [8]. If s<r,
the conditions (8.7) and (8.8) are stronger than the corresponding

ones with r=s. However the class of X(t,w) is broader.

9. Sample properties

Once the theorems on the absolute convergence of Fourier series
of stochastic processes as in the foregoing section are obtained, we

can derive, from them, the results which give the conditions for the
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sample continuity or sample differentiability by the argument same
as in [7] Theorem 6.1.

. ] . s r
We throughout this section assume that a 2-periodic L =process

X(t,w) EE_stochascically continuous, that is, for every t

(9.1) P(|X(t+h,w) - X(t,w)| > €) > O,

as h>0, for every €>0. In this case (9.1) holds uniformly and the (C,1)
mean cn(t,w) of the Fourier series of X(t,w) converges uniformly in
probability to X(t,w). [7]

Let ¢(t) be a function considered in 7.° A, denotes the ordinary . _.

Lipschitz class {f(t); sup |£(t+h) - £(£)| = 0(4(8))} of 2m-
t,|h|<$

beriodic functions and when ¢(t) = 1, denotes the class of continuous
functions.
We have the following‘;heorems from Theorems 7.1,7.2,3.3,8.2 and

Corollary 8.1. We do not think that we have to repeat theier proofs.

Theorem 9.1. If X(t,w) € Ls’r(TXQ), 1<r,s<2 satisfies the condition

(7.1) in Theorem 7.1 for some nonnegative integer k and some positive-

integer p, then there is a modification Xo(t,m)_gf X(t,w) with the

property that Xo(t,m) has almost surely the k-th derivative which
belongs to A¢.

Theorem 9.2. -If X(t,w) € Ls’r(TXQ), 1<r,sx2 satisfies the condition

(7.4) in Theorem 7.2 for some nonnegative integer k, then the conclusion
of Theorem 9.1 is valid. ‘4
Theorem 9.3. If X(t,0) € Ls’r(TXQ), 1<r<2, 1<s<2, is of bounded

variation in Lr(Qj and satisfies the condition (7.8) in Theorem 7.3

for some nonnegative integer k and some positive integer p, then the

conclusion of Theorem 9.1 is wvalid.
Theorem 9.4. If X(t,w) € Ls’r(TXQ),‘l§;<m,l§§§§, has the mean
derivative X§k+l)(t,w) in Ls,r(

Tx{) for some nonnegative integer -k and

and the condition (8.7) in THeorem 8.2 if_satisfiéd,uthen the conclusion

of Theorem 9.1 is valid.

Theorem 9.5. Let X(t,w) € Ls’r(TXQ), 1<r<w, 1<s<w, have the mean _

derivative X§k+l)(t,w) in Ls’r(TXQ) for some nonnegative integer k. If

a number o satisfies (8.8) in Corollary 8.1, then there is a modification
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Xo(t,m) of X(t,w) with the propertv that Xo(t,m) has almost surely

the k-th derivative which belongs to A,
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